常压等离子体处理对PVA薄膜溶解性能和棉织物退浆效果的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚乙烯醇(PVA)在纺织工业中被广泛用作上浆剂。经PVA上浆的棉织物必须经过退浆处理,以满足后续加工(染色、印花、整理)要求。目前常用的退浆方法是使用热水在棉织物表面洗脱PVA,有时加入烧碱或氧化剂如H_2O_2等,该方法不仅耗能高,废水排放量大,而且排出的废水中含有大量的PVA和化学助剂,造成环境污染严重,不符合当今环保的要求,不利于产品的可持续发展,因此有利于生态环境的低温等离子体在纺织制品染整加工中的应用研究引起人们极大关注。如果能将低温等离子体运用于纺织工业的退浆工艺,在退浆工艺阶段就实现对PVA的降解,不仅能大大减少化学助剂用量和PVA废水的排放,还能降低能耗和减少用水,具有重大的环境效益和经济效益。
     然而,过去大多数等离子体处理过程都是在低压下进行,这不仅需要昂贵的真空体系,而且由于要抽真空,不能实现在线处理,使得较低附加值的纺织品一类的产品成本过高,难以实现工业化处理。与之相比,国际上最近几年来正在积极开发的常压非平衡低温等离子体技术,不需要抽真空,因此可以实现处理过程连续化。到目前为止,进入市场的常压等离子体处理设备中,主要有两种,即介质阻挡放电(DBD)和喷射式等离子体(Plasma Jet)。DBD为电容式,被处理物必须通过两块极板中的狭缝。而喷射式等离子体的活化气体是在喷头里产生,然后喷出来和被处理物接触。
     常压等离子体处理过程中和低压等离子体处理的一个很大区别在于试样置于外界大气环境中,会吸收外界环境中的水分而使材料保持一定的回潮率。而对于以往的低压等离子技术,试样在处理前需要被干燥以达到所需的真空度,所以不需要考虑水分的存在对处理效果的影响。水分子的存在使常压等离子体的成分及其和被处理物之间的相互作用变得更为复杂。也使得材料的微观结构和各种物理机械性能发生改变,从而影响等离子体的处理效果。
     PVA是一种水溶性聚合物,在液态水存在或高湿度环境下,其大分子链发生松弛,内部结构及性能明显改变,当PVA的含水率提高到10%以上,其玻璃化温度由68℃降至20℃以下。可见,水分对PVA内部结构和本身物理机械性能有很大的影响。近年来,国内外有关常压等离子体技术对棉织物上PVA浆料的去除有过不少研究。但是,有关水分对常压等离子体退除PVA浆料效果的影响方面目前还尚未有报道。
     本课题采用本实验室最近从国外引进的喷射式常压非平衡低温等离子体发生器和中科院研发的介质阻挡放电装置,从PVA薄膜到PVA上浆的棉织物系统地研究常压等离子体射流对棉织物退浆效果的影响,并探讨薄膜和织物中存在的水分对PVA刻蚀、溶解性能的影响及其对棉织物本身表面和力学性能的影响。通过一系列的表面分析测试方法,如扫描电子显微镜(SEM)、原子力显微镜(AFM)、傅立叶变换红外光谱(FTIR)及其X射线光电子能谱(XPS)等表面形态和化学分析方法探测PVA薄膜及其织物表面发生的物理和化学变化,通过动态力学热分析(DMA)和X射线衍射(XRD)等方法来测定等离子体处理后PVA薄膜内部微观结构的变化,通过测量薄膜和上浆棉织物的刻蚀失重率及其溶解率来分析等离子体的直接刻蚀效果和对后道水洗退浆效果的影响,通过芯吸高度和白度等测定方法来表征处理后棉织物吸湿性能和白度的变化,通过测定棉纱的拉伸强力和棉织物的低应力机械性能及其表面性能来分析等离子体退浆对织物本身的影响。
     首先,本文研究了常压射流等离子处理工艺参数(气氛、流量、功率、时间、喷头与薄膜距离、回潮率和垫层)对PVA薄膜刻蚀速率的影响。发现经等离子体处理后,刻蚀速率随功率、氧气流量、氦/氧混合气体流量及其薄膜回潮率的增加而增加;随处理时间和氦气流量的增加先上升后下降;随喷头与被处理样的距离增加而下降,当距离超过6mm,刻蚀速率几乎为0。研究还发现,不同垫层(塑料片、钢片和铝板)导热性能对刻蚀速率影响很小。在常压等离子体刻蚀作用下,PVA薄膜表面变得粗糙,表面氧元素含量增加,从而导致极性基团含量增加,薄膜吸湿性能提高。
     其次,为了研究水分对等离子体处理过的PVA薄膜溶解性能的影响,本文采用常压射流等离子体处理装置对回潮率分别为2.5%、9.3%和78.3%的PVA薄膜(在相对湿度分别为10%、65%和98%的环境中平衡24小时)进行处理,在氦气中加入氧气作为工作气体,处理时喷头温度约为60℃,处理功率为100W,处理速度为2mm/s。处理过程中采用塑料片、钢片和铝板三种导热系数不同的垫层,研究由此引起薄膜表面聚积温度的高低对处理后薄膜表面形貌的不同变化和对溶解性能大小的影响。考虑到由于加热引起的结晶度变化对处理效果可能造成的影响,我们对PVA薄膜退火处理,并与等离子体处理效果进行比较。发现经等离子体处理后,相对湿度为65%和98%的试样含氧量增加,而相对湿度为10%的试样略有下降;与相对湿度(10%和65%)较低的试样相比,相对湿度为98%的试样溶解性能最差。尤其经塑料片垫层处理过的薄膜更是如此。溶解性能的下降主要是由于水分增塑作用下,PVA薄膜的玻璃化温度远低于处理薄膜的表面温度,经等离子体高能粒子轰击后,裂解形成的小分子链段在无定型区重新排列,PVA薄膜表面发生重结晶,结晶度明显增加引起的,这点可以由SEM和XRD测试得到验证。
     为了研究水分对等离子体处理后织物的退浆效果,本文选择含PVA浆料的棉织物作为模型,在相对湿度分别为10%,65%和98%的大气环境中平衡24小时后,将棉织物置于铝板上,采用氦/氧常压射流等离子体处理,再经水洗,水洗温度为60℃。研究表明,处理后棉织物的退浆率增加,退浆时间缩短,在同样的处理条件下,相对湿度为10%的棉织物退浆效果最佳,该织物经64s等离子体处理后水洗20分钟纤维表面几乎和未上浆织物一样干净。棉织物退浆率的提高主要是由于等离子体的刻蚀失重和PVA大分子链断裂及含氧极性基团含量增加引起的。在等离子体高能粒子作用下,棉纤维表层覆盖着的蜡质、果胶等共生物发生氧化分解反应,织物的吸水性得到改善。此外,等离子体处理后织物的单纱强力均没有下降。
     在研究了常压等离子体射流对PVA浆料去除效果后,本文进一步探讨了棉织物经等离子体退浆处理引起的低应力机械性能及其表面性能变化。在等离子体的刻蚀作用下,棉纤维表面变得粗糙,三种相对湿度的棉织物表面性能包括表面摩擦和表面粗糙度均有所增加,其中相对湿度为98%的试样粗糙度最大,这点由AFM测试结果得到验证。增加的表面粗糙度进一步加大了纤维或纱线间的摩擦,阻碍了织物的应力变形及其变形回复能力,从而导致棉织物的低应力机械性能(拉伸、剪切和压缩性能)增大。
     最后,本文还研究了介质阻挡放电(DBD)中处理时间对上浆棉织物前处理效果的影响,并与常规前处理工艺进行比较。四组试样分别经氩气/氧气等离子体处理1、2、4和6分钟,再经热水和冷水洗涤,水洗温度分别为60℃和25℃。研究表明等离子体处理时间对刻蚀以及退浆效果有显著影响。通过SEM观察发现处理后棉织物表面的PVA浆料被打碎,随着处理时间的延长,纤维变得粗糙甚至出现裂痕。织物的热水洗退浆率增加,但冷水洗退浆效率无明显提高。处理后棉纤维上蜡质的连续覆盖层状态被破坏,织物芯吸高度增加,甚至优于常规煮炼的芯吸效果。经过等离子体处理的织物白度没有明显改善。此外,短时间的DBD处理并不会降低棉织物的单纱强力。因此我们得出,常压DBD等离子体处理棉织物可以达到常规退浆煮炼的效果。
Poly(vinyl alcohol) (PVA) is widely used in textile industry as a sizing agent. But cotton fabrics treated with PVA have to be desized to meet the subsequent processing (dyeing, printing and finishing) requirements. In conventional desizing process, cotton fabrics are washed with hot water and sometimes NaOH or oxidant such as H_2O_2 is used to remove PVA. It is not only water and energy consuming but the wastewater from the textile plant contains large quantities of PVA and oxidant agents, resulting in serious environmental pollution. Obviously, this conventional desizing process is unable to meet requirement of environmental protection and quite adverse to the sustainable development of textile industry. For this reason, the application of environmentally friendly low-temperature plasma is of great interest to the textile industry. If plasma treatments could degrade PVA in the desizing process, both chemical agents and PVA concentration in the wastewater would be significantly reduced. Meanwhile, the consumption of energy and water could be greatly decreased. Therefore, it has great environmental and economical benefits.
     However, most of the previous plasma treatments were carried out at low pressure, which can not be integrated into the production line due to existence of the vacuum system. It is thus economically infeasible for industrial treatment of low cost products such as most of the textiles. On the other hand, the recently developed non-equilibrium low temperature surface treatment at atmospheric pressure can be directly added on to the processing line. So far, there are two main types of atmospheric pressure plasma equipments, namely dielectric barrier discharge (DBD) and plasma jet in the market. DBD is capacitive and the treated materials have to pass through a narrow slit between two polar plates, while plasma jet has no such limitation in substrate shapes.
     One of the main differences between a low-pressure plasma treatment and an atmospheric pressure plasma treatment is that in atmosphere, the substrate material may absorb significant amount of water which may potentially influence the plasma treatment effects. But it does not need to be taken into account in low pressure plasma treatment since all the moisture will be removed before the treatment chamber could reach the required degree of vacuum. The existence of water molecules could lead to a more complicated interaction between active species in plasma and substrate surface, which could alter the microstructures and mechanical properties of materials.
     Poly(vinyl alcohol)(PVA) is a water-soluble synthetic polymer and its macromolecular structure and physical properties change significantly when in contact with liquid water or high humidity due to the loosening of the intermolecular bonds. It is proposed that the glass transition temperature (Tg) of PVA will drop from 68°C to below 20°C when the moisture content increases by more than 10%. Clearly, water greatly affects the internal structure, physical and mechanical properties of PVA. However, recent researches only focus on atmospheric pressure plasma desizing effect of PVA on cotton fabric and no systematic study has been reported about how moisture pre-existed in PVA could influence the desizing of PVA by means of plasma treatments.
     This research is aimed to employ the atmospheric pressure plasma treatment on PVA size removal and study the influence of moisture on the desizing effect. The effect of moisture on etching and solubility of PVA film by atmospheric pressure plasma treatment is studied and the desizing effect of cotton fabrics with different moisture regain is discussed systematically based on the results of various surface analysis, namely scanning electron microscope (SEM), atomic force microscopy (AFM), x-ray diffractometry (XPS), dynamic mechanical thermal analysis (DMA), x-ray diffraction analysis (XRD), wicking height, weight loss and solubility measurement.
     Firstly, the influence of various processing parameters on etching rate of PVA film by APPJ is investigated, including gas type, gas flow rate, output power, treatment duration, jet to substrate distance, moisture content and the underlining material. The etching rate increases as the output power, the oxygen flow rate, the flow rate of helium/oxygen mixed gas and the moisture regain increase. As the treatment duration and the helium flow rate increase, the etching rate increases initially and then decreases. The etching rate decreases as the jet to substrate distance increases and diminishes when the distance is above 6 mm. Meanwhile, the difference in thermal conductivity of underlining materials (plastic sheet, steel sheet and aluminium plate) has little effect on the etching rate. After the plasma treatment, the surface of the PVA film becomes rough and more polar groups are introduced, resulting in enhanced hydrophility.
     To investigate the relationship between the moisture and the solubility of the PVA film during plasma treatment, atmospheric pressure plasma jet (APPJ) is used to treat PVA films with moisture regain (MR) of 2.45%, 9.32% and 78.31% corresponding to 10%, 65% and 98% relative humidity (RH), respectively. Three substrate underlining materials including plastic sheet, steel sheet and aluminum plate are selected. Helium/oxygen mixture is used as the working gas. The treatment nozzle temperature is about 60°C, the output power is 100 W and the sample moving speed is about 2 mm/s. Another group is annealed at 140°C for 20 min to discern the thermal effects from those due to plasma treatment. It is found that the surface oxygen concentration increases for the plasma treated films with 65% and 98% RH and decreases for the plasma treated films with 10% RH. Among the three plasma treated samples, the one with 98% MR has the highest etching rate but the lowest solubility, especially for the samples underlined with plastic sheet during the plasma treatment. The decrease of solubility could be resulted from plasma enhanced surface crystallization of PVA as shown in SEM images and XRD analysis.
     To investigate the influence of moisture absorption on the effectiveness of plasma desizing, PVA sized cotton fabric is chosen as a model system. Placed onto aluminum plate, samples with three relative humidities (RHs) (10%, 65% and 98% respectively) are treated with APPJ using mixed gas of helium/oxygen and then subjected to water washing at 60°C. Solubility measurement reveals that the percent desizing ratio (PDR) increases and the washing time is shortened. Fabric with 10% RH had the highest desizing efficacy and the fiber surfaces are nearly as clean as the unsized fibers after 64 s exposure plus 20 min washing. The improvement of PDR is due to etching induced weight loss, macromolecular chain scission as well as increased oxygen-containing polar groups. After the plasma treatment, the wicking ability of cotton fabrics is improved with the removal of wax and pectin on fabric surface caused by bombardment of plasma species. In addition, no significant decrease in single yarn tensile strength is observed for the plasma treated yarns.
     The influence of moisture on low-stress mechanical and surface properties of treated cotton fabric is also studied. Experimental results indicate that after the plasma treatment, surface properties such as surface friction (MIU) and surface roughness (SMD) increased for all three treated fabrics, especially for fabric with 98% MR as verified by AFM results. The enhancement of surface friction (MIU) increased interyarn or interfiber friction, hindered fabric stress deformation and recoverability and consequently led to an increase in low-stress mechanical properties, such as tensile, shear and compression properties.
     Finally, the relationship between DBD plasma treatment time and desizing effect for a cotton fabric is determined and compared with the conventional pre-treatment process. Four groups are treated by argon/oxygen DBD with treatment durations of 1, 2, 4 and 6 min respectively, followed by hot (60°C) and/or cold (25°C) wash. It is found that plasma treatment time has a significant influence on the etching effect and desizing efficacy. SEM shows that PVA on the fabric surface is broken into pieces after short time treatment. The fiber surface becomes somewhat rough and even micro-cracks appear as the treatment time prolongs due to intensive plasma etching. Solubility measurement reveals that plasma treatment increases PVA solubility in hot washing but less effective in cold washing. Wicking tests indicate that the capillary heights of plasma treated fabrics increase significantly due to the destruction of continuous cuticle layer, even larger than that of conventional scouring. The whiteness of the treated fabrics improves slightly. The yarn tensile strength test results show that short DBD exposure time has no negative effect on fabric tensile strength while the long treatment time may slightly reduce the fabric tensile strength. Therefore, the DBD treatment may assist the conventional desizing and meet scouring requirements.
引文
1. Boris M., Smirnov N.; Physics of Ionized Gases. 2001, John Wiley & Sons: New York.
    2. Hollander A., Wilken R., Behnisch J.; Subsurface chemistry in the plasma treatment of polymers. Surface & Coatings Technology 1999; 116:788-791.
    3. Conrads H.,Schmidt M.; Plasma generation and plasma sources. Plasma Sources Science & Technology 2000; 9(4): 441-454.
    4. Braithwaite N. S. J.; Introduction to gas discharges. Plasma Sources Science & Technology 2000; 9(4): 517-527.
    5. Tomasino C. Cuomo J.J., Smith C.B.; Plasma Treatment of Textiles. J. Coated Fabrics 1995; 25: 115-127.
    6. Schutze A., Jeong J. Y., Babayan S. E., Park J., Selwyn G. S., Hicks R. F.; The atmospheric-pressure plasma jet: A review and comparison to other plasma sources. Ieee Transactions on Plasma Science 1998; 26(6): 1685-1694.
    7. Tendero C., Tixier C., Tristant P., Desmaison J., Leprince P.; Atmospheric pressure plasmas: A review.Spectrochimica Acta Part B-Atomic Spectroscopy 2006; 61(1): 2-30.
    8. Blin-Simiand N., Jorand F., Magne L., Pasquiers S., Postel C., Vacher J. R.; Plasma reactivity and plasma-surface interactions during treatment of toluene by a dielectric barrier discharge. Plasma Chemistry and Plasma Processing 2008; 28(4): 429-466.
    9. Borcia G., Anderson C. A., Brown N. M. D.; Dielectric barrier discharge for surface treatment: application to selected polymers in film and fibre form. Plasma Sources Science & Technology 2003; 12(3): PII S0963-0252(0903) 62371-62376.
    10. Borcia G., Anderson C. A., Brown N. M D.; The surface oxidation of selected polymers using an atmospheric pressure air dielectric barrier discharge. Part II.Applied Surface Science 2004; 225(1-4): 186-197.
    11. Borcia G., Anderson C. A., Brown N. M. D.; The surface oxidation of selected polymers using an atmospheric pressure air dielectric barrier discharge. Part I.Applied Surface Science 2004; 221(1-4): 203-214.
    12. Borcia G., Anderson C. A., Brown N. M. D.; Surface treatment of natural and synthetic textiles using a dielectric barrier discharge. Surface & Coatings Technology 2006; 201(6): 3074-3081.
    13. Borcia G., Brown N. M. D., Dixon D., McIlhagger R.; The effect of an air-dielectric barrier discharge on the surface properties and peel strength of medical packaging materials. Surface & Coatings Technology 2004; 179(1): 70-77.
    14. Kanazawa S. Kogoma M., Moriwaki T., Okazaki S.; Stable Glow Plasma at Atmospheric Pressure. Journal of Physics D-Applied Physics 1988; 21: 838-840.
    15. Kanazawa S. Kogoma M., Moriwaki T., Okazaki S.; The Mechanism of the Stabilization of Glow Plasma at Atmospheric Pressure. Journal of Physics D-Applied Physics 1990; 23(8): 1125-1130.
    16. Placinta G., ArefiKhonsari F., Gheorghiu M., Amouroux J., Popa G.; Surface properties and the stability of poly(ethylene terephthalate) films treated in plasmas of helium-oxygen mixtures. Journal of Applied Polymer Science 1997; 66(7): 1367-1375.
    17. Yokoyama T. Kogoma M., Kanazawa S., Moriwaki T., Okazaki S.; The Improvement of the Atmospheric-Pressure Glow Plasma Method and the Deposition of Organic Films. Journal of Physics D-Applied Physics 1990; 23: 274-377.
    18. Shenton M. J., Lovell-Hoare M. C., Stevens G. C.; Adhesion enhancement of polymer surfaces by atmospheric plasma treatment. Journal of Physics D-Applied Physics 2001; 34(18): 2754-2760.
    19. Babayan S. E., Jeong J. Y., Tu V. J., Park J., Selwyn G. S., Hicks R. F.; Deposition of silicon dioxide films with an atmospheric-pressure plasma jet. Plasma Sources Science & Technology 1998; 7(3): 286-288.
    20. Jeong J. Y., Babayan S. E., Tu V. J., Park J., Henins I., Hicks R. F., Selwyn G. S.; Etching materials with an atmospheric-pressure plasma jet. Plasma Sources Science & Technology 1998; 7(3): 282-285.
    21. Park J., Henins I., Herrmann H. W., Selwyn G. S., Hicks R. F.; Discharge phenomena of an atmospheric pressure radio-frequency capacitive plasma source. Journal of Applied Physics 2001; 89(1): 20-28.
    22. Shenton M. J.,Stevens G. C.; Surface modification of polymer surfaces: atmospheric plasma versus vacuum plasma treatments. Journal of Physics D-Applied Physics 2001; 34(18): 2761-2768.
    23. Li R. Z., Ye L., Mai Y W.; Application of plasma technologies in fibre-reinforced polymer composites: A review of recent developments. Composites Part a-Applied Science and Manufacturing 1997; 28(1): 73-86.
    24. Riekerink M. Terlingen J., Engbers H., Feijen J.; Selective Etching of Semicrystalline Polymers:CF4 Gas Plasma Treatment of Poly(ethylene). Langmuir 1999; 15: 4857-4856.
    25. Gray D. Mohindra V., Sawin H.; Redeposition Kinetics in Fluorocarbon Plasma Etching. Journal of Vacuum Science and Technology A-Vacuum Surfaces and Films 1994; 12(2): 354-364.
    26. Inagaki N., Narushim K., Tuchida N., Miyazaki K.; Surface characterization of plasma-modified poly(ethylene terephthalate) film surface. Journal of polymer Science: Part B: Polymer Physics 2004; 42: 3727-3740.
    27. Yi C.H., Lee Y.H., Yeom G.Y.; The study of atmospheric pressure plasma for surface cleaning. Surface & Coatings Technology 2003; 171: 237-240.
    28. Kim G.H., Kim K.T., Kim D.P., Kim C.; Etching characteristic and mechanism of BST thin films using inductively coupled Cl_2/Ar plasma with additive CF4 gas. Thin solid films 2004; 459: 127-130.
    29. Maruyama T., Fujiwara N., Shiozawa K., Yoneda M.; Tungsten etching using an electron-cyclotron-resonance plasma. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films 1995; 13(3): 810-814.
    30. Kim G.H., Kim C.; Dry etching of magnesium oxide thin films by using inductively coupled plasma for buffer layer of MFIS structure. Thin Solid Films 2007; 515: 4955-4959.
    31. Plawsky J., Ponoth S., Dalakos G., Malek K., Coppens M.O.; Energy transport in plasma etching of nanoporous dielectric materials. Superlattices and Microstructures 2004; 35: 195-204.
    32. Jung M.H., Choi H.S.; Photoresist etching using Ar/O_2 and He/O_2 atmospheric pressure plasma. Thin Solid Films 2006; 515: 2295-2302.
    33. Belmonte T, Pintassilgo C.D., Czerwiec T, Henrion G., Hody V, Thiebaut J.M., Loureiro J.; Oxygen plasma surface interaction in treatments of polyolefines. Surface & Coatings Technology 2005; 200(1-4): 26-30.
    34. Hwang Y.J., An J.S., McCord M.G., Park S.W., Kang B.C.; The effect of etching on low-stress mechanical properties of polypropylene fabrics under helium/oxygen atmospheric pressure plasma. Fibers and Polymers 2003; 4(4): 145-150.
    35. Pandiyaraj K.N., Selvarajan V, Deshmukh R.R., Bousmina M.; The effect of glow discharge plasma on the surface properties of poly(ethylene terephthalate) (PET) film. Surface & Coatings Technology 2008; 202: 4218-4226.
    36. Zhu L., Wang C.X., Qiu Y.P.; Influence of the amount of absorbed moisture in nylon fibers on atmospheric pressure plasma processing. Surface & Coatings Technology 2007; 201: 7453-7461.
    37. Xu H.L., Peng S.J., Wang C.X., Yao L., Sun J., Ji F., Qiu Y.P.; Influence of absorbed moisture on anti-felting property of wool treated with atmospheric pressure plasma. Journal of Applied Polymer Science 2009; 113(6): 3687-3692.
    38. Banik I., Kim K.S., Yun Y., Kim D.H., Ryu C.M., Park C.S., Sur G.S., Park C.E.; A closer look into the behavior of oxygen plasma-treated high-density polyethylene. Polymer 2003; 44: 1163-1170.
    39. Kim K.S., Ryu C.M., Park C.S., Sur G.S., Park C.E.; Investigation of crystallinity effects on the surface of oxygen plasma treated low density polyethylene using X-ray photoelectron spectroscopy. Polymer 2003; 44: 6287-6295.
    40. Svorcik V., Kotal V., Siegel J., Sajdl P., Mackova A., Hnatowicz V.; Ablation and water etching of poly(ethylene) modified by argon plasma. Polymer Degradation and Stability 2007; 92: 1645-1649.
    41. Esena P., Zanini S., Riccardi C.; Plasma processing for surface optical modifications of PET films. Vacuum 2007; 82(2): 232-235.
    42. Fang K.J., Zhang C.M.; Surface physical-morphological and chemical changes leading to performance enhancement of atmospheric pressure plasma treated polyester fabrics for inkjet printing. Applied Surface Science 2009; 25(17): 7561-7567.
    43. Baltazar-Y-Jimenez A., Bistritz M., Schulz E., Bismarck A.; Atmospheric air pressure plasma treatment of lignocellulosic fibers: Impact on mechanical properties and adhesion to cellulose acetate butyrate. Composites Science and Technology 2008; 68(1): 215-227.
    44. Chen J.; Free Radicals of Fibers Treated with Low Twemperature Plasma. Journal of Applied Polymer Science 1991; 42: 2035-2037.
    45. Inagaki N. Tasaka S., Kawai H.; Surface Modfication of Aromatic Polyamide Film by Oxygen Plasma. Journal of Polymer Science Part A-Polymer Chemistry 1995; 33: 2001-2011.
    46. Ward T. Jung H., Hinojosa O., Benerito R.; Characterization and Use of Radio Frequency Plasma-Activated Natural Polymers. Journal of Applied Polymer Science 1979; 23: 1987-2003.
    47. Gheorghiu M., Arefi F., Amouroux J., Placinta G., Popa G., Tatoulian M.; Surface cross linking and functionalization of poly (ethylene terephthalate) in a helium discharge. Plasma Sources Science & Technology 1997; 6(1): 8-19.
    48. Gupta B., Hilborn J., Hollenstein C., Plummer C J. G., Houriet R., Xanthopoulos N.; Surface modification of polyester films by RF plasma. Journal of Applied Polymer Science 2000; 78(5): 1083-1091.
    49. Nakayama Y. Soeda F., Ishitani A., Ikegami T.; Surface Analysis of Plasma-Treated by Poly(ethylene terephthalate) Film. Polymer Engineering and Science 1991; 31: 812-817.
    50. Yasuda H. Marsh H.; ESCA Study of Polymer Surfaces Treated by Plasma. Journal of Applied Polymer Science 1997; 15: 991-1019.
    51. Abidi N., Hequet E.; Cotton fabric graft copolymerization using microwave plasma. I. Universal attenuated total reflectance-FTIR study. Journal of Applied Polymer Science2004; 93(1): 145-154.
    52. Dogue I. L. J., Forch R., Mermilliod N.; Plasma-induced hydrogel grafting of vinyl monomers on polypropylene. Journal of Adhesion Science and Technology 1995; 9(12): 1531-1545.
    53. Siow K. S., Britcher L., Kumar S., Griesser H. J.; Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization - A review. Plasma Processes and Polymers 2006; 3(6-7):.392-418.
    54. Zubaidi, Hirotsu T.; Graft polymerization of hydrophilic monomers onto textile fibers treated by glow discharge plasma. Journal of Applied Polymer Science 1996; 61(9): 1579-1584.
    55. Cernakova L., Kovacik D., Zahoranova A., Cernak M., Mazur M.; Surface modification of polypropylene non-woven fabrics by atmospheric-pressure plasma activation followed by acrylic acid grafting. Plasma Chemistry and Plasma Processing 2005; 25(4): 427-437.
    56. Sun H.X., Zhang L., Chai H., Chen H. L.; Surface modification of poly(tetrafluoroethylene) films via plasma treatment and graft copolymerization of acrylic acid. Desalination 2006; 192(1-3): 271-279.
    57. Wang J., Pan C. J., Huang N., Sun H., Yang P., Leng Y. X., Chen J. Y., Wan G. J., Chu P. K.; Surface characterization and blood compatibility of poly(ethylene terephthalate) modified by plasma surface grafting. Surface & Coatings Technology 2005; 196(1-3): 307-311.
    58. Commercon P. Wightman J.P.; Effect of Organic Gas Plasmas on the Adhesion of Matrix Resins to Carbon-Fibers. Journal of Adhesion Science and Technology 1994; 47: 257-268.
    59. Sahre K., Eichhorn K. J., Pleul D., Simon F; The chemical structure and stability of plasma-deposited thin hydrocarbon layers on polyethylene. Journal of Adhesion Science and Technology 2000; 14(6): 867-878.
    60. Babayan S. E., Jeong J. Y., Schutze A., Tu V. J., Moravej M., Selwyn G. S., Hicks R. F.; Deposition of silicon dioxide films with a non-equilibrium atmospheric-pressure plasma jet. Plasma Sources Science & Technology 2001; 10(4): 573-578.
    61. Temmerman E., Akishev Y., Trushkin N., Leys C., Verschuren J.; Surface modification with a remote atmospheric pressure plasma: dc glow discharge and surface streamer regime. Journal of Physics D-Applied Physics 2005; 38(4): 505-509.
    62. Temmerman E., Leys C.; Surface modification of cotton yam with a DC glow discharge in ambient air. Surface & Coatings Technology 2005; 200(1-4): 686-689.
    63. Akishev Y. S., Grushin M. E., Monich A. E., Napartovich A. P., Trushkin N. I.; One-atmosphere argon dielectric-barrier corona discharge as an effective source of cold plasma for the treatment of polymer films and fabrics. High Energy Chemistry 2003; 37(5): 286-290.
    64. Pichal J., Koller J., Aubrecht L., Vatuna T., Spatenka P., Wiener J.; Application of atmospheric corona discharge for PES fabric modification. Czechoslovak Journal of Physics 2004; 54: C828-C834.
    65. Riccardi C., Barni R., Fontanesi M., Marcandalli B., Massafra M., Selli E., Mazzone G.; A SF6 RF plasma reactor for research on textile treatment. Plasma Sources Science & Technology 2001; 10(1): 92-98.
    66. Riccardi C., Barni R., Selli E., Mazzone G., Massafra M. R., Marcandalli B., Poletti G.; Surface modification of poly(ethylene terephthalate) fibers induced by radio frequency air plasma treatment. Applied Surface Science 2003; 211(1-4):386-397.
    67. Vatuna T., Spatenka P., Pichal J., Koller J., Aubrecht L., Wiener J.; PES fabric plasma modification. Czechoslovak Journal of Physics 2004; 54: C475-C482.
    68. Xu W. L., Liu X.; Surface modification of polyester fabric by corona discharge irradiation. European Polymer Journal 2003; 39(1): PH S0014-305 7(0002)00169-00166.
    69. Rahel J., Simor M., Cernak M., Stefecka M., Iniation Y., Kando M.; Hydrophilization of polypropylene nonwoven fabric using surface barrier discharge. Surface & Coatings Technology 2003; 169: PII S0257-8972(0203)00120-00128.
    70. Wei Q. F., Gao W. D., Hou D. Y., Wang X. Q.; Surface modification of polymer nanofibres by plasma treatment. Applied Surface Science 2005; 245(1-4): 16-20.
    71. Wei Q. F., Li Q., Wang X. Q., Huang F. L., Gao W. D.; Dynamic water adsorption behaviour of plasma-treated polypropylene nonwovens. Polymer Testing 2006; 25(5): 717-722.
    72. Wei Q. F., Mather R. R., Fotheringham A. F., Yang R. D.; Observation of wetting behavior of polypropylene microfibers by environmental scanning electron microscope. Journal of Aerosol Science 2002; 33(11):PII S0021 -8502(0002)00096-00094.
    73. Wei Q. F., Mather R. R., Wang X. Q., Fotheringham A. F.; Functional nanostructures generated by plasma-enhanced modification of polypropylene fibre surfaces. Journal of Materials Science 2005; 40(20): 5387-5392.
    74. Pappas D., Bujanda A., Demaree J. D., Hirvonen J. K., Kosik W., Jensen R., McKnight S.; Surface modification of polyamide fibers and films using atmospheric plasmas. Surface & Coatings Technology 2006; 201(7): 4384-4388.
    75. Wong K. K., Tao X. M., Yuen C. W. M., Yeung K. W.; Low temperature plasma treatment of linen. Textile Research Journal 1999; 69(11): 846-855.
    76. Wong K. K., Tao X. M., Yuen C. W. M., Yeung K. W; Effect of plasma and subsequent enzymatic treatments on linen fabrics. Journal of the Society of Dyers and Colourists 2000; 116(7-8): 208-214.
    77. Wong K. K., Tao X. M., Yuen C. W. M., Yeung K. W; Topographical study of low temperature plasma treated flax fibers. Textile Research Journal 2000; 70(10): 886-893.
    78. Molina R., Espinos J. P., Yubero F., Erra P., Gonzalez-Elipe A. R.; XPS analysis of down stream plasma treated wool: Influence of the nature of the gas on the surface modification of wool. Applied Surface Science 2005; 252(5): 1417-1429.
    79. Molina R., Jovancic P., Comelles F., Bertran E., Erra P.; Shrink-resistance and wetting properties of keratin fibres treated by glow discharge. Journal of Adhesion Science and Technology 2002; 16(11): 1469-1485.
    80. Wang C. X.,Qiu Y. P.; Two sided modification of wool fabrics by atmospheric pressure plasma jet: Influence of processing parameters on plasma penetration. Surface & Coatings Technology 2007; 201(14): 6273-6277.
    81. Shen L., Dai J. J.; Improvement of hydrophobic properties of silk and cotton by hexafluoropropene plasma treatment. Applied Surface Science 2007; 253(11): 5051-5055.
    82. Iriyama Y., Mochizuki T., Watanabe M., Utada M.; Plasma treatment of silk fabrics for better dyeability. Journal of Photopolymer Science and Technology 2002; 15(2): 299-306.
    83. Chaivan P., Pasaja N., Boonyawan D., Suanpoot P., Vilaithong T.; Low-temperature plasma treatment for hydrophobicity improvement of silk. Surface & Coatings Technology 2005; 193(1-3): 356-360.
    84. Lei J. X., Shi M. W., Zhang J. C.; Surface graft copolymerization of hydrogen silicone fluid onto fabric through corona discharge and water repellency of grafted fabric. European Polymer Journal 2000; 36(6): 1277-1281.
    85. Zhang J., France P., Radomyselskiy A., Datta S., Zhao J. A., van Ooij W; Hydrophobic cotton fabric coated by a thin nanoparticulate plasma film. Journal of Applied Polymer Science 2003; 88(6): 1473-1481.
    86. Zhang J., Van Ooij W, France P., Datta S., Radomyselskiy A., Xie H. Q.; Investigation of deposition rate and structure of pulse DC plasma polymers. Thin Solid Films 2001; 390(1-2): 123-129.
    87. Ren Y., Wang C. X., Qiu Y. P.; Influence of aramid fiber moisture regain during atmospheric plasma treatment on aging of treatment effects on surface wettability and bonding strength to epoxy. Applied Surface Science 2007; 253: 9283-9289.
    88. Zhang X. Z., Huang Y. D., Wang T. Y.; Surface analysis of plasma grafted carbon fiber. Applied Surface Science 2006; 253(5): 2885-2892.
    89. Zhang X. Z., Huang Y. D., Wang T. Y.; Plasma activation of carbon fibres for polyarylacetylene composites. Surface & Coatings Technology 2007; 201(9-11): 4965-4968.
    90. Liu L., Jiang Q., Zhu T., Guo X., Sun Y., Guan Y., Qiu Y.; Influence of moisture regain of aramid fibers on effects of atmospheric pressure plasma treatment on improving adhesion with epoxy. Journal of Applied Polymer Science 2006; 102(1): 242-247.
    91. Liu Y., Xu H., Ge L., Wang C., Han L., Yu H., Qiu Y.; Influence of environmental moisture on atmospheric pressure plasma jet treatment of ultrahigh-modulus polyethylene fibers. Journal of Adhesion Science and Technology 2007; 21(8): 663-676.
    92. Morales J., Olayo M. G., Cruz G.J., Herrera-Franco P., Olayo R.; Plasma modification of cellulose fibers for composite materials. Journal of Applied Polymer Science 2006; 101(6): 3821-3828.
    93. Garg S., Huiren C., Kaynak A.; Improvement of adhesion of conductive polypyrrole coating on wool and polyester fabrics using atmospheric plasma treatment. Synthetic Metals 2007; 157(1): 41-47.
    94. Ferrero F., Tonin C., Peila R., Pollone F. R.; Improving the dyeability of synthetic fabrics with basic dyes using in situ plasma polymerisation of acrylic acid. Coloration Technology 2004; 120(1): 30-34.
    95. Radetic M., Jocic D., Jovancic P., Trajkovic R., Petrovic Z. L.; The effect of low-temperature plasma pretreatment on wool printing. Textile Chemist and Colorist & American Dyestuff Reporter 2000; 32(4): 55-60.
    96. Cai Z. S., Qiu Y P.; Dyeing properties of wool fabrics treated with atmospheric pressure plasmas. Journal of Applied Polymer Science 2008; 109(2): 1257-1261.
    97. Wakida T., Cho S., Choi S., Tokino S., Lee M.; Effect of low temperature plasma treatment on color of wool and nylon 6 fabrics dyed with natural dyes. Textile Research Journal 1998; 68(11): 848-853.
    98. Kan C. W, Chan K., Yuen C. W. M., Miao M. H.; The effect of low-temperature plasma on the chrome dyeing of wool fibre. Journal of Materials Processing Technology 1998; 82(1-3): 122-126.
    99. Kan C. W.,Yuen C. W. M.; Surface characterisation of low temperature plasma-treated wool fibre. Journal of Materials Processing Technology 2006; 178(1-3): 52-60.
    100. Kan C. W.,Yuen C. W. M.; Dyeing behaviour of low temperature plasma treated wool. Plasma Processes and Polymers 2006; 3(8): 627-635.
    101. Kan C. W.,Yuen C. W. M.; Evaluation of some of the properties of plasma treated wool fabric. Journal of Applied Polymer Science 2006; 102(6): 5958-5964.
    102. Jin J. C., Dai J. J.; Dyeing behaviour of nitrogen, low-temperature glow discharge treated wool. Indian Journal of Fibre & Textile Research 2003; 28(4): 477-479.
    103. Cai Z. S., Qiu Y. P.; Effect on the anti-felt properties of atmospheric pressure plasma treated wool. Journal of Applied Polymer Science 2008; 107: 1142-1146.
    104. Kan C. W., Chan K., Yuen C. W. M.; A study of the oxygen plasma treatment on the serviceability of a wool fabric. Fibers and Polymers 2004; 5(3): 213-218.
    105. Kan C. W., Chan K., Yuen C. W. M.; Influence of plasma gas on surface composition of low-temperature plasma-treated wool fibre. Indian Journal of Fibre & Textile Research 2005; 30(1): 60-67.
    106. Kan C. W., Chan K., Yuen C. W. M., Miao M. H.; Plasma modification on wool fibre: effect on the dyeing properties. Journal of the Society of Dyers and Colourists 1998; 114(2): 61-65.
    107. Kan C. W., Chan K., Yuen C. W. M., Miao M. H.; Surface properties of low-temperature plasma treated wool fabrics. Journal of Materials Processing Technology 1998; 83(1-3): 180-184.
    108. Kan C. W., Chan K., Yuen C. W. M., Miao M. H.; Effect of low temperature plasma, chlorination, and polymer treatments and their combinations on the properties of wool fibers. Textile Research Journal 1998; 68(11): 814-820.
    109. Kan C. W., Chan K., Yuen C. W. M., Miao M. H.; Low temperature plasma on wool substrates: The effect of the nature of the gas. Textile Research Journal 1999; 69(6): 407-416.
    110. Kan C. W.,Yuen C. W. M.; Effect of low temperature plasma treatment on wool fabric properties. Fibers and Polymers 2005; 6(2): 169-173.
    111. Lee K., Pavlath K.; Low Temperature Plasma Treatment of Wool. II. Effects of Variables on Shrinkage and Yarn Strength. Journal of Polymer Science Part A-Polymer Chemistry 1972; 12: 2087-2090.
    112. Sadova S. F.; The use of low-temperature plasmas in wool finishing. High Energy Chemistry 2006; 40(2): 57-69.
    113. Kan C. W., Yuen C. W. M.; Low temperature plasma treatment for wool fabric. Textile Research Journal 2006; 76(4): 309-314.
    114. Kan C. W., Yuen C. W. M., Chan C. K., Lau M. P.; Effect of surface treatment on the properties of wool fabric. Surface Review and Letters 2007; 14(4): 559-563.
    115. Bae P. H., Hwang Y. J., Jo H. I, Kim H. J., Lee Y., Park Y. K., Kim J. G., Jung J.; Size removal on polyester fabrics by plasma source ion implantation device. Chemosphere 2006; 63(6): 1041-1047.
    116. Matthews S. R., McCord M. G., Bourham M. A.; Poly(vinyl alcohol) desizing mechanism via atmospheric pressure plasma exposure. Plasma Processes and Polymers 2005; 2(9): 702-708.
    117. Cai Z. S., Hwang Y J., Park Y C., Zhang C. Y., McCord M., Qiu Y P.; Preliminary investigation of atmospheric pressure plasma-aided desizing for cotton fabrics. Aatcc Review 2002; 2(12): 18-21.
    118. Cai Z. S., Qiu Y P.; The mechanism of air/oxygen/helium atmospheric plasma action on PVA. Journal of Applied Polymer Science 2006, 99(5): 2233-2237.
    119. Cai Z. S., Qiu Y P., Zhang C. Y., Hwang Y J., McCord M.; Effect of atmospheric plasma treatment on desizing of PVA on cotton. Textile Research Journal 2003, 73(8): 670-674.
    120. Wei Q. F., Wang X. Q., Mather R. R., Fotheringham A. F.; ESEM study of size removal from ceramic fibers by plasma treatment. Applied Surface Science 2003; 220(1-4): 217-223.
    121. Keller M., Ritter A., Reimann P., Thommen V, Fischer A., Hegemann D.; Comparative study of plasma-induced and wet-chemical cleaning of synthetic fibers. Surface & Coatings Technology 2005; 200(1-4): 1045-1050.
    122. Masuda M. Finch C.A., Polyvinyl Alcohol—Developments. 1992, Wiley: New York.
    123. Sakurada I. Lewin M., Polyvinyl Alcohol Fibers. 1985, Marcel Dekker: New York.
    124. Perrin L. Nguyen Q.; Sorption and Diffusion of Solvent Vapours in Polyvinyl alcohol Membranes of Different Crystallinity Degrees. Polymer International 1996; 39: 251-260.
    125. Assender H. E., Windle A. H.; Crystallinity in poly(vinyl alcohol). 1. An X-ray diffraction study of atactic PVOH. Polymer 1998; 39(18): 4295-4302.
    126. Assender H. E., Windle A. H.; Crystallinity in poly(vinyl alcohol) 2. Computer modelling of crystal structure over a range oftacticities. Polymer 1998; 39(18): 4303-4312.
    127. De La Rosa A., Heux L., Cavaille J. Y.; Secondary relaxations in poly(allyl alcohol), PAA, and poly(vinyl alcohol), PVA. II. Dielectric relaxations compared with dielectric behaviour of amorphous dried and hydrated cellulose and dextran. Polymer 2001; 42(12): 5371-5379.
    128. Finch C.A,. Polyvinyl alcohol. 1992, Wiley: London. 217,373.
    129. Bhat N. V., Nate M. M., Bambole V. A., Kurup M. B.; Structural properties of sodium ion implanted poly(vinyl alcohol) films. Journal of Applied Polymer Science 2005; 98(1): 276-283.
    1. Cai Z.S., Hwang Y.J., Park Y.C., Zhang C.Y., McCord M., Qiu Y.P.; Preliminary investigation of atmospheric pressure plasma-aided desizing for cotton fabrics. Aatcc Review 2002; 2(12): 18-21.
    2. Cai Z.S.,Qiu Y.P.; The mechanism of air/oxygen/helium atmospheric plasma action on PVA. Journal of Applied Polymer Science 2006; 99(5): 2233-2237.
    3. Matthews S.R., McCord M.G., Bourham M.A.; Poly(vinyl alcohol) desizing mechanism via atmospheric pressure plasma exposure. Plasma Processes and Polymers 2005; 2(9): 702-708.
    4. Gherardi N., Gouda G., Gat E., Ricard A., Massines F.; Transition from glow silent discharge to micro-discharges in nitrogen gas. Plasma Sources Science & Technology 2000; 9(3): 340-346.
    5. Ben Gadri R., Roth J.R., Montie T.C., Kelly-Wintenberg K., Tsai PPY., Helfritch D.J., Feldman P., Sherman D.M., Karakaya F., Chen Z.Y., Team U.T.K.P.S.; Sterilization and plasma processing of room temperature surfaces with a one atmosphere uniform glow discharge plasma (OAUGDP). Surface & Coatings Technology 2000; 131(1-3): 528-542.
    6. Yi C.H., Lee Y.H., Kim D.W., Yeom G.Y.; Characteristic of a dielectric barrier discharges using capillary dielectric and its application to photoresist etching. Surface & Coatings Technology 2003; 163: 723-727.
    7. Yi C.H., Lee Y.H., Yeom G.Y.; The study of atmospheric pressure plasma for surface cleaning. Surface & Coatings Technology 2003; 171(1-3): 237-240.
    8. Jung M.H.,Choi H.S.; Photoresist etching using Ar/O-2 and He/O-2 atmospheric pressure plasma. Thin Solid Films 2006; 515(4): 2295-2302.
    9. Jeong J.Y., Babayan S.E., Tu V.J., Park J., Henins I., Hicks R.F., Selwyn G.S.; Etching materials with an atmospheric-pressure plasma jet. Plasma Sources Science & Technology 1998; 7(3): 282-285.
    10. Babayan S.E., Jeong J.Y., Tu V.J., Park J., Selwyn G.S., Hicks R.F.; Deposition of silicon dioxide films with an atmospheric-pressure plasma jet. Plasma Sources Science & Technology 1998; 7(3): 286-288.
    11. Schutze A., Jeong J.Y., Babayan S.E., Park J., Selwyn G.S., Hicks R.F.; The atmospheric-pressure plasma jet: A review and comparison to other plasma sources. Ieee Transactions on Plasma Science 1998; 26(6): 1685-1694.
    12. Qiu Y., Hwang Y.J., Zhang C., Bures B.L., McCord M.; Atmospheric pressure helium plus oxygen plasma treatment of ultrahigh modulus polyethylene fibers. Journal of Adhesion Science and Technology 2002; 16(4): 449-457.
    13. Riekerink M.B.O., Terlingen J.G.A., Engbers G.H.M., Feijen J.; Selective etching of semicrystalline polymers: CF4 gas plasma treatment of poly(ethylene). Langmuir 1999; 15(14): 4847-4856.
    14. Weikart C.M.,Yasuda H.K.; Modification, degradation, and stability of polymeric surfaces treated with reactive plasmas. Journal of Polymer Science Part a-Polymer Chemistry 2000; 38(17): 3028-3042.
    15. Powell H.M.,Lannutti J.J.; Nanofibrillar surfaces via reactive ion etching. Langmuir 2003; 19: 9071-9078.
    16. Svorcik V., Kolarova K., Slepicka P., Mackova A., Novotna M., Hnatowicz V.; Modification of surface properties of high and low density polyethylene by Ar plasma discharge. Polymer Degradation and Stability 2006; 91(6): 1219-1225.
    17. Svorcik V., Kotal V., Siegel J., Sajdl P., Mackova A., Hnatowicz V.; Ablation and water etching of poly(ethylene) modified by argon plasma. Polymer Degradation and Stability 2007; 92: 1645-1649.
    18. Guimond S.,Wertheimer M.R.; Surface degradation and hydrophobic recovery of polyolefins treated by air corona and nitrogen atmospheric pressure glow discharge. Journal of Applied Polymer Science 2004; 94: 1291-1303.
    19. Zhu L., Teng W.H., Xu H.L., Liu Y., Jiang Q.R., Wang C.X., Qiu Y.P.; Effect of absorbed moisture on the atmospheric plasma etching of polyamide fibers. Surface & Coatings Technology 2008; 202(10): 1966-1974.
    20. Zhu L., Wang C.X., Qiu Y.P.; Influence of the amount of absorbed moisture in nylon fibers on atmospheric pressure plasma processing. Surface & Coatings Technology 2007; 201(16-17): 7453-7461.
    21. Banik I., Kim K.S., Yun Y.I., Kim D.H., Ryu C.M., Park C.S., Sur G.S., Park C.E.; A closer look into the behavior of oxygen plasma-treated high-density polyethylene. Polymer 2003; 44(4): 1163-1170.
    22. Kotal V., Svorcik V., Slepicka P., Sajdl P., Blahova O., Sutta P., Hnatowicz V.; Gold coating of poly(ethylene terephthalate) modified by argon plasma. Plasma Processes and Polymers 2007; 4(1): 69-76.
    23. Ren Y., Wang C.X., Qiu Y.P.; Aging of surface properties of ultra high modulus polyethylene fibers treated with He/0-2 atmospheric pressure plasma jet. Surface & Coatings Technology 2008; 202(12): 2670-2676.
    24. Kim K.S., Ryu C.M., Park C.S., Sur G.S., Park C.E.; Investigation of crystallinity effects on the surface of oxygen plasma treated low density polyethylene using X-ray photoelectron spectroscopy. Polymer 2003; 44(20): 6287-6295.
    25. Kim K.S., Yun Y.I., Banik I., Park C.E., Ryu C.M.; Investigation of surface rearrangement of oxygen plasma treated polyethylene using X-ray absorption spectroscopy (NEXAFS). Abstracts of Papers of the American Chemical Society 2003; 225: 301-PMSE.
    26. Pandiyaraj K.N., Selvarajan V., Deshmukh R.R., Bousmina M.; The effect of glow discharge plasma on the surface properties of Poly (ethylene terephthalate) (PET) film. Surface & Coatings Technology 2008; 202(17): 4218-4226.
    27. Asad S.S., Tendero C., Dublanche-Tixier C., Tristant P., Boisse-Laporte C., Leroy O., Leprince P.; Effect of atmospheric microwave plasma treatment on organic lubricant on a metallic surface. Surface & Coatings Technology 2009; 203(13): 1790-1796.
    28. Kropke S., Akishev Y.S., Hollander A.; Atmospheric pressure DC glow discharge for polymer surface treatment. Surface & Coatings Technology 2001; 142:512-516.
    29. Kropke S.,Hollander A.; Plasma processes for functional polymer surfaces. Materialwissenschaft Und Werkstofftechnik 2001; 32(10): 781-784.
    30. Moon S.Y., Choe W., Kang B.K.; A uniform glow discharge plasma source at atmospheric pressure. Applied Physics Letters 2004; 84(2): 188-190.
    31. Gao Z.Q., Peng S.J., Sun J., Yao L., Qiu Y.P.; Influence of processing parameters on atmospheric pressure plasma etching of polyamide 6 films. Applied Surface Science 2009; 255(17): 7683-7688.
    32. Brussaard G.J.H., Letourneur K.GY., Schaepkens M., van de Sanden M.C.M., Schram D.C.; Stripping of photoresist using a remote thermal Ar/O-2 and Ar/N-2/O-2 plasma. Journal of Vacuum Science & Technology B 2003; 21(1): 61-66.
    33. Rakowski W.; Plasma treatment of wool today .1. Fibre properties, spinning and shrinkproofing. Journal of the Society of Dyers and Colourists 1997; 113(9): 250-255.
    34. Falkenstein Z.; Frequency dependence of photoresist ashing with dielectric barrier discharges in oxygen. Journal of Applied Physics 1998; 83(10): 5095-5101.
    35. Collart E.J.H., Baggerman J.A.G., Visser R.J.; On the Role of Atomic Oxygen in the Etching of Organic Polymers in a Radiofrequency Oxygen Discharge. Journal of Applied Physics 1995; 78(1): 47-54.
    36. Liu Y., Xu H., Ge L., Wang C., Han L., Yu H., Qiu Y.; Influence of environmental moisture on atmospheric pressure plasma jet treatment of ultrahigh-modulus polyethylene fibers. Journal of Adhesion Science and Technology 2007; 21(8): 663-676. Chapter 2
    37. Ren Y., Wang C.X., Qiu Y.P.; Influence of aramid fiber moisture regain during atmospheric plasma treatment on aging of treatment effects on surface wettability and bonding strength to epoxy. Applied Surface Science 2007; 253: 9283-9289.
    1. Pandiyaraj K. N., Selvarajan V., Deshmukh R. R., Bousmina M.; The effect of glow discharge plasma on the surface properties of Poly (ethylene terephthalate) (PET) film. Surface & Coatings Technology 2008; 202(17): 4218-4226.
    2. Svorcik V., Kolarova K., Slepicka P., Mackova A., Novotna M., Hnatowicz V.; Modification of surface properties of high and low density polyethylene by Ar plasma discharge. Polymer Degradation and Stability 2006; 91(6): 1219-1225.
    3. Banik I., Kim K. S., Yun Y. I., Kim D. H., Ryu C. M., Park C. E.; Inhibition of aging in plasma-treated high-density polyethylene. Journal of Adhesion Science and Technology 2002; 16(9): 1155-1169.
    4. Shin Y., Son K., Yoo D. I.; Functional finishing by using atmospheric pressure plasma: Grafting of PET nonwoven fabric. Journal of Applied Polymer Science 2007; 103(6): 3655-3659.
    5. Cai Z. S.,Qiu Y. P.; Dyeing properties of wool fabrics treated with atmospheric pressure plasmas. Journal of Applied Polymer Science 2008; 109(2): 1257-1261.
    6. Chen J. R., Wang X. Y., Tomiji W.; Wettability of poly(ethylene terephthalate) film treated with low-temperature plasma and their surface analysis by ESCA. Journal of Applied Polymer Science 1999; 72(10): 1327-1333.
    7. Qiu Y., Anantharamaiah N., Xie S., Vaidya N. P., Zhang C.; Atmospheric pressure helium plasma treatment of ultrahigh modulus polyethylene fibres. Advanced Composites Letters 2001; 10(3): 135-139.
    8. Rahel J., Simor M., Cernak M., Stefecka M., Imahori Y., Kando M.; Hydrophilization of polypropylene nonwoven fabric using surface barrier discharge. Surface & Coatings Technology 2003; 169: 604-608.
    9. Zhuang H.,Wightman J. P.; The influence of surface properties on carbon fiber/epoxy matrix interfacial adhesion. Journal of Adhesion 1997; 62(1-4): 213-245.
    10. Bae P. H., Hwang Y J., Jo H. J., Kim H. J., Lee Y., Park Y K., Kim J. G., Jung J.; Size removal on polyester fabrics by plasma source ion implantation device. Chemosphere 2006; 63(6): 1041-1047.
    11. Cai Z. S., Qiu Y P., Zhang C. Y., Hwang Y. J., McCord M.; Effect of atmospheric plasma treatment on desizing of PVA on cotton. Textile Research Journal 2003; 73(8): 670-674.
    12. Matthews S. R., McCord M. G., Bourham M. A.; Poly(vinyl alcohol) desizing mechanism via atmospheric pressure plasma exposure. Plasma Processes and Polymers 2005; 2(9): 702-708.
    13. Morent R., De Geyter N., Verschuren J., De Clerck K., Kiekens P., Leys C.; Non-thermal plasma treatment of textiles. Surface & Coatings Technology 2008; 202(14): 3427-3449.
    14. Shenton M. J.,Stevens G.C.; Surface modification of polymer surfaces: atmospheric plasma versus vacuum plasma treatments. Journal of Physics D-Applied Physics 2001; 34(18): 2761-2768.
    15. Fukuda M.,Kawai H.; Moisture sorption mechanism of aromatic polyamide fibers .5. Growth of crystallites in as-spun wet poly(p-phenylene terephthalamide) fiber during dehydration. Journal of Polymer Science Part B-Polymer Physics 1997; 35(9): 1423-1432.
    16. Ichikawa K., Mori T., Kitano H., Fukuda M., Mochizuki A., Tanaka M.; Fourier transform infrared study on the sorption of water to various kinds of polymer thin films. Journal of Polymer Science Part B-Polymer Physics 2001; 39(18): 2175-2182.
    17. Nissan A. H.; H-Bond Dissociation in Hydrogen-Bond Dominated Solids. Macromolecules 1976; (9): 840-850.
    18. Nissan A.H; Density of Hydrogen-Bonds in H-Bond Dominated Solids. Macromolecules 1977; (10): 660-662.
    19. Liu L., Jiang Q., Zhu T., Guo X., Sun Y., Guan Y., Qiu Y.; Influence of moisture regain of aramid fibers on effects of atmospheric pressure plasma treatment on improving adhesion with epoxy. Journal of Applied Polymer Science 2006; 102(1): 242-247.
    20. Liu Y., Xu H., Ge L., Wang C., Han L., Yu H., Qiu Y.; Influence of environmental moisture on atmospheric pressure plasma jet treatment of ultrahigh-modulus polyethylene fibers. Journal of Adhesion Science and Technology 2007; 21(8): 663-676.
    21. Ren Y.,Qiu Y P.; Influence of aramid fiber moisture regain during atmospheric Ppressure plasma processing on the surface properties of the modified fibers. Proceedings of the 2007 International Conference on Advanced Fibers and Polymer Materials Vols 1 and 2. 2007: 231-234.
    22. Zhu L., Wang C. X., Qiu Y P.; Influence of the amount of absorbed moisture in nylon fibers on atmospheric pressure plasma processing. Surface & Coatings Technology 2007; 201(16-17): 7453-7461.
    23. Finch C.A, ed. Polyvinyl alcohol. 1992, Wiley: London. 217,373.
    24. Jang J. S.,Lee D. K.; Oxygen barrier properties of biaxially oriented polypropylene/polyvinyl alcohol blend films. Polymer 2004; 45(5): 1599-1607.
    25. Sakurada I, Polyvinyl Alcohol Fibers, ed. Lewin M. 1985, Marcel Dekker: New York. 3,361.
    26. Marais S., Hirata Y., Cabot C., Morin-Grognet S., Garda M. R., Atmani H., Poncin-Epaillard F.; Effect of a low-pressure plasma treatment on water vapor diffusivity and permeability of poly(ethylene-co-vinyl alcohol) and polyethylene films. Surface & Coatings Technology 2006; 201(3-4): 868-879.
    27. Masuda M., Polyvinyl Alcohol—Developments, ed. Finch C.A. 1992, Wiley: New York. 63, 278,404.
    28. Perrin L., Nguyen Q. T., Clement R., Neel J.; Sorption and diffusion of solvent vapours in poly(vinylalcohol) membranes of different crystallinity degrees. Polymer International 1996; 39(3): 251-260.
    29. Bhat N. V, Nate M. M., Bambole V. A., Kurup M. B.; Structural properties of sodium ion implanted poly(vinyl alcohol) films. Journal of Applied Polymer Science 2005; 98(1): 276-283.
    30. Chen S.-A,Fang W.G, Macromolecules. 1991. 24, 1242.
    31. Ren Y., Wang C. X., Qiu Y. P.; Influence of aramid fiber moisture regain during atmospheric plasma treatment on aging of treatment effects on surface wettability and bonding strength to epoxy. Applied Surface Science 2007; 253: 9283-9289.
    32. Guimond S.,Wertheimer M.R.; Surface degradation and hydrophobic recovery of polyolefins treated by air corona and nitrogen atmospheric pressure glow discharge. Journal of Applied Polymer Science 2004; 94: 1291-1303.
    33. Assender H. E.,Windle A. H.; Crystallinity in polyvinyl alcohol). 1. An X-ray diffraction study of atactic PVOH. Polymer 1998; 39(18): 4295-4302.
    34. Assender H. E.,Windle A. H.; Crystallinity in poly(vinyl alcohol) 2. Computer modelling of crystal structure over a range oftacticities. Polymer 1998; 39(18): 4303-4312.
    35. Guadagno L., Naddeo C., Raimondo M., Vittoria V.; Structural and morphological changes during UV irradiation of the trans-planar form of syndiotactic polypropylene. Polymer Degradation and Stability 2008; 93: 176-187.
    36. Korodenko G.D., Lipatov Yu.S., Fabulyak F.G., Pugachevskii G.F., Tuichiyev Sh., Lukashov V.S.; Effect of sodium acetate on the structure of polyvinyl alcohol. Polymer Science U.S.S.R 1984; 26(2): 280-286.
    37. Kim K.S., Ryu C.M., Park C.S., Sur G.S., Park C.E.; Investigation of crystallinity effects on oxygen plasma treated low density polyethylene using X-ray photoelectron spectroscopy. Polymer 2003; 44: 6287-6295.
    38. Kaufman I. ,Herman S., Introduction to polymer science and technology: an SPE textbook. 1977, New York: Wiley. 205,215.
    1. Pritchard J. G.; Poly(vinyl) alcohol; Basic properties and uses. 1970, Gordon and Breach: London.
    2. Jang J. S., Lee D. K.; Oxygen barrier properties of biaxially oriented polypropylene/polyvinyl alcohol blend films. Polymer 2004; 45(5): 1599-1607.
    3. Masuda M., Finch C.A.; Polyvinyl Alcohol—Developments. 1992, Wiley: New York.
    4. Sakurada I., Lewin M.; Polyvinyl Alcohol Fibers. 1985, Marcel Dekker: New York.
    5. Cai Z. S., Qiu Y. P.; The mechanism of air/oxygen/helium atmospheric plasma action on PVA. Journal of Applied Polymer Science 2006; 99: 2233-2237.
    6. Cai Z. S., Qiu Y. P., Zhang C. Y., Hwang Y J., McCord M.; Effect of atmospheric plasma treatment on desizing of PVA on cotton. Textile Research Journal 2003; 73(8): 670-674.
    7. Cai Z. S., Qiu Y. P.; Dyeing properties of wool fabrics treated with atmospheric pressure plasmas 2008; 109(2): 1257-1261.
    8. Matthews S. R., McCord M. G., Bourham M. A.; Poly(vinyl alcohol) desizing mechanism via atmospheric pressure plasma exposure. Plasma Processes and Polymers 2005; 2(9): 702-708.
    9. Fukuda M., Kawai H.; FTIR study on the nature of water sorbed in poly(ethylene terephthalate) film. Polymer 1989; 31: 295-302.
    10. Fukuda M.,Kawai H.; Moisture sorption mechanism of aromatic polyamide fibers. 5. Growth of crystallites in as-spun wet poly(p-phenylene terephthalamide) fiber during dehydration. Journal of Polymer Science Part B-Polymer Physics 1997; 35(9): 1423-1432.
    11. Ichikawa K., Mori T., Kitano H., Fukuda M., Mochizuki A., Tanaka M.; Fourier transform infrared study on the sorption of water to various kinds of polymer thin films. Journal of Polymer Science Part B-Polymer Physics 2001; 39(18): 2175-2182.
    12. Kitano H., Ichikawa K., Fukuda M., Mochizuki A., Tanaka M.; The structure of water sorbed to polymethoxyethylacrylate film as examined by FT-IR spectroscopy. Journal of Colloid and Interface Science 2001; 242(1): 133-140.
    13. Kitano H., Ichikawa K., Ide I., Fukuda M., Mizuno W.; Fourier transform infrared study on the state of water sorbed to poly(ethylene glycol) films. Langmuir 2001; 17(6): 1889-1895.
    14. Liu Y., Xu H., Ge L., Wang C., Han L., Yu H., Qiu Y.; Influence of environmental moisture on atmospheric pressure plasma jet treatment of ultrahigh-modulus polyethylene fibers. Journal of Adhesion Science and Technology 2007; 21(8): 663-676.
    15. Ren Y., Wang C. X., Qiu Y P.; Influence of aramid fiber moisture regain during atmospheric plasma treatment on aging of treatment effects on surface wettability and bonding strength to epoxy. Applied Surface Science 2007; 253: 9283-9289.
    16. Zhu L., Teng W. H., Xu H. L., Liu Y., Jiang Q. R., Wang C. X., Qiu Y P.; Effect of absorbed moisture on the atmospheric plasma etching of polyamide fibers. Surface & Coatings Technology 2008; 202(10): 1966-1974.
    17. Liu L., Jiang Q., Zhu T., Guo X., Sun Y., Guan Y., Qiu Y.; Influence of moisture regain of aramid fibers on effects of atmospheric pressure plasma treatment on improving adhesion with epoxy. Journal of Applied Polymer Science 2006; 102(1): 242-247.
    18. Peng S., Gao Z., Sun J., Yao L., Wang C., Qiu Y.; Influence of absorbed moisture on solubility of poly(vinyl alcohol) film during atmospheric pressure plasma jet treatment. Surface & Coatings Technology 2010; 204: 1222-1228.
    19. Pappas D., Bujanda A., Demaree J. D., Hirvonen J. K., Kosik W, Jensen R., McKnight S.; Surface modification of polyamide fibers and films using atmospheric plasmas. Surface & Coatings Technology 2006; 201(7): 4384-4388.
    20. Svorcik V., Kotal V., Siegel I, Sajdl P., Mackova A., Hnatowicz V.; Ablation and water etching of poly(ethylene) modified by argon plasma. Polymer Degradation and Stability 2007; 92: 1645-1649.
    21. Hollahan J. R. Bell A. T., ed. Techniques and applications of plasma chemistry. 1974, John Wiley & Sons: New York.
    22. Bae P. H., Hwang Y J., Jo H. J., Kim H. J., Lee Y., Park Y K., Kim J. G., Jung J.; Size removal on polyester fabrics by plasma source ion implantation device. Chemosphere 2006; 63(6): 1041-1047.
    23. Jung M. H.,Choi H. S.; Photoresist etching using Ar/O-2 and He/O-2 atmospheric pressure plasma. Thin Solid Films 2006; 515(4): 2295-2302.
    24. Pandiyaraj K. N., Selvarajan V., Deshmukh R. R., Bousmina M.; The effect of glow discharge plasma on the surface properties of Poly (ethylene terephthalate) (PET) film. Surface & Coatings Technology 2008; 202(17): 4218-4226.
    25. Wong K. K., Tao X. M., Yuen C. W M., Yeung K. W; Low temperature plasma treatment of linea Textile Research Journal 1999; 69(11): 846-855.
    26. Hwang Y. J., An J. S., McCord M. G., Park S. W., Kang B. C.; The effect of etching on low-stress mechanical properties of polypropylene fabrics under helium/oxygen atmospheric pressure plasma. Fibers and Polymers 2003; 4(4): 145-150.
    27. McCord M. G., Hwang Y. J., Hauser P. J., Qiu Y., Cuomo J. J., Hankins O. E., Bourham M. A., Canup L. K.; Modifying nylon and polypropylene fabrics with atmospheric pressure plasmas. Textile Research Journal 2002; 72(6): 491-498.
    1. Kan C. W., Chan K., Yuen C. W. M., Miao M. H.; Low temperature plasma on wool substrates: The effect of the nature of the gas. Textile Research Journal 1999; 69(6): 407-416.
    2. Keller M., Ritter A., Reimann P., Thommen V., Fischer A., Hegemann D.; Comparative study of plasma-induced and wet-chemical cleaning of synthetic fibers. Surface & Coatings Technology 2005; 200(1-4): 1045-1050.
    3. Wakida T. Tokino S., Niu S., Kawamura H.; Surface characteristics of wool and poly (ethyl telephthalate) fabrics and film treated with low-temperature plasma under atmospheric pressure. Textile Research Journal 1993; 63(8): 433-438.
    4. Wrobel A. M. Kryszewski M.; Effect of plasma treatment on surface structure and properties of polyester fabric. Polymer 1978; 19: 908-912.
    5. Zuchairah I. M., Pailthorpe M. T., David S. K.; Effect of glow discharge-polymer treatments on the shrinkage behavior and physical properties of wool fabric. Textile Research Journal 1997; 67(1): 69-74.
    6. Guimond S.,Wertheimer M. R.; Surface degradation and hydrophobic recovery of polyolefins treated by air corona and nitrogen atmospheric pressure glow discharge. Journal of Applied Polymer Science 2004; 94: 1291-1303.
    7. Borcia G., Anderson C. A., Brown N. M. D.; Surface treatment of natural and synthetic textiles using a dielectric barrier discharge. Surface & Coatings Technology 2006; 201(6): 3074-3081.
    8. Ma Z. L.,Qi H. J.; Polypropylene fiber modified by surface cross-linking in dielectric barrier discharge. Surface & Coatings Technology 2007; 201(9-11): 4935-4938.
    9. Borcia G., Anderson C. A., Brown N. M. D.; The surface oxidation of selected polymers using an atmospheric pressure air dielectric barrier discharge. Part I. Applied Surface Science 2004; 221(1-4): 203-214.
    10. Cernakova L., Kovacik D., Zahoranova A., Cernak M., Mazur M.; Surface modification of polypropylene non-woven fabrics by atmospheric-pressure plasma activation followed by acrylic acid grafting. Plasma Chemistry and Plasma Processing 2005; 25(4): 427-437.
    11. Temmerman E.,Leys C.; Surface modification of cotton yam with a DC glow discharge in ambient air. Surface & Coatings Technology 2005; 200(1-4): 686-689.
    12. Cai Z. S.,Qiu Y. P.; The mechanism of air/oxygen/helium atmospheric plasma action on PVA. Journal of Applied Polymer Science 2006; 99(5): 2233-2237.
    13. Cai Z. S., Qiu Y. P., Zhang C. Y., Hwang Y. J., McCord M.; Effect of atmospheric plasma treatment on desizing of PVA on cotton. Textile Research Journal 2003; 73(8): 670-674.
    14. Matthews S. R., McCord M. G., Bourham M. A.; Poly(vinyl alcohol) desizing mechanism via atmospheric pressure plasma exposure. Plasma Processes and Polymers 2005; 2(9): 702-708.
    15. Zhu L., Teng W. H., Xu H. L., Liu Y., Jiang Q. R., Wang C. X., Qiu Y P.; Effect of absorbed moisture on the atmospheric plasma etching of polyamide fibers. Surface & Coatings Technology 2008; 202(10): 1966-1974.
    16. Sun D.,Stylios G. K.; Investigating the plasma modification of natural fiber fabrics-the effect on fabric surface and mechanical properties. Textile Research Journal 2005; 75(9): 639-644.
    17. Hwang Y. J. Mccord M. G.; Effects of helium atmospheric pressure plasma treatment on low-stress mechanical properties of polypropylene nonwoven fabrics. Textile Research Journal 2005; 75(11): 771-778.
    18. Wong K. K., Tao X. M., Yuen C. W. M., Yeung K. W; Low temperature plasma treatment of linen. Textile Research Journal 1999; 69(11): 846-855.
    19. Ferrante D. Iannace S., Monetta T.; Mechanical strength of cold plasma treated PET fibers. Journal of Materials Science 1999; 34: 175-179.
    20. Yip J. Chan K., Sin K., Lau K.; Low temperature plasma-treated nylon fabrics. Journal of Materials Processing Technology 2002; 123(1): 5-12.
    21. Matsudaira M. Kawabata S.; A study of the mechanical properties of woven silk fabrics Part III: A study of the extensibility of continuous-filament woven silk fabrics in the small-load region. Journal of the Textile Institute 1988: 409-503.
    22. Hwang Y J., McCord M. G., Kang B. C.; Helium/oxygen atmospheric pressure plasma treatment on poly(ethylene terephthalate) and poly(trimethylene terephthalate) knitted fabrics: Comparison of low-stress mechanical/surface chemical properties. Fibers and Polymers 2005; 6(2): 113-120.
    23. Kim M. S.,Kang T. J.; Dimensional and surface properties of plasma and silicone treated wool fabric. Textile Research Journal 2002; 72(2): 113-120.
    1. Bae P. H., Hwang Y. J., Jo H. J., Kim H. J., Lee Y., Park Y. K., Kim J. G., Jung J.; Size removal on polyester fabrics by plasma source ion implantation device. Chemosphere 2006; 63(6): 1041-1047.
    2. Jang J. S.,Lee D. K.; Oxygen barrier properties of biaxially oriented polypropylene/polyvinyl alcohol blend films. Polymer 2004; 45(5): 1599-1607.
    3. Jang J.,Lee D. K.; Plasticizer effect on the melting and crystallization behavior of polyvinyl alcohol. Polymer 2003; 44(26): 8139-8146.
    4. Finch C. A., ed. Polyvinyl alcohol. 1992, Wiley: London.
    5. I. Sakurada, ed. Polyvinyl Alcohol Fibers. 1985, Marcel Dekker: New York.
    6. Cai Z. S.,Qiu Y. P.; The mechanism of air/oxygen/helium atmospheric plasma action on PVA. Journal of Applied Polymer Science 2006; 99(5): 2233-2237.
    7. Chen J. R., Wang X. Y., Tomiji W; Wettability of poly(ethylene terephthalate) film treated with low-temperature plasma and their surface analysis by ESCA. Journal of Applied Polymer Science 1999; 72(10): 1327-1333.
    8. Qiu Y., Anantharamaiah N., Xie S., Vaidya N. P., Zhang C.; Atmospheric pressure helium plasma treatment of ultrahigh modulus polyethylene fibres. Advanced Composites Letters 2001; 10(3): 135-139.
    9. Rahel J., Simor M., Cernak M., Stefecka M., Imahori Y., Kando M.; Hydrophilization of polypropylene nonwoven fabric using surface barrier discharge. Surface & Coatings Technology 2003; 169: 604-608.
    10. Zhuang H.,Wightman J. P.; The influence of surface properties on carbon fiber/epoxy matrix interfacial adhesion. Journal of Adhesion 1997; 62(1-4): 213-245.
    11. Matthews S. R., Hwang Y. J., McCord M. G., Bourham M. A.; Investigation into etching mechanism of polyethylene terephthalate (PET) films treated in helium and oxygenated-helium atmospheric plasmas. Journal of Applied Polymer Science 2004; 94(6): 2383-2389.
    12. Liu Y., Xu H., Ge L., Wang C., Han L., Yu H., Qiu Y.; Influence of environmental moisture on atmospheric pressure plasma jet treatment of ultrahigh-modulus polyethylene fibers. Journal of Adhesion Science and Technology 2007; 21(8): 663-676.
    13. Liu L., Jiang Q., Zhu T., Guo X., Sun Y., Guan Y., Qiu Y.; Influence of moisture regain of aramid fibers on effects of atmospheric pressure plasma treatment on improving adhesion with epoxy. Journal of Applied Polymer Science 2006; 102(1): 242-247.
    14. Borcia G., Anderson C. A., Brown N. M. D.; The surface oxidation of selected polymers using an atmospheric pressure air dielectric barrier discharge. Part II.Applied Surface Science 2004; 225(1-4): 186-197.
    15. Borcia G., Anderson C. A., Brown N. M. D.; The surface oxidation of selected polymers using an atmospheric pressure air dielectric barrier discharge. Part I.Applied Surface Science 2004; 221(1-4): 203-214.
    16. Borcia G., Anderson C. A., Brown N. M. D.; Surface treatment of natural and synthetic textiles using a dielectric barrier discharge. Surface & Coatings Technology 2006; 201(6): 3074-3081.
    17. Schutze A., Jeong J. Y., Babayan S. E., Park J., Selwyn G. S., Hicks R. F.; The atmospheric-pressure plasma jet: A review and comparison to other plasma sources. Ieee Transactions on Plasma Science 1998, 26(6): 1685-1694.
    18. Tendero C., Tixier C., Tristant P., Desmaison J., Leprince P.; Atmospheric pressure plasmas: A review. Spectrochimica Acta Part B-Atomic Spectroscopy 2006; 61(1): 2-30.
    19. Cai Z. S., Qiu Y. P., Zhang C. Y., Hwang Y J., McCord M.; Effect of atmospheric plasma treatment on desizing of PVA on cotton. Textile Research Journal 2003; 73(8): 670-674.
    20. Matthews S. R., McCord M. G., Bourham M. A.; Poly(vinyl alcohol) desizing mechanism via atmospheric pressure plasma exposure. Plasma Processes and Polymers 2005; 2(9): 702-708.
    21. Sun D.,Stylios G. K.; Effect of low temperature plasma treatment on the scouring and dyeing of natural fabrics. Textile Research Journal 2004; 74(9): 751-756.
    22. Wang C. X., Ren Y., Qiu Y. P.; Penetration depth of atmospheric pressure plasma surface modification into multiple layers of polyester fabrics. Surface & Coatings Technology 2007; 202: 77-83.
    23. Ren Y Hong Y. Y., Sun J.,Qiu Y. P.; Influence of treatment duration on hydrophobic recovery of plasma-treated ultrahigh modulus polyethylene fiber surfaces. Journal of Applied Polymer Science 2008; 110(2): 995-1001.
    24. Kissa E.; Wetting and wicking. Textile Research Journal 1996; 66(10): 660-668.
    25. Wong K. K., Tao X. M., Yuen C. W. M., Yeung K. W; Wicking properties of linen treated with low temperature plasma. Textile Research Journal 2001; 71(1): 49-56.
    26. Hwang Y J., An J. S., McCord M. G., Park S. W, Kang B. C.; The effect of etching on low-stress mechanical properties of polypropylene fabrics under helium/oxygen atmospheric pressure plasma. Fibers and Polymers 2003; 4(4): 145-150.
    27. Wong K. K., Tao X. M., Yuen C. W. M., Yeung K. W.; Low temperature plasma treatment of linen. Textile Research Journal 1999; 69(11): 846-855.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700