常压等离子体对聚酰胺6膜的刻蚀研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子体处理是一种物理和化学方法相结合的气态处理技术,与传统的物理化学方法相比,具有低污染、低能耗、不耗水、不用化学试剂等优点。尤其是低温等离子体中高能量的电子及其他激发态或电离态的粒子仅在被处理物体表面几十纳米深度范围内引起物理和化学变化,而较低的气体温度使得材料内部的性质不发生变化,因此,低温等离子体表面处理可以用于高分子材料的表面改性。等离子体作为一种环保型的高分子材料表面改性技术,在材料预处理和后整理等方面的应用越来越受欢迎,已经呈现出其有效性和舒适性,具有广阔的应用前景。
     在各种等离子体处理设备中,常压等离子体处理技术由于不需要使用复杂昂贵的真空设备,并可实现处理过程连续化,成为今后等离子体技术的产业化发展的方向。等离子体刻蚀去除了材料表面的弱层或低分子片段从而产生链段剪切。等离子体中的活性粒子可以打断材料表面的化学键再形成交联。等离子体刻蚀速率主要受处理条件的影响,概括来讲,等离子体的刻蚀效果主要受等离子体处理时间、处理功率、气体种类以及气体流量、喷头与试样的距离以及试样的回潮率和溶剂等的影响。但是,至今还没有关于这些处理因素对等离子体刻蚀速率影响方面系统的研究报道。
     本研究将常压等离子体处理技术应用于聚酰胺6膜的表面改性处理,以改善他们的表面能、润湿性以及粘接性能,从而进一步研究等离子体处理条件对材料刻蚀性的影响。通过一系列的现代表面分析测试技术,如接触角、扫描电子显微镜(SEM)、原子力显微镜(AFM)、X射线光电子能谱(XPS)以及剥离强度(T-peel strength)等,在分析等离子体处理后材料表面的性能随处理条件变化的基础上,对常压等离子体对材料的刻蚀速率等进行了系统深入的研究。
     本文首先研究了等离子体处理时间对刻蚀效果的影响。随着等离子体处理时间的增加,刻蚀速率先增大而后又减小,这主要是由于等离子体刻蚀主要作用于材料的非晶区,随着处理时间的增加,非晶区在逐渐减小,且随着刻蚀的进行有一部分刻蚀掉的颗粒又会沉积在试样的表面,从而使刻蚀速率减小。亲水性测试显示试样的亲水性得到改善即接触角显著减小,但是接触角随着处理时间的增加变化不是很明显只是稍微有所减小而已。AFM观察发现处理后试样的表面粗糙度增加。XPS显示随着处理时间的增加在试样表面引入了更多的含氧基团。
     本文还研究了常压等离子体处理功率对刻蚀效果的影响。等离子体刻蚀速率随着等离子体处理功率的增大而增大。这主要是由于随着处理功率的增大,等离子体活性粒子的密度变大、能量增大,促进了等离子体刻蚀的速率。亲水性测试表明等离子体处理后试样的亲水性增加,即接触角显著减小,且随着处理功率的增大,接触角减小,但是减小的趋势减缓。XPS表明处理后试样表面的羧基和羟基增多,因此试样表面的氧含量增加而碳含量降低,处理功率越大,含氧基团越多。随着等离子体处理功率的增大,AFM显示试样表面的粗糙度增加,失重也增加。
     为了研究常压射流等离子体中气体成分对处理效果以及刻蚀性的影响,选择纯氦气、氦气+1%氧气、氦气+2%氧气为工作气体。聚酰胺6膜经等离子体处理后,Ols的强度随着混合气体中O_2含量的增加而增大,试样表面粗糙度也随着O_2含量的增加而增大,表面的含氧量和亲水基团都增加,从而使接触角更小,提高了剥离强度。当混合气体中氧气含量增加后,等离子体刻蚀速率增大,这主要是由于随着氧气含量的增加,等离子体气体中氧离子、原子等的密度增加,促进了氧活性粒子与材料的化学反应从而使刻蚀速率增大。随着等离子体处理时间的增加,处理后试样的剥离强度也是增大的,经过相同的处理时间,氦气+2%氧气等离子体处理后试样具有最大的剥离强度。
     本文还研究了常压等离子体喷头与试样距离对刻蚀效果的影响。刻蚀速率随着喷头与试样距离的增加先增大然后减小。当喷头与试样的距离小于1mm或大于6mm时,等离子体刻蚀速率几乎是零,而当距离为2-3 mm时,刻蚀速率是最大的。这是由于当喷头与试样的距离太小时,喷头喷出的气体几乎全部被试样阻挡,基本是沿着试样表面平行喷出起不到刻蚀的作用。但是当喷头与试样的距离太大时,等离子体活性粒子由于碰撞寿命会很短,因此,活性粒子的活性在到达材料表面时已经基本消失。在喷头与试样的距离为2 mm或3 mm时,接触角比原样有所减小。但是当喷头与试样的距离为1 mm或6 mm时,接触角基本没有变化。喷头与试样的距离为2 mm或3 mm时,剥离强度增大,当距离为2 mm时剥离强度是最大的。但是当喷头与试样的距离为1 mm或6 mm时,剥离强度基本没有变化,这与SEM结果一致。
     本文还研究了氦气/四氟化碳常压等离子体对聚酰胺6刻蚀性的影响。在等离子体短时间处理时,接触角减小,剥离强度增加,同时伴随着试样表面的氧含量的大幅增加和氟含量的小幅增加。然而,当等离子体处理时间增加时,试样表面的氟含量的大幅增加和氧含量的小幅增加,由于含氟基团具有一定的拒水性,因此试样的接触角有所增加,剥离强度减小。此外,随着处理时间的增加,试样表面的粗糙度逐渐增加而等离子体的刻蚀速率是逐渐减小的,这主要是由于等离子体对材料的非晶区的刻蚀速度远大于其对晶区的刻蚀速度,随着处理时间的增加,非晶区在减小,且随着刻蚀的进行有一部分刻蚀掉的颗粒又会沉积在试样的表面,从而使刻蚀速率减小。
     常压等离子体处理和低压等离子体处理的一个很大的区别在于试样置于外界大气环境中,会吸收外界环境中的水分而使材料保持一定的回潮率,使等离子体处理效果受到影响,因此本文对聚酰胺6的回潮率对处理效果的影响进行了研究。研究发现:材料回潮率越大,等离子体处理后材料表面的粗糙度越大且刻蚀速率也越大。材料吸收的水分促进了等离子体的刻蚀,这主要是因为吸收的水分使得材料的非结晶区增加而结晶区减小,而等离子体刻蚀主要是对非晶区的刻蚀。
     本文还研究了乙醇对常压等离子体处理聚酰胺6的影响。等离子体直接处理的试样比原样具有更小的接触角,而乙醇预处理的试样处理后和原样的接触角无显著差异。等离子体直接处理的试样具有最大的表面粗糙度,含氧基团增加,剥离强度增大。而乙醇预处理的试样其剥离强度与原样无显著差异。等离子体直接处理的试样重量减小,而乙醇预处理的试样经等离子体处理后重量稍有减小,但是仍然比原样的重量重,这主要是由于乙醇预处理在试样的表面形成了一层保护膜,在等离子体处理中有抑制等离子体刻蚀的作用。
     综上所述,本论文通过一系列先进的表面分析测试手段,对等离子体处理后的聚酰胺6的表面性能进行了分析研究,并对常压等离子体刻蚀进行了深入探讨。本文认为除了设备自身的各种处理参数的影响之外,等离子体刻蚀还受被处理材料的回潮率和不同溶剂的影响。在实际生产应用中,我们可以通过控制材料回潮率并采取最优工艺参数,促进等离子体与材料表面的相互作用,使等离子体刻蚀获得最佳效果。
Plasma treatment is a gaseous technology which combines physical and chemical reactions. Compared with traditional physical and chemical treatments, it has advantages of low pollution and low energy consumption without involving water and chemicals. In low temperature plasmas, electrons with high energy and other excited or ionized particles initiate physical and chemical reactions only on the surface of the substrate with the thickness of several nanometers, leaving the bulk properties unchanged. Therefore, as an environmentally friendly surface modification technology, low temperature plasma treatments have been widely used to modify polymer surfaces.
     Recently more attention has been paid to atmospheric pressure plasma treatment due to advantages such as no need for a vacuum system, online process capabilities, high efficiency and scalability to a larger area. Plasma etching removes a weak boundary near the surface of the polymers or the low-molecular-weight fragments formed as a result of chain scission induced by the plasma. The active species in radio frequency plasma have the ability of breaking primary chemical bonds and inducing cross-linking. The plasma etching rate is related to the chemical structure of the polymer at a given plasma treatment condition. It is also greatly affected by the plasma treatment conditions such as treatment duration, output power, gas flow rate, jet to substrate distance and moisture regain. However, no systematic study has been reported on how these treatment conditions influence the etching rate.
     This research is aimed to employ the atmospheric pressure plasma treatment on polyamide 6 (PA 6) films to improve their surface properties including the enhancement of wettability, surface energy and T-peel strength. The change of the surface properties after atmospheric pressure plasma treatment and the etching effect of the treatment were studied and the mechanisms were discussed systematically based on the surface analysis method such as contact angle measurement, scanning electron microscope (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and T-peel strength.
     In this study, atmospheric pressure plasma is used to etch the surface of PA 6 films to investigate the etching behavior of PA 6 film surface by APPJ with helium/oxygen gases with different treatment time. The etching rate first increases and then decreases as the plasma treatment time increases. The hydrophilicity tests reveal the improvement of the hydrophilicity of the surface as the decrease of water contact angle measured after the plasma treatments, but the values do not change significantly with longer treatment time although slightly smaller values are observed for time in the 60-180 s range. AFM showed that the surface roughness increased after the plasma treatment. The deterioration of the surface morphology is more severe after a longer treatment time as rougher surfaces are observed due to the plasma etching effect. XPS results show a significant increase in oxygen content with the addition of carboxylic and hydroxylic groups and a decrease in the carbon content of the surface. It can be concluded that more oxygen containing polar groups are introduced after longer plasma treatment time.
     The influence of plasma treatment power on the atmospheric pressure plasma treatment is also investigated. The hydrophilicity tests reveal that the water contact angle decreases significantly after the plasma treatment. A higher treatment power results in a lower water contact angle. XPS results show a significant increase in oxygen content with the addition of carboxylic and hydroxylic groups and a decrease in the carbon content of the surface. AFM shows that the surface roughness and the weight loss also increase with the increase of plasma treatment power.
     To investigate the relationship between the etching effect and the gas composition of atmospheric pressure plasma treatment, pure helium, helium + 1% oxygen and helium + 2% oxygen are used as the working gases, the output power is 40 W, and the treatment time was 30 s. The He and He + O_2 plasma treated polyamide 6 films show increased surface roughness, surface oxygen contents and hydrophilic polar groups, leading to lower water contact angles, and higher T-peel strength than those of the control. When the amount of oxygen increases from 1% to 2% in the plasma gas mixture, all the above favorable effects are further enhanced. Plasma etching rate is promoted as the amount of oxygen in the plasma gas mixture increases. The T-peel bonding strengths of the plasma treated PA 6 films is raised steadily as the treatment time increases and among three types of gas mixture, He + 2% O_2 plasma has the highest bonding strength for the same duration of plasma treatment.
     PA 6 films are treated using atmospheric pressure plasma with different jet-to-substrate distance. Decrease in contact angle is observed under 2 mm or 3 mm of jet-to-substrate distance. However, the contact angle does not change when jet-to-substrate distance is 1 mm or 6 mm. It can be seen that the peel strength increases when jet-to-substrate distance is 2 mm or 3 mm, and the peel strength is the largest when jet-to-substrate distance is 2 mm. However, the peel strength does not change when jet-to-substrate distance is 1 mm or 6 mm. These results correspond to the SEM results. The etching rate increases first and then decreases as the jet-to-substrate distance increases. When the distance is smaller than 1 mm or larger than 6 mm, the plasma etching rate is almost zero. When the distance is 2 - 3 mm, the etching rate is the largest.
     The etching behavior of He/CF_4 atmospheric pressure plasma treatment to PA 6 film surfaces is also investigated. For a short treatment time, a decrease in contact angle and an increase in T-peel strength are observed corresponding to a relatively large increase in surface oxygen content and relatively small increase in surface fluorine content. However, as the treatment time increases further, the contact angle increases and T-peel strength decreases accompanied by a large increase in fluorine content and a relatively small increase in surface oxygen content. In addition, the surface roughness continuously increases and the plasma etching rate steadily decreases as the plasma treatment time prolongs.
     One of the main differences between a low pressure plasma treatment and an atmospheric pressure plasma treatment is that in atmosphere, the substrate material may absorb significant amount of water which may potentially influence the plasma treatment effects. The influence of the moisture regains of PA 6 film on plasma etching behavior is also studied. It is found that a higher moisture regain leads to greater surface roughness and a higher etching rate. Moisture absorbed into the film facilitated the plasma etching reactions on the PA 6 film surfaces, because the moisture in the film increases the amorphous area and breaking up the intermolecular bonds in the amorphous region.
     In this part, the effect of ethanol on the atmospheric pressure plasma treatment is investigated. The plasma directly treated sample has a significantly lower water contact angle than that of control while the ethanol pretreated sample has a water contact angle similar to that of the control. The surface of the plasma directly treated samples has the greatest roughness. Most of the oxygen containing polar groups increase (such as -C-O-, CONH and -COO-) after the plasma treatment. The T-peel strength increased after plasma treatment. However, with the ethanol pretreatment, the T-peel strength values for the samples are similar to that of the control. This is mainly due to the ethanol pretreatment quenches the etching effect of the films in plasma treatment.
     In conclusion, polyamide 6 films have been studied through surface analysis methods after atmospheric pressure plasma treatment. The treatment effect can be optimized and the etching effect of the atmospheric pressure plasma treatment can be promoted through selecting most suitable process parameters to optimize the material surface modification.
引文
[1]T. Yasuda, T. Okuno, M. Miyama, H. Yasuda. Penetration of plasma surface modification. I. CF_4 and C_2F_4 glow discharge plasmas. Journal of Polymer Science Part A: Polymer chemistry. 2003; 32 (10): 1829-1837.
    [2]H. Yousefi , M. Ghoranneviss, A. Tehrani, and S. Khamseh. Investigation of glow discharge plasma for surface modificatrion of polypropylene. Surface Interfacial Analysis. 2003; 35: 1015-1017.
    [3]H..Poll, U. Schladitz, and S. Schreiter. Penetration of Plasma Effects Into Textile Structures. Surface & Coatings Technology. 2001; 142: 489-493.
    [4]Z. Cai, Y. Qiu, C. Zhang, Y. Hwang, and M. Mccord. Effect of Atmospheric Plasma Treatment on Desizing of Pva on Cotton. Journal Industrial textile. 2003; 32 (3): 223-232.
    [5]N. Abidi, E. Hequet. Cotton Fabric Graft Copolymerization Using Microwave Plasma. I. Universal Attenuated Total Reflectance-Ftir Study. Journal Applied Polymer Science. 2004; 93 (1): 145-154.
    [6]S. Luo, and O.VAN. Surface modification of textile fibers for improvement of adhesion to polymeric materials: a review. Journal of adhesion Science technology. 2002; 16(13):1715-1735.
    [7]Y. Qiu, N. Anantharamaiah, S. Xie, N. P. Vaidya, and C. Zhang. Atmospheric Pressure Helium Plasma Treatment of Ultrahigh Modulus Polyethylene Fibres. Advanced Composites Letters. 2001; 10 (3) 135-139.
    [8]Z. Cai, Y. Qiu, C. Zhang, Y. Hwang, and M. Mccord. Effect of Atmospheric Plasma Treatment on Desizing of Pva on Cotton. Textile Research Journal. 2003; 73 (8) : 670-674.
    
    [9]Y. Akishev, M. Grushin, A. Monich, A. Napartovich, and N. Trushkin. One-Atmosphere Argon Dielectric-Barrier Corona Discharge as an Effective Source of Cold Plasma for the Treatment of Polymer Films and Fabrics. High Energy Chemistry. 2003; 37 (5): 286-290
    
    [10]H. Nigo, J Vojta, H. Rohner, and M. Bourham. Development of an Atmospheric capacitively-Coupled Plasma Device for Enhancement of Materials Properties. ANS Stud. Reginal Conf.
    [11]M. Shenton, and G. Stevens. Surface modification of polymer surfaces: atmospheric plasma verus vacuum plasma treatments. Journal of physics D: Applied Physics. 2001; 34 (18): 2761-2768.
    [12]M. Shenton, M. Lovell-Hoare, and G. Stevens. Adhesion Enhancement of Polymer Surfaces by Atmospheric Plasma Treatment. Journal of physics D: Applied Physics. 2001; 34 (18): 2754-2760.
    [13]J. Rahel', M. Simor, M. Cernak, M. Stefecka, Y. Imahori, and M. Kando. Hydrophilization of Polypropylene Nonwoven Fabric Using Surface Barrier Discharge. Surface & Coatings Technology. 2003; 169: 604-608.
    [14]S. Andreas, Y. J. Jeong, S. Babayan, J. Park, S. Gary, R. Hicks. The Atmospheric-Pressure Plasma Jet: A Review and Composition to Other Plasma Sources. IEEE Transaction on Plasma Science. 1998; 26 (6): 1685-1693.
    [15]J.Jeong, S. Babayan, A. Schutze, and V. Tu. Etching polyimide with a nonequilibrium atmospheric-preeure plasma jet. Journal of Vacuum Science & Technology. Part A. 1993; 17 (5): 2581-2585.
    [16]J. Jeong, S. Babayan, V. Tu, J. Park, I. Henins, R. Hicks, and G. Selwyn. Etching materials with an Atmospheric-pressure Plasma Jet. Plasma Sources Science and Technology. 1998; 7: 282-285.
    [17]G. Suchaneck, M. Guenther, J. Sorber, G. Gerlach, K. Arndt, and B. Wolf . Low-temperature PECVD of silicon dioxide on polymeric hydrogels. Applied Physics. A: Material Science & Processing. 2004; 78 (5): 695-698.
    [18]S. Babayan, J. Jeong, A. Schutze , V. Tu, M. Maryam , G. Selwyn, and R. Hicks. Deposition of Silicon dioxide Films with a Non-equilibrium Atmospheric-pressure Plasma Jet. Plasma Sources Science and Technology. 2001; 10: 573-578.
    [19]S. Babayan, J. Jeong, V. Tu , J. Park , G. Selwyn , and R. Hicks. Deposition of Silicon dioxide Films with an Atmospheric-Pressure Plasma Jet. Plasma Sources Science and Technology. 1998; 7: 286-288.
    [20]M. Moravej, S. Babayan, G. Nowling, X. Yang, and R. Hicks. Plasma Enhanced Chemical Vapour Deposition of hydrogenatd Amorphous Silicon at Atmospheric Pressure. Plasma Sources Science and Technology. 2004; 13: 8-14.
    [21]G. Nowling, S. Babayan, V. Jankovic, and R. Hicks. Remote Plasma-Enhanced Chemical Vapour Deposition of Silicon Nitride at Atmospheric Pressure. Plasma Sources Science and Technology. 2002; 11: 1-7.
    [22]G. Borcia, C. Anderson, and N. Brown. Dielectric Barrier Discharge for Surface Treatment: Application to Selected Polymers in Film and Fibre Form. Plasma Sources Science and Technology. 2003; 12 (3): 335-344.
    [23]J. Rahel, Department of Electrical Engineering University of Tennessee Plasma Sciences Laboratory, W. Chen, and J. R Roth. The Penetration Depth of Plasma Treatment into Porus Media at Atmospheric Pressure . IEEE International Conference on Plasma Science, 2003; 299.
    [24]Y. Akishev, M. Grushin, A. Napartovich, and N. Trushkin. Novel Ac and Dc Non-Thermal Plasma Sources for Cold Surface Treatment of Polymer Films and Fabrics at Atmospheric Pressure. Plasmas and Polymers. 2002; 7 (3): 261-289.
    [25]T. Montie, K. Kelly-Wintenberg, and J. Roth. An Overview of Research Using the One Atmosphere Uniform Glow Discharge Plasma (Oaugdp) for Sterilization of Surfaces and Materials. IEEE Transactions on Plasma Science. 2000; 28 (1): 41-50.
    [26]K. Kelly-Wintenberg, T. Montie, C. Brickman, J. Roth, A. Carr, K. Sorge, L.Wadsworth, and P. Tsai. Room Temperature Sterilization of Surfaces and Fabrics With a One Atmosphere Uniform Glow Discharge Plasma. Journal of Industrial Microbiology & Biotechnology. 1998; 20 (1): 69-74.
    [27]J. Janca, and A. Czernichowski. Wool Treatment in the Gas Flow From Gliding Discharge Plasma at Atmospheric Pressure. Surface & Coatings Technology. 1998; 98(1-3): 1112-1115.
    
    [28]M. Cernak, J. Rahel, D. Kovacik, M. Simor, A. Brablec, and P. Slavicek. Generation of Thin Surface Plasma Layers for Atmospheric-Pressure Surface Treatments. Contributions to Plasma Physics. 2004; 44 (5-6): 492-495.
    
    [29]J. Rahel', M. Cernak, I. Hudec, A. Brablec, D. Trunec, and I. Chodak. Atmospheric-Pressure Plasma Treatment of Ultra-High-Molecular-Weight Polyethylene Fabric. Czechoslovak Journal of Physics. 2000; 50: 445-448.
    [30] J. Ryu, T. Wakida, and T. Takagishi. Effect of Corona Discharge on the Surface of Wool and Its Application to Printing. Textile Research Journal. 1991; 61 (10): 595-601.
    [31]U. Vohrer, m. Uller, and C. Oehr.. Glow-discharge treatment for the modification of textiles. Surface & Coatings Technology. 1998; 98 (1-3): 1128-1131.
    [32]A.Nakahira, Y. Suzuki, S. Ueno, H. Akamizu, K. Kijima, and S. Nishijima. Effect of Plasma Treatment on Microstructure and Surface of Glass for Plastic-Based Composite. Science and Engineering of Composite Materials. 1999; 8 (3): 129-136.
    [33]B. Jin, K. Lee, and C. Choe. Properties of Carbon-Fibers Modified by Oxygen Plasma. Polymer International. 1994; 34 (2) 181-185.
    [34]J. Jang, and H. Kim. Improvement of Carbon Fiber/Peek Hybrid Fabric Composites Using Plasma Treatment. Polymer Composites. 1997; 18(1): 125-132.
    [35]E. Liston, L. Martinu, and M. Wertheimer. Plasma Surface Modification of Polymers for Improved Adhesion - a Critical-Review . Journal of Adhesion Science and Technology. 1993; 7 (10): 1091-1127.
    [36]P. Commercon, and J. Wightman. Effect of Organic Gas Plasmas on the Adhesion of Matrix Resins to Carbon-Fibers. Journal of Adhesion. 1994; 47 (4): 257-268.
    [37]G. Akovali, and N. Dilsiz. Studies on the Modification of Interphase/Interfaces by Use of Plasma in Certain Polymer Composite Systems. Polymer Engineering and Science. 1996; 36(8): 1081-1086.
    [38]S. Feih, and P. Schwartz. Modification of the Carbon Fiber Matrix Interface Using Gas Plasma Treatment With Acetylene and Oxygen. Journal of Adhesion Science and Technology. 1998; 12 (5): 523-539.
    [39]L. Ward, W. Schofield, J. Badyal, A. Goodwin, and P. Merlin. Atmospheric Pressure Plasma Deposition of Structurally Well-Defined Polyacrylic Acid Films. Chemistry of Materials. 2003; 15 (7): 1466-1469.
    [40]F. Ferrero, C. Tonin, R. Peila, and F. Pollone. Improving the Dyeability of Synthetic Fabrics With Basic Dyes Using in Situ Plasma Polymerisation of Acrylic Acid. Coloration Technology. 2004; 120 (1): 30-34.
    [41]D. Marks, and F. Jones. Plasma Polymerised Coatings for Engineered interfaces for Enhanced Composite Performance. Composites Part A: Applied Science and Manufactering. 2002; 33: 1293-1302.
    [42]Q. Kou, K. Xu, T. Deng, M. Liu, S.Patrick , and Y. Xu. Surface modification of Microporous Polypropylen Membranes by plasma-Induced Grafted Polymerization of a-Allyl Glucoside. Langmuir. 2003; 19 (17): 6869-6875.
    [43]M. Mori, Y. Uyama, and Y. Ikada. Surface Modification of Polyethylene Fiber by Graft-Polymerization. Journal of Polymer Science Part a-Polymer Chemistry. 1994; 32(9): 1683-1690.
    [44]M. Mori, Y. Uyama, and Y. Ikada. Surface Modification of Aramid Fiber by Graft-Polymerization. Polymer. 1994; 35 (24): 5336-5341.
    [45]Q. Wang, A. Aitkadi, and S. Kaliaguine. Catalytic Grafting - a New Technique for Polymer Fiber Composites 2. Plasma Treated UHMPE Fibers Polyethylene Composites. Journal of Applied Polymer Science. 1992; 45 (6): 1023-1033.
    [46]D. Hild, and P. Schwartz. Plasma-Treated Ultra-High Strength Polyethylene Fibers .1. Characterization by Electron-Spectroscopy for Chemical-Analysis. Journal of Adhesion Science Technology. 1992; 6 (8): 879-896.
    [47]J. Lynch, P. Spence, D. Baker, and T. Postlethwaite. Atmospheric Pressure Plasma Treatment of Polyethylene Via a Pulse Dielectric Barrier Discharge: Comparison Using Various Gas Compositions Versus Corona Discharge in Air. Journal of Applied Polymer Science. 1999; 71 (2): 319-331.
    [48]J. Friedrich, W. Unger, A. Lippitz, I. Koprinarov, A. Ghode, S. Geng, and G. Kuhn. Plasma-Based Introduction of Monosort Functional Groups of Different Type and Density Onto Polymer Surfaces. Part 1: Behaviour of Polymers Exposed to Oxygen Plasma. Composite Interfaces. 2003; 10 (2-3): 139-171.
    [49]Y. Hwang, Y. Qiu, C. Zhang, B. Jarrard, R. Stedeford, J. Tsai, Y. Park, and M. Mccord. Effects of Atmospheric Pressure Helium/Air Plasma Treatment on Adhesion and Mechanical Properties of Aramid Fibers. Journal of Adhesion Science and Technology. 2003; 17 (6): 847-860.
    [50]N. Bhat, and D. Upadhyay. Plasma-Induced Surface Modification and Adhesion Enhancement of Polypropylene Surface. Journal of Applied Polymer Science. 2002; 86 (4): 925-936.
    [51]S. Oiseth, A. Krozer, B. Kasemo, and J. Lausmaa. Surface Modification of Spin-Coated High-Density Polyethylene Films by Argon and Oxygen Glow Discharge Plasma Treatments. Applied Surface Science. 2002; 202 (1-2): 92-103.
    [52]N. Cui, N. Brown. Modification of the Surface Properties of a Polypropylene (PP) Film Using an Air Dielectric Barrier Discharge Plasma. Applied Surface Science. 2002; 189 (1-2): 31-38.
    [53]G. Farrow, K. Atkinson, N. Fluck, and C. Jones. Effect of Low-Power Air Plasma Treatment on the Mechanical-Properties of Carbon-Fibers and the Interfacial Shear-Strength of Carbon Fiber-Epoxy Composites. Surface and Interface Analysis. 1995; 23 (5): 313-318.
    [54]S. Moon, and J. Jang. Factors Affecting the Interfacial Adhesion of Ultrahigh-Modulus Polyethylene Fibre Vinylester Composites Using Gas Plasma Treatment. Journal of Materials Science. 1998; 33 (13): 3419-3425.
    [55]K. Wong, X. Tao, C. Yuen, and K. Yeung. Topographical Study of Low Temperature Plasma Treated Flax Fibers. Textile Research Journal. 2000; 70 (10): 886-893.
    [56]M. Reza, and I. Holme. The Effect of Plasma Treatment on Some Properties of Cotton. Iranian Polymer Journal. 2003; 12 (4): 271-280.
    [57]N. Bhat, and D. Upadhyay. Plasma-Induced Surface Modification and Adhesion Enhancement of Polypropylene Surface. Journal of Applied Polymer Science. 2002; 86 (4): 925-936.
    [58]I. Dogue, N. Mermilliod, G. Boiron, S. Staveris. Improvement of Polypropylene Film Adhesion in Multilayers by Various Chemical Surface Modifications. International Journal of Adhesion and Adhesives. 1995; 15 (4): 205-210.
    [59]Z. Zheng, X. Tang, M. Shi, and G. Zhou. A Study of the Influence of Controlled Corona Treatment on Uhmwpe Fibres in Reinforced Vinylester Composites. Polymer International. 2003; 52 (12): 1833-1838.
    [60]S. Moon, and J. Jang. The Interfacial Adhesion Improvement of Oxygen Plasma Treated UHMPE Fiber/Vinylester Composites Using Different Plasma Output Power. Korea Polymer Journal. 1997; 5(1) 26-32.
    [61]Y. Qiu, Y. Hwang , C. Zhang, B. Bures, and M. Mccord. Atmospheric Pressure Helium Plus Oxygen Plasma Treatment of Ultrahigh Modulus Polyethylene Fibers. Journal of Adhesion Science and Technology. 2002; 16 (4): 449-457.
    [62]B. Miller, G. Umesh , and H. Douglas. Measurement and Mechanical Aspects of the Microbond Pull-Out Technique for Obtaining Fiber/Resin Interfacial Shear Strength. Composites Science and Technology. 1991; 42: 207-219.
    [63]M. Brown, P. Hayes, and H. Prangnell. Charaterisation of Thin Silica Films Deposited on Carbon Fibre by an Atmospheric Pressure Non-Equilibrium Plasma (APNEP). Composites: Part A: Applied Science and Manufactering. 2002; 33: 1403-1408.
    [64]N. Inagaki, S. Tasaka, H. Kawai, and Y. Yamada. Surface Modification of Aromatic Polyamide Film by Remote Oxygen Plasma. Journal of Applied Polymer Science. 1997; 64 (5): 831-840.
    [65]N. Inagaki, S. Tasaka, and H. Kawai. Surface Modification of Aromatic Polyamide Film by Oxygen Plasma. Journal of Polymer Science Part a-Polymer Chemistry. 1995; 33 (12): 2001-2011.
    [66]C. Riccardi, R. Barni, M. Fontanesi, and B. Marcandalli. A SF6 RF Plasma Reactor for Research on Textile Treatment. Plasma Sources Science and Technology. 2001; 10 (1): 92-98.
    [67]J. Zhang , P. France, and A. Radomyselskiy. Hydrophobic Cotton Fabric Coated by a Thin Nanoparticulate Plasma Film. Journal of Applied Polymer Science. 2003; 88(6):1473-1481.
    [68]M. McCord, Y. Hwang, Y. Qiu, L. Hughes, and M. Bourham. Surface Analysis of Cotton Fabrics Fluorinated in Radio-Frequency Plasma. Journal of Applied Polymer Science. 2003; 88 (8): 2038-2047.
    [69]S. Lee, S. Choi, W. Park, and D. Cho. Characterization of Surface Modified Flax Fibers and Their Biocomposites With Phb. Macromolecular Symposia. 2003; 197: 89-99.
    [70]E. Lee, J. Choi, H. Baik. Surface cleaning of indium tin oxide by atmospheric air plasma treatment with the steady-state airflow for organic light emitting diodes. Surface & Coatings Technology. 2007; 201 (9-11): 4973-4978.
    [71]B. Aronsson, J. Lausmaa, B. Kasemo. Glow discharge plasma treatment for surface cleaning and modification of metallic biomaterials. Journal of Biomedical Materials Research. 1997; 35 (1): 49-73.
    [72]J. Kikuchi, M. Nagasaka, S. Fujimura, H. Yano, Y. Horiike. Cleaning of silicon surfaces by NF3-added hydrogen and water-vapor plasma downstream treatment. Japanese J. Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers. 1996; 35 (2B): 1022-1026.
    [73]I. Zuchairah, M. Pailthorpe, and S. David. Effect of Glow Discharge-Polymer Treatments on the Shrinkage Behavior and Physical Properties of Wool Fabric. Textile Research Journal. 1997; 67 (1): 69-74.
    [74]S. Tokino, T. Wakida, H. Uchiyama, and M. Lee. Laundering Shrinkage of Wool Fabric Treated With Low-Temperature Plasmas Under Atmospheric-Pressure. Journal of the Society of Dyers and Colourists. 1993; 109 (10): 334-335.
    [75]T. Wakida, S. Tokino, S. Niu, H. Kawamura, Y. Sato, M. Lee, H. Uchiyama, and H. Inagaki. Surface Characteristics of Wool and Poly(Ethylene-Terephthalate) Fabrics and Film Treated With Low-Temperature Plasma Under Atmospheric-Pressure. Textile Research Journal. 1993; 63 (8): 433-438.
    [76]C. Kan, K. Chan, C. Yuen, and M. Miao. Surface Properties of Low-Temperature Plasma Treated Wool Fabrics. Journal of Materials Processing Technology. 1998; 83(1-3): 180-184.
    [77]R. Molina, P. Jovancic, D. Jocic, E. Bertran, and P. Erra. Surface Characterization of Keratin Fibres Treated by Water Vapour Plasma. Surface and Interface Analysis. 2003; 35 (2): 128-135.
    [78] P. Jovancic, D. Jocic, R. Molina, M. R. Julia, and P. Erra. The Combined Low-Temperature, Plasma/Enzyme Wool Shrink-Resist Treatment. Aatcc Review 2003; 3 (2): 25-28.
    [79]C. Jahagirdar, and L. Tiwari. Study of Jahagirdar Plasma Polymerization of Dichloromethane on Cotton and Polyester Fabrics. Journal of Applied Polymer Science. 2004; 94 (5): 2014-2021.
    [80]H. Shin, S. Tokino, and M. Ueda. Effect of Low-Temperature Air-Plasma Treatment on Wool Dyeing and Its Color Fastness. Sen-I Gakkaishi. 1999; 55 (3): 155-158.
    [81 ] Y. Iriyama, T. Mochizuki, M. Watanabe, and M. Utada. Plasma Treatment of Silk Fabrics for Better Dyeability. Journal of Photopolymer Science and Technology. 2002; 15 (2): 299-306.
    [82]Z. Cai, Y. Hwang, Y. Park, C. Zhang, M. Mccord, Y. Qiu. Preliminary Investigation of Atmospheric Pressure Plasma-Aided Desizing for Cotton Fabrics. Aatcc Review. 2002; 2 (12); 18-21.
    [83]G. Wu. Oxygen Plasma Treatment of High Performance Fibers for Composites. Materials Chemistry and Physics. 2004; 85 (1): 81-87.
    [84]J. Park, D. Kim, and S. Kim. Improvement of Interfacial Adhesion and Nondestructive Damage Evaluation for Plasma-Treated Pbo and Kevlar Fibers/Epoxy Composites Using Micromechanical Techniques and Surface Wettability. Journal of Colloid and Interface Science. 2003; 264 (2): 431-445.
    [85]Y. Hwang, Y. Qiu, C. Zhang, B. Jarrard, R. Stedeford, J. Tsai, Y. Park, and M. Mccord. Effects of Atmospheric Pressure Helium/Air Plasma Treatment on Adhesion and Mechanical Properties of Aramid Fibers. Journal of Adhesion Sci.ence and Technology. 2003; 17 (6): 847-860.
    [86]G. Rallis, P. Tarantili, and A. Andreopoulos. Epoxy Resin Composites With Surface Modified Aramid Fibres. Advanced Composites Letters. 2000; 9 (2): 127-133.
    [87]M. Bryjak, I. Gancarz, G. Pozniak, and W. Tylus. Modification of Polysulfone Membranes 4. Ammonia Plasma Treatment. European Polymer Journal. 2002; 38 (4): 717-726.
    [88]G. Sheu, and S. Shyu. Surface Modification of Kevlar-149 Fibers by Gas Plasma Treatment .2. Improved Interfacial Adhesion to Epoxy-Resin. Journal of Adhesion Science and Technology. 1994; 8 (9): 1027-1042.
    [89]S. Kobayashi, T. Wakida, S. Niu, S. Hazama, T. Ito, and Y. Sasaki. The Effect of Sputter Etching on the Surface Characteristics of Dyed Aramid Fabrics. Journal of the Society of Dyers and Colourists. 1995; 111 (3): 72-76.
    [1] G. McCrum, C. Buckley, C. Bucknall. Principles of Polymer Engineering, Oxford University Press, Oxford, 1997.
    [2] J. Briston, L. Katan. Plastics Films, Longman Scientific & Technical, Hong Kong, 1986.
    [3] C. Cheng, Z. Liye, R. Zhan. Surface modification of polymer fibre by the new atmospheric pressure cold plasma jet. Surface & Coatings Technology. 2006; 200 (24): 6659-6665.
    [4] H. Hocker. Plasma treatment of textile fibers. Pure and Applied Chemistry. 2002; 74 (3): 423-427.
    [5] R. Li, L. Ye, Y.W. Mai. Application of plasma technologies in fibre-reinforced polymer composites: a review of recent developments. Composites Part A: 1997; 28(1): 73-86.
    [6] E. Liston, L. Martinu, M. Wertheimer. Plasma surface modification of polymers for improved adhesion: a critical review. Journal of Adhesion Science and Technology. 1993; 7 (10): 1091-1127.
    [7] C.M. Chan, T.M. Ko. Polymer surface modification by plasmas and photons. Surface Science Reports. 1996; 24 (1-2): 1-54.
    
    [8] Y. Qiu, C. Zhang, Y. J. Hwang, B. L. Bure, M. McCord. Atmospheric pressure helium + oxygen plasma treatment of ultrahigh modulus polyethylene fibers. Journal of Adhesion Science and Technology. 2002; 16 (4): 449-457.
    
    [9] F. Cerrina, H. Hoechst, R. Rosenberg, B. Lai, C. Beall, D. Mancini, D. Niles, M. Kelly, G. Margaritondo, G. Fisher, J. Talor. The general motors-University of Wisconsin extended range grasshopper beam line. Nuclear Instruments and Methods in Physics Research Section A. 1988; 266 (1-3): 208-209.
    [10] N. Geyter, R. Morent, C. Leys. Influence of ambient conditions on the ageing behaviour of plasma-treated PET surfaces. Nuclear Instruments and Methods in Physics Research Section B. 2008; 266 (12-13): 3086-3090.
    [11] D. Hegemann, H. Brunner, C. Oehr. Plasma treatment of polymers for surface and adhesion improvement. Nuclear Instruments and Methods in Physics Research Section B. 2003; 208: 281-286.
    [12] Y. Qiu, Y. J. Hwang, C. Zhang, B. L. Bure, M. McCord. The effect of atmospheric pressure helium plasma treatment on the surface and mechanical properties of ultrahigh-modulus polyethylene fibers. Journal of Adhesion Science and Technology. 2002; 16(1): 99-107.
    [13] Y. Qiu, S. Deflon, P. Schwartz. Plasma surface treatment of poly(p-phenylene benzobisthiozol) fibers. Journal of Adhesion Science and Technology. 1993; 7 (10): 1041-1049.
    [14] M. J. Shenton, M. C. Lovell-Hoare, G. C. Stevens. Adhesion enhancement of polymer surfaces by atmospheric plasma treatment. Journal of Physics D-Applied Physics. 2001; 34: 2754-2760.
    
    [15] L. Liu, Q. Jiang, T. Zhu, X. Guo, Y. Sun, Y. Guan, Y. Qiu. Influence of moisture regain of aramid fibers on effects of atmospheric pressure plasma treatment on improving adhesion with epoxy. Journal of Applied Polymer Science. 2006; 102 (1): 242-247.
    
    [16]B. J. Carroll. The accurate measurement of contact angle, phase contact areas, drop volume, and Laplace excess pressure in drop-on-fiber systems. Journal of Colloid and Interface Science. 1976; 57: 488-492.
    [17]M. Riekerink, J. Terlingen, H. Engbers, J. Feijen. Selective etching of semicrystalline polymers: CF_4 gas plasma treatment of poly(ethylene). Langmuir. 1999; 15 (14): 4847-4856 .
    [18] R. Chen, V. Gorelik and M. Silverstein. Plasma Polymerization of Hexafluoropropylene: Film Deposition and Structure. Journal of Applied Polymer Science. 1995; 56 (5): 615-623.
    [19] K. Navaneetha Pandiyaraj, V. Selvarajan, R.R. Deshmukh, Mosto Bousmina. The effect of glow discharge plasma on the surface properties of Poly (ethylene terephthalate) (PET) film. Surface & Coatings Technology. 2008; 202 (17): 4218-4226.
    [20] A. Marmur. In Modern Approaches to Wettability: Theory and Applications. New York: Plenum Press; 1992.
    [21] B.Gupta, J.Hillborn, C.Hollenstein, C.J.G.Plummer, R.Houriet, N.Xanthopoulos. Surface modification of polyester films by RF plasma. Journal of Applied Polymer Science. 2000; 78 (5): 1083-1091.
    [22] M. Olde Riekerink, J. Terlingen, G. Engbers, J. Feijen. Selective Etching of Semicrystalline Polymers: CF_4 Gas Plasma Treatment of Poly(ethylene). Langmuir. 1999; 15 (14): 4847-4856.
    [1] G. McCrum, C.P. Buckley, C.B. Bucknall, Principles of Polymer Engineering, Oxford University Press, Oxford, 1997.
    [2] J.H. Briston, L.L. Katan, Plastics Films, Longman Scientific & Technical, Hong Kong, 1986.
    [3] C. Cheng, Z. Liye, R.-J. Zhan. Surface modification of polymer fibre by the new atmospheric pressure cold plasma jet. Surface & Coatings Technology. 2006; 200 (24): 6659-6665.
    [4] H. Hocker. Plasma treatment of textile fibers. Pure Applied Chemistry. 2002; 74 (3): 423-427.
    [5] R. Li, L. Ye, Y.W. Mai. Application of plasma technologies in fibre-reinforced polymer composites: a review of recent developments. Composites. Part A. 1997; 28(1): 73-86.
    [6] E.M. Liston, L. Martinu, M.R. Wertheimer. Plasma surface modification of polymers for improved adhesion: a critical review. Journal of Adhesion Science and Technology. 1993; 7 (10): 1091-1127.
    [7] C.M. Chan, T.M. Ko. Polymer surface modification by plasmas and photons. Surface Science Reports. 1996; 24 (1-2): 1-54.
    
    [8] Y. Qiu, C. Zhang, Y. J. Hwang, B. L. Bure, M. McCord. Atmospheric pressure helium + oxygen plasma treatment of ultrahigh modulus polyethylene fibers. Journal of Adhesion Science and Technology. 2002; 16 (4): 449-457.
    [9] R. Morent, N. De Geyter, C. Leys. The general motors-University of Wisconsin extended range grasshopper beam line. Nuclear Instruments and Methods in Physics Research Section A. 2008; 266 (1-3): 208-209.
    [10] N. De Geyter, R. Morent, C. Leys. Influence of ambient conditions on the ageing behaviour of plasma-treated PET surfaces. Nuclear Instruments and Methods in Physics Research Section B. 2008; 266 (12-13): 3086-3090.
    [11] D. Hegemann, H. Brunner, C. Oehr. Plasma treatment of polymers for surface and adhesion improvement. Nuclear Instruments and Methods in Physics Research Section B. 2003; 208: 281-286.
    [12] Y. Qiu, Y. J. Hwang, C. Zhang, B. L. Bure, M. McCord. The effect of atmospheric pressure helium plasma treatment on the surface and mechanical properties of ultrahigh-modulus polyethylene fibers. Journal of Adhesion Science and Technology. 2002; 16 (1): 99-107.
    [13] Y. Qiu, S. Deflon, P. Schwartz. Plasma surface treatment of poly(p-phenylene benzobisthiozol) fibers. Journal of Adhesion Science and Technology. 1993; 7 (10): 1041-1049.
    [14] M. J. Shenton, M. C. Lovell-Hoare, G. C. Stevens. Adhesion enhancement of polymer surfaces by atmospheric plasma treatment. Journal of Physics D: Applied Physics. 2001; 34: 2754-2760.
    
    [15] L. Liu, Q. Jiang, T. Zhu, X. Guo, Y. Sun, Y. Guan, Y. Qiu. Influence of moisture regain of aramid fibers on effects of atmospheric pressure plasma treatment on improving adhesion with epoxy. Journal of Applied Polymer Science. 2006; 102 (1): 242-247.
    [16] J. Y. Jeong, S. E. Babayan, V. J. Tu. Etching materials with an atmospheric-pressure plasma jet. Plasma Sources Science and Technology. 1998; 7 (3): 282-285.
    [17] J. Park, I. Henins, H. W. Herrmann. An atmospheric pressure plasma source. Applied Physics Letters. 2000; 76 (3): 288.
    [18] M. Ortiz-Morales, M. Poterasu, Acosta-Ortiz. S.E, Compean. I, Hernandez. M.R Alvarado. A comparison between characteristics of various laser-based denim fading processes. Optics and Laser in Engineering. 2003; 39 (1): 15-24.
    [19] B.Gupta, J.Hillborn, C.Hollenstein, C.J.G.Plummer, R.Houriet, N.Xanthopoulos. Surface modification of polyester films by RF plasma. Journal of Applied Polymer Science. 2000; 78 (5): 1083-1091.
    [20] Y. Jung, I. Murakami. Effects of electron temperature and density on ion-dust bremsstrahlung spectrum in dusty plasmas. Journal of Applied Physics. 2009; 105 (10): 106106.1-106106.3.
    [1] Y. Qiu, C. Zhang, Y. J. Hwang, B. L. Bure, M. McCord. Atmospheric pressure helium + oxygen plasma treatment of ultrahigh modulus polyethylene fibers. Journal of Adhesion Science and Technology. 2002; 16 (4): 449-457.
    [2] Y. Qiu, Y. J. Hwang, C. Zhang, B. L. Bure, M. McCord. The effect of atmospheric pressure helium plasma treatment on the surface and mechanical properties of ultrahigh-modulus polyethylene fibers. Journal of Adhesion Science and Technology. 2002; 16(1): 99-107.
    [3] Y. Qiu, S. Deflon, P. Schwartz. Plasma surface treatment of poly(p-phenylene benzobisthiozol) fibers. Journal of Adhesion Science and Technology. 1993; 7 (10): 1041-1049.
    [4] M. J. Shenton, M. C. Lovell-Hoare, G. C. Stevens. Adhesion enhancement of polymer surfaces by atmospheric plasma treatment. Journal of Physics D-Applied Physecs. 2001; 34 (18): 2754-2760.
    [5] L. Liu, Q. Jiang, T. Zhu, X. Guo, Y. Sun, Y. Guan, Y. Qiu. Influence of moisture regain of aramid fibers on effects of atmospheric pressure plasma treatment on improving adhesion with epoxy. Journal of Applied Polymer Science. 2006; 102 (1): 242-247.
    [6] E. M. Liston, L. Martinu, M..R. Wertheimer. Plasma surface modification of polymers for improved adhesion: a critical review. Journal of Adhesion Science and Technology. 1993; 7 (10): 1091-1127.
    [7] J. Y. Jeong, S. E. Babayan, A. Schutze, V. J. Tu, J. Park, I. Henins, G. S. Selwyn, R. F. Hicks. Etching polyimide with a nonequilibrium atmospheric-pressure plasma jet. Journal of Vacuum Science & Technology. 1999; 17 (5): 2581-2585.
    
    [8] J. Jeong, S. E. Babayan, V. J. Tu. Etching materials with an atmospheric-pressure plasma jet. Plasma Sources Science and Technology. 1998; 7 (3): 282-285.
    
    [9] S. Wu. Polymer Interface and Adhesion. New York and Basel: Marcel Dekker, Inc; 1982.
    
    [10] N. Murthy, M. Stamm, J. Sibilia, S. Krimms. Structural Changes Accompanying Hydration in PA 6. Macromolecules. 1989; 22 (3): 1261-1267.
    [11] L. Martinu, E. Liston, M. Wertheimer. Plasma treatment of polymers for surface and adhesion improvement. Nuclear Instruments and Methods in Physics Research Section B. 2003; 208: 281-286
    [12] J. Park, I. Henins, H. W. Herrmann. An atmospheric pressure plasma source. Applied Physics Letters. 2000; 76: 288.
    
    [13] B. J. Carroll. The accurate measurement of contact angle, phase contact areas, drop volume, and Laplace excess pressure in drop-on-fiber systems. Journal of Colloid and Interface Science. 1976; 57: 488-492.
    [14] K.N. Kim, Y.J.Lee, S.J.Kyong, G.Y.Yeom. Effects of multipolar magnetic fields on the characteristics of plasma and photoresist etching in an internal linear inductively coupled plasma system. Surface and Coatings Technology. 2004; 177/178: 752-757.
    [15] S.G.Park, H.Y.Song, B.H.O. Effect of time-varying axial magnetic field on photoresist ashing in an inductively coupled plasma. Journal of Vacuum Science & Technology B. 2001; 19 (5): 1841-1844.
    [16] D. Upadhyay, C. Anderson, N. Brown. A comparative study of the surface activation of polyamides using an air dielectric barrier discharge. Colloids and Surfaces a-Physicochemical and Engineering Aspects. 2004; 248 (1-3): 47-56.
    [17] D.Pappas, A. Bujanda, J.Demaree. Surface modification of polyamide fibers and films using atmospheric plasmas. Surface and Coatings Technology. 2006; 201 (7): 4384-4388.
    
    [18] R.E. Allred, W.C. Schimpf. CO_2 plasma modification of high-modulus carbon fibers and their adhesion to epoxy resins. Journal of Adhesion Science and Technology. 1994; 8 (4): 383-394.
    
    [19] B.J. Tan, Y.O. Xiao, S.L. Suib. Effect of microwave nitrogen plasma treatment on Nicalon fibers. Chemistry of Materials. 1991; 3 (4): 652-660.
    
    [20] M. Kohan. Nylon plastics handbook. Munich: Carl Hanser; 1995.
    
    [21] K. Saijo, O. Arimoto, T. Hashimoto. Moisture sorption mechanism of aromatic polyamide fibres: diffusion of moisture into regular Kevlar as observed by time-resolved small-angle X-ray scattering technique. Polymer. 1994; 35 (3): 496-503.
    [22] M.G. Dobb, C.R. Park, R.M. Robson. Role of microvoids in aramid fibres. J.ournal of Materials Science. 1992; 27 (14): 3876-3878.
    [23] M.G. Dobb, D.J. Johnson, A. Majeed. Microvoids in aramid-type fibrous polymers. Polymer. 1979; 20: 1284-1288.
    [1] J. Park, I. Henins, H. W. Herrmann. An atmospheric pressure plasma source. Applied Physics Letters. 2000; 76: 288
    [2] J. Y. Jeong, S. E. Babayan, V. J. Tu. Etching materials with an atmospheric-pressure plasma jet. Plasma Sources Science and Technology. 1998; 7 (3): 282-285.
    [3] M. Ortiz, M. Poterasu, S. Acosta-Ortiz, I. Compean, M. Hernandez. A comparison between characteristics of various laser-based denim fading processes. Optics and Laser in Engineering. 2003; 39 (1): 15-24.
    [4] J. Reece Roth. Institute of Physics Publishing, Bristol and Philadelphia. Industrial plasma engineering. 2001.
    [5] G. Borcia. N. Dumitrascu, G. Popa. Influence of helium-dielectric barrier discharge treatments on the adhesion properties of polyamide-6 surfaces. Surface and Coatings Technology. 2005; 197 (2-3): 316-321.
    [6] J. Yip, K. Chan, K.M. Sin, K.S. Lau. Study on the surface chemical properties of UV excimer laser irradiated polyamide by XPS, ToF-SIMS and CFM. Applied Surface Science. 2003; 205 (1-4): 151-159.
    [7] D. Upadhyay, C. Anderson, N. Brown. A comparative study of the surface activation of polyamides using an air dielectric barrier discharge. Colloids and Surfaces a-Physicochemical and Engineering Aspects. 2004; 248 (1-3): 47-56.
    [8] R.E. Allred, W.C. Schimpf. CO_2 plasma modification of high-modulus carbon fibers and their adhesion to epoxy resins. Journal of Adhesion Science and Technology. 1994; 8 (4): 383-394.
    [9] B.J. Tan, Y.O. Xiao, S.L. Suib. Effect of microwave nitrogen plasma treatment on Nicalon fibers. Chemistry of Materials. 1991; 3 (4): 652-660.
    [1] Y. Qiu, C. Zhang, Y. J. Hwang, B. L. Bure, M. McCord. Atmospheric pressure helium + oxygen plasma treatment of ultrahigh modulus polyethylene fibers. Journal of Adhesion Science and Technology. 2002; 16 (4): 449-457.
    
    [2] Y. Qiu, Y. J. Hwang, C. Zhang, B. L. Bure, M. McCord. The effect of atmospheric pressure helium plasma treatment on the surface and mechanical properties of ultrahigh-modulus polyethylene fibers. Journal of Adhesion Science and Technology. 2002; 16 (1): 99-107.
    [3] Y. Ren, C. Wang, Y. Qiu. Influence of aramid fiber moisture regain during atmospheric plasma treatment on aging of treatment effects on surface wettability and bonding strength to epoxy. Applied Surface Science. 2007; 253 (23): 9283-9289.
    [4] D. Commercon, J. P. Wightman. Surface Characterization of Plasma Treated Carbon Fibers and Adhesion to a Thermoplastic Polymer. Journal of Adhesion. 1992; 38 (1-2): 55-78.
    [5] J. Zhang , P. France, and Arseni Radomyselskiy. Hydrophobic Cotton Fabric Coated by a Thin Nanoparticulate Plasma Film. Journal of applied polymer science. 2003; 88 (6): 1473-1481.
    [6] R. Foerch, G. Kill, M.J. Walzak. Plasma surface modification of polyethylene: short-term vs. long-term plasma treatment. Journal of Adhesion Science and Technology. 1993; 7 (10): 1077-1089.
    [7] P. Kruger, R. Knes, J. Friedrich. Surface cleaning by plasma-enhanced desorption of contaminants (PEDC). Surface and Coatings Technology. 1999; 112 (1-3): 240-244.
    [8] S. A. Szekeres. RF plasma cleaning of the oxide surface as a possibility for contamination control in mos structures. Vacuum. 1998; 51 (3): 469-472.
    [9] M.G. McCord, Y.J. Hwang, Y. Qiu, L.K. Hughes, M.A. Boutham. Surface analysis of cotton fabrics fluorinated in radio-frequency plasma. Journal of Applied Polymer Science. 2003; 88 (8): 2038-2047.
    
    [10] Ladislav Bardos, Hana Barankova. Plasma processes at atmospheric and low pressures. Vacuum. 2008; 83 (3): 522-527.
    
    [11] R.M.A. Malek, I. Holme, The effect of plasma treatment on some properties of cotton. Iran. Polym. J. 12 (2003) 271.
    [12] D.N. Hild, P. Schwartz. Plasma-treated ultra-high strength polyethylene fibers. Part I. Characterization by electron spectroscopy for chemical analysis. Journal of Adhesion Science and Technology. 1992; 6 (8): 879-896.
    
    [13] S.H. Gao, M.K. Lei, Y. Liu, L.S. Wen. CF_4 radio frequency plasma surface modification of silicone rubber for use as outdoor insulations. Applied Surface Science. 2009; 255 (11): 6017-6023.
    [14] H.T. Sahin. RF-CF_4 plasma surface modification of paper: Chemical evaluation of two sidedness with XPS/ATR-FTIR. Applied Surface Science. 2007; 253 (9) : 4367-4373.
    [15] N. Dilsiz, E. Ebert, W. Weisweiler, G. Akovali. Effect of Plasma Polymerization on Carbon Fibers Used for Fiber/Epoxy Composites. Journal of Colloid Interface Science. 1995; 170 (1): 241-248.
    [16] T. Valente, F. Carassiti. Hot Pressing of Plasma-Sprayed SiC Fiber-Reinforced Ti-6Al-4V Alloy. Journal of Composites Technology & Research. 1996; 18 (2): 89-95.
    [17] Y. Lee, J. Shim. Preparation of pH/temperature responsive polymer membrane by plasma polymerization and its riboflavin permeation. Polymer. 1997; 38 (5): 1227-1232.
    [18] E.M. Liston, L. Martinu, M.R. Wertheimer. Plasma surface modification of polymers for improved adhesion: a critical review. Journal of Adhesion Science and Technology. 1993; 7 (10): 1091-1127.
    [19] J. Y. Jeong, S. E. Babayan, V. J. Tu. Etching materials with an atmospheric pressure plasma jet. Plasma Sources Science and Technology. 1998; 7 (3): 282-285.
    
    [20] J. Park, I. Henins, H. W. Herrmann. An atmospheric pressure plasma source. Applied Physics Letters. 2000; 76: 288.
    [21] S. Sigurdddon, R. Shishoo. Surface properties of polymers treated with tetrafluoromethane plasma. Journal of Applied Polymer Science. 1997; 66 (8): 1591-1601.
    [22] J. Hopkins, J.P.S. Badyal. CF_4 Plasma Treatment of Asymmetric Polysulfone Membranes. Langmuir. 1996; 12(15): 3666-3670.
    [23] J. Hopkins, J.P.S. Badyal. Nonequilibrium glow discharge fluorination of polymer surfaces. Journal of Physical Chemistry. 1995; 99 (12): 4261-4264.
    [24] J. Wang, D. Feng, H. Wanf, M. Rembold, F. Thommen. An XPS investigation of polymer surface dynamics. I. A study of surface modified by CF_4 and CF_4/CH4 plasmas. Journal of Applied Polymer Science. 1993; 50 (4): 585-599.
    [25] M. Strobel, S. Corn, C.S.Lyons, G.A. Korba. Surface modification of polypropylene with CF_4, CF3H, CF_3Cl, and CF_3Br plasmas. Journal of Polymer Science: Polymer Chemistry Edition. 2003; 23 (4): 1125-1135.
    [26] W. Schwarzenbach, J. Derouard, N. Sadeghi. Treatment of organic polymer surfaces by CF_4 plasmas: Etching by fluorine atoms and influence of vacuum ultraviolet radiation. Journal of Applied Physics. 2001; 90 (11): 5491-5946.
    [27] F. Poncin-Epaillard, B. Pomepui, J. Brosse. Study of polymer treatment with tetrafluoromethane plasma: Reactivity of fluorinated species on model surfaces. Journal of Appl. Polymer Science. Part A: Polymer Chemistry. 1993; 31 (11): 2671-2680.
    [28] F. Dreux, S. Marais, F. Poncin-Epaillard, M. Metayer, M. Labbe. Surface Modification by Low-Pressure Plasma of Polyamide 12 (PA12). Improvement of the Water Barrier Properties. Langmuir. 2002; 18 (26): 10411-10420.
    [29] I. Tohru, S. Noriyuki. T. Hifumi, K. Ichiro. Sputtered neutral mass spectrometry using post-ionization in a microwave plasma. Physics Letters A. 1978; 67 (5-6): 375-378.
    [30] J. Yip, K. Chan, K.M. Sin, K.S. Lau. Formation of periodic structures by surface treatments of polyamide fiber: Part II. Low temperature plasma treatment. Applied Surface Science. 2006; 253 (5): 2493-2497.
    
    [31] D. Pappas, A. Bujanda, J.D. Demaree, J.K. Hirvonen, W. Kosik, R. Jensen, S. McKnight. Surface modification of polyamide fibers and films using atmospheric plasmas. Surface and Coatings Technology. 2006; 201 (7): 4384-4388.
    [32] K. Navaneetha Pandiyaraj, V. Selvarajan, R.R. Deshmukh, Mosto Bousmina. The effect of glow discharge plasma on the surface properties of Poly (ethylene terephthalate) (PET) film. Surface and Coatings Technology. 2008; 202 (17): 4218-4226.
    [33] L. Zhu, C. Wang, Y. Qiu. Influence of the amount of absorbed moisture in nylon fibers on atmospheric pressure plasma processing. Surface and Coatings Technology. 2007; 201 (16-17): 7453-7461.
    [34] T. Kondo, H. Ito, K. Kusakabe, K. Ohkawa, K. Honda, Y. Einaga, A. Fujishima, T. Kawai. Characterization and electrochemical properties of CF_4 plasma-treated boron-doped diamond surfaces. Diamond & Related Materials. 2008; 17 (1): 48-54.
    [35] Z. Gao, S. Peng, J. Sun, L. Yao, Y. Qiu. Influence of processing parameters on atmospheric pressure plasma etching of polyamide 6 films. Applied Surface Science. 2009; 255 (17): 7683-7688.
    [36] C. Canal, F. Gaboriau, S. Villeger, U. Cvelbar, A. Ricard. Studies on antibacterial dressings obtained by fluorinated post-discharge plasma. International Journal of Pharmaceutics. 2009; 367 (1-2): 155-161.
    
    [37] T. Cheng, H. Lin, M. Chuang. Surface fluorination of polyethylene terephthalate films with RF plasma. Materials Letters. 2004; 58 (5): 650-653.
    
    [38] Y. Kim, Y. Lee, S. Han, K. Kim. Improvement of hydrophobic properties of polymer surfaces by plasma source ion implantation. Surface & Coatings Technology. 2006; 200 (16-17): 4763-4769.
    
    [39] Y.M. Shulga, T.C. Tien, C.C. Huang, S.C. Lo, V.E. Muradyan, N.V. Polyakova, Y.C. Ling, R.O. Loutfy, A.P. Moravsky. XPS study of fluorinated carbon multi-walled nanotubes. Journal of Electron Spectroscopy and Related Phenomena. 2007; 160 (1-3): 22-28.
    
    [40] K.K.C. Ho, A.F. Lee, A.Bismarck. Fluorination of carbon fibres in atmospheric plasma. Carbon. 2007; 45 (4): 775-784.
    [1]M. Noeske, J. Degenhardt, S. Strudthoff, and U. Lommatzsch. Plasma Jet Treatment of Five Polymers at Atmospheric Pressure: Surface Modifications and the Relevance for Adhesion. International of Journal of Adhesion and Adhesives. 2004; 24 (2): 171-177.
    [2]M. Moravej, S. E. Babayan, G. R. Nowling, X. Iang, and R. F. Hicks. Plasma Enhanced Chemical Vapour Deposition of Hydrogenated Amorphous Silicon at Atmospheric Pressure. Plasma Sources Science and Technology. 2004; 13 (1): 8-14.
    [3]J.Y. Jeong, S. Babayan, V. Tu. Etching materials with an atmospheric-pressure plasma jet. Plasma Sources Science and Technology. 1998; 7: 282-285.
    
    [4]J. Park, I. Henins, H. W. Herrmann. An atmospheric pressure plasma source. Applied Physics Letters. 2000; 76: 288.
    [5]W. Rakowski. Plasma treatment of wool today Part 1. Fiber properties, spinning and shrinkproofing. Journal of the Society of Dyers and Colourists. 2008; 113 (9): 250-255.
    [6]M. Riekerink, J. Terlingen, H. Engbers, J. Feijen. Tailoring the properties of asymmetric cellulose acetate membranes by gas plasma etching. Journal of Colloid and Interface Science. 2002; 245 (2): 338-348.
    [1] A. Balbosh, M. Kern. Effect of surface treatment on retention of glass-fiber endodontic posts. Journal of Prosthetic Dentistry. 2006; 95 (3): 218-223.
    [2] C. Dong. Water based metal cleaner for cleaning each oily soil on surface of metal, CN Patent 1796606-A.
    [3] C. Fowler, D. McCracken. US Probes: Risk of Cross Infection and Ways to Reduce It—Comparison of Cleaning Methods. Radiology. 1999; 213 (1): 299-300.
    [4] J. Y. Jeong, S. E. Babayan, V. J. Tu. Etching materials with an atmospheric pressure plasma jet. Plasma Sources Science Technology. 1998; 7: 282-285.
    [5] J. Park, I. Henins, H. W. Herrmann. An atmospheric pressure plasma source. Applied Physics Letters. 2000; 76 (3): 288.
    [6] B.J. Carroll. The accurate measurement of contact angle, phase contact areas, drop volume, and Laplace excess pressure in drop-on-fiber systems. Journal of Colloid and Interface Science. 1976; 57: 488-492.
    [7] Q. Jiang, R. Li, J. Sun, C. Wang, S. Peng, F. Ji, L. Yao, Y. Qiu. Influence of ethanol pretreatment on effectiveness of atmospheric pressure plasma treatment of polyethylene fibers. Surface and Coatings Technology. 2009; 203 (12): 1604-1608.
    [8] M. Riekerink, J. Terlingen, H. Engbers, J. Feijen. Tailoring the properties of asymmetric cellulose acetate membranes by gas plasma etching. Langmuir. 2002; 245 (2): 338-348.
    [9] Z. Gao, S. Peng, J. Sun, L. Yao, Y. Qiu. Influence of processing parameters on atmospheric pressure plasma etching of polyamide 6 films. Applied Surface Science. 2009; 255 (17): 7683-7688.
    [10] R. Fu, I. Cheung, Y. Mei, C. Shek, G. Siu, P. Chu, W. Yang, Y. Leng, Y. Huang, X. Tian, S. Yang. Surface modification of polymeric materials by plasma immersion ion implantation. Nuclear Instruments and Methods in Physics Research Section B. 2005; 237 (1-2): 417-421.
    [11] L. Zhu, C. Wang, Y. Qiu. Influence of the amount of absorbed moisture in nylon fibers on atmospheric pressure plasma processing. Surface and Coatings Technology. 2007; 201 (16-17): 7453-7461.
    [12] T. Kondo, H. Ito, K. Kusakabe, K. Ohkawa, K. Honda, Y. Einaga, A. Fujishima, T. Kawai. Characterization and electrochemical properties of CF_4 plasma-treated boron-doped diamond surfaces. Diamond & Related Materials. 2008; 17 (1): 48-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700