疏水性聚丙烯酸酯人工晶状体的大气压下辉光放电表面改性及其生物相容性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分大气压下辉光放电接枝聚乙二醇修饰疏水性聚丙烯酸酯人工晶状体及其体外生物相容性的研究
     目的:
     利用先进的大气压下辉光发电(APGD)技术接枝亲水性单体对人工晶状体(IOL)表面改性,探讨能够提高IOL生物相容性的简单、经济、高效的方法,以利于进一步的工业化生产。
     方法:
     采用APGD表面改性技术接枝亲水性单体聚乙二醇(PEG)修饰疏水性聚丙烯酸酯IOL前表面。应用静态水接触角(WCA)、X-射线光电子能谱(XPS)分别分析IOL表面亲水性和表面化学元素组成;场发射扫描电子显微镜(FESEM)和原子力显微镜(AFM)观察表面形貌;以考察改性后IOL表面理化性能的改变;按照医疗器械相关质量检测国家标准对IOL进行光焦度、像质、光谱透过率及动态疲劳耐久性的测试,以检测经PEG接枝后IOL的光学和力学性能。同时通过体外细胞粘附实验,包括血小板、巨噬细胞以及人晶状体上皮细胞(LECs),观察IOL表面所粘附细胞的数量、形态,以初步评价改性后IOL的体外生物相容性。
     结果:
     静态水接触角检测显示经APGD处理后的IOL前表面亲水性明显增强,又以PEG接枝后IOL为著。通过接枝不同分子量的PEG,筛选出α-PEGMA 1,100具有最佳改性效果,能长期保持亲水性,并应用于后续研究。XPS分析进一步证实了经APGD处理后IOL表面的极性基团的引入以及PEG的成功接枝。FESEM观察改性后IOL表面未见任何损伤;AFM显示APGD单纯处理导致表面粗糙度(RMS)增加,而在接枝PEG后得到改善。光学、力学相关检测证实IOL光焦度、像质、光谱透过率及动态抗疲劳强度均符合国家相关标准。体外血小板粘附实验显示APGD处理后的IOL可减少血小板粘附(p<0.05),接枝PEG后的IOL则该抑制效果更加明显(p<0.01),且粘附的血小板均处于球形的未被激活状态;巨噬细胞和LECs粘附结果也显示出类似的表现,APGD处理及PEG表面接枝均可抑制上述两类细胞的粘附,其中PEG接枝组还表现出明显的抑制LECs增殖的作用(p<0.01)。
     结论:
     APGD技术能够成功在疏水性聚丙烯酸酯IOL前表面接枝亲水性单体PEG,能够大大增强IOL的表面亲水性,减少表面细胞粘附,增加IOL前表面生物相容性。APGD表面改性技术操作流程简单、经济环保,可连续性作业,为实现进一步的工业化生产推广奠定基础。
     第二部分疏水性聚丙烯酸酯人工晶状体经大气压下辉光放电接枝聚乙二醇修饰后的体内生物相容性研究
     目的:
     检测APGD前表面接枝PEG的疏水性聚丙烯酸酯IOL在动物眼内的生物相容性,即既能够改善与前表面相关的葡萄膜生物相容性,又能够保持疏水性聚丙烯酸酯IOL原有的良好囊膜相容性。
     方法:
     采用APGD表面改性方法在聚丙烯酸酯IOL前表面接枝PEG单体。静态接触角分析接枝后的IOL亲水性的稳定性。将36只比利时色素兔(36眼)分为三组,行标准超声乳化术后随机植入疏水性丙烯酸酯(Acrylic) IOL、PEG前表面接枝的IOL以及亲水性聚丙烯酸酯(Akreos) IOL,每一IOL组12只兔(12眼,右眼),术后常规用药。术后第1、3、7、14、30、60、90天,应用裂隙灯显微镜观察前房炎症反应、虹膜、瞳孔、IOL位置和囊膜等眼前节情况并按照相应评价标准进行评分,同时用后照法拍摄后囊膜照片经EPCO软件分析后囊膜混浊(PCO)情况。术后三月取材,Miyake-Apple后照法拍照进行PCO评分;取出IOL,行表面细胞Hematoxylin & Eosin staining (HE)染色细胞计数和扫描电子显微镜观察;眼球行石蜡包埋切片,HE染色、高碘酸-schiff (PAS)染色和三色法(Masson)染色后观察、晶状体囊膜、LECs细胞增殖情况及其与周围组织关系;免疫组织化学法观察collagenⅠ、collagenⅢ和α-SMA在囊膜及其周围的表达情况;透射电子显微镜超微结构分析晶状体囊膜中细胞与胞外基质的增殖状况。
     结果:
     接触角检测显示PEG接枝的IOL前表面为稳定的高度亲水性,而后表面保持疏水性不变。术后三个月观察期内,Acrylic IOL组的前房炎症反应较其他两组严重,有2眼发生虹膜后粘连和瞳孔夹持;Akreos IOL组有1眼发生瞳孔夹持、瞳孔变形;新型PEG接枝IOL组前房反应轻微。EPCO软件评分及Miyake-Apple后照法评价均显示Akreos IOL组的PCO评分显著高于PEG接枝IOL组和AcrylicIOL组,而后两者的PCO评分在统计学上无显著性差异。IOL表面细胞HE染色计数显示Acrylic IOL表面平均细胞级显著高于PEG修饰IOL和Akreos IOL。
     组织病理、免疫组织化学以及透射电子显微镜结果均显示Acrylic IOL及PEG接枝IOL的后囊膜细胞纤维化趋势明显,与IOL贴附紧密,抑制了LECs向IOL光学区中央部的增殖移行,而Akreos IOL支持LECs及胞外基质在后囊膜及IOL后表面之间的增殖形成各类型的PCO。
     结论:
     应用APGD技术前表面接枝PEG的疏水性丙烯酸酯IOL植入兔眼内后,能减轻术后早期前房闪辉等炎症反应,降低IOL表面与炎性细胞的相互作用,并保持了疏水性聚丙烯酸酯IOL原有的低PCO发生率,兼具良好的葡萄膜相容性和囊膜相容性。进一步证实APGD表面接枝技术的体内安全性以及接枝的稳定性和有效性。
PartⅠModification of hydrophobic acrylic intraocular lens with poly(ethylene glycol) by atmospheric pressure glow discharge
     Objective:
     To improve the anterior surface biocompatibility of hydrophobic acrylic intraocular lens (IOL) in an efficient and continuous way, increase the anterior surface hydrophilicity while keeping the posterior surface hydrophobic, without change in the optical and mechanical properties of the bulk.
     Methods:
     Poly(ethylene glycol)s (PEGs) were immobilized by atmospheric pressure glow discharge (APGD) treatment using argon as the discharge gas. The hydrophilicity and chemical changes on the IOL surface were characterized by static water contact angle and X-ray photoelectron spectroscopy to confirm the covalent binding of PEG. The physic and optic properties were determined by national standards. The morphology of the IOL surface was observed under field emission scanning electron microscopy and atomic force microscopy. The surface biocompatibility was evaluated by adhesion experiments with platelets, macrophages and lens epithelial cells (LECs) in vitro.
     Results:
     The results revealed that the anterior surface of the PEG-grafted IOL displayed significantly and permanently improved hydrophilicity. The physic and optic properties of modified acrylic IOLs meet the national standards (including optical power, image quality, spectral transmittance and dynamic fatigue durability). Cell repellency was observed, especially in the PEG-modified IOL group, which resisted the attachment of platelets, macrophages and LECs. Moreover, the spread and growth of cells were suppressed, and may be attributed to the steric stabilization force and chain mobility effect of the modified PEG.
     Conclusion:
     All of these results indicated that hydrophobic acrylic IOLs can be hydrophilic modified by PEG through APGD treatment in a convenient and continuous manner and will provide advantages for further industrial applications.
     Part II The biocompatibility of anterior surface PEG-modified acrylic IOLs prepared via APGD treatment in vivo
     Objective:
     To detect the biocompatibility of anterior surface PEG-grafted IOLs (via APGD treatment) in rabbit eyes, including complications related to anterior chamber inflammatory reaction and capsule opacification.
     Methods:
     Anterior surfaces of hydrophobic acrylic IOLs were grafted with PEG by APGD treatment. The hydrophilicity of IOL surface was characterized by contact angle test. Thirty-six rabbit eyes were operated on with phacoemulsification and randomly implantation of one from the three types of foldable IOLs:anterior surface PEG-grafted acrylic IOL (PEG-grafted IOL) (n=12), original acrylic IOL (Acrylic IOL) (n=12) and hydrophilic IOL (Akreos IOL) (n=12). Postoperative follow-up was done on the 1st,3rd, 7th,14th,30th,60th and 90th days after surgery. On each visit, all rabbits were observed by slitlamp examination to evaluate aqueous flare, aqueous cell, posterior synechia and IOL dislocation. Standardized digital retroilluminated slitlamp images of posterior capsule opacification (PCO) were taken and the evaluation of PCO was done by EPCO 2000 software. The rabbits were killed three months postoperatively, the Miyake-Apple posterior photographic technique was used to evaluate the PCO formation. The IOLs were extracted from the rabbits eyes, and the cells attached on IOLs surface were observed by inverted phase contrast microscopy with hematoxylin and eosin (HE) staining; the samples were also prepared and observed by SEM. Histological sections of rabbits globe were prepared and stained with HE staining, periodic acid-schiff (PAS) and Masson's trichrome staining to document proliferation of LECs and extracellular matrix (ECM) in capsular bag. Immunohistochemistry (IHC) for collagenⅠ, collagenⅢandα-SMA was also done to evaluate mesenchymal transition in LECs. Both the anterior and posterior capsules were processed for transmission electron microscopy (TEM) to observe the microstructure of lens capsule.
     Results:
     The water contact angle of PEG IOL showed a stable significantly improved hydrophilicity of anterior surface, with a hydrophobic original posterior surface. The follow up observation with slitlamp examination showed that the anterior chamber inflammation was severer in Acrylic IOL group than in other two groups, two eyes in Acrylic IOL group and one eye in Akreos IOL group presented posterior synechia and IOL dislocation, no obvious inflammation was found in eyes with PEG IOLs. On the 7th and 14th day postoperatively, the aqueous flare results were statistically higher in Acrylic IOL group than in other two groups (p<0.05), the aqueous cell results showed that no statistically difference among the three groups was observed in the measured time point (p>0.05). The EPCO analysis and Miyake-Apple evaluation revealed that the eyes of Akreos IOLs had higher incidence of PCO compared to those of PEG IOLs and Acrylic IOLs (p<0.05), but there were no statistically significant difference between PEG IOLs and Acrylic IOL groups (p>0.05). The inverted phase contrast microscope observation showed that there were more cells adhered on Acrylic IOLs than PEG IOLs and Akreos IOLs (p<0.05). Histopathological, IHC and TEM analyses demonstrated the remnant LECs had some growth, and Soemmering's ring was observed in all groups. However, LECs were stopped at the optic periphery of the Acrylic IOLs and PEG IOLs, which keeping hydrophobic posterior surface. The central posterior capsule area of IOLs were clear in above both groups. In contrast, in Akreos IOL group, the LECs and ECM were observed apparently grew into the central field of the optic, thus leading to the PCO in visual axis area.
     Conclusion:
     The PEG IOLs via APGD treatment had stable hydrophilic anterior surface and original hydrophobic posterior surface. The PEG IOLs have both excellent uveal biocompatibility, characterized by minimal postoperative anterior chamber inflammation, and good capsular biocompatibility, characterized by low incidence of PCO.
引文
[1]赵家良.我国防盲治盲工作的进展.中华眼科杂志2005;41(8):697-701.
    [2]赵家良.“视觉2020”行动与我国防盲治盲工作.中华眼科杂志2002;38(10):577-579.
    [3]Christ F.R, Fencil D.A, Vangent S, Knight P.M. Evaluate of the chemical, optical, and mechanical-properties of elastomeric intraocular-lens materials and their clinical-significance. Journal of Cataract & Refractive Surgery 1989; 15(2):176-184.
    [4]Tognetto D, Toto L, Sanguinetti G, Cecchini P, Vattovani O, Filacorda S, Ravalico G. Lens epithelial cell reaction after implantation of different intraocular lens materials:Two-year results of a randomized prospective trial. Ophthalmology 2003;110(10):1935-1941.
    [5]Kodjikian L, Burillon C, Roques C, Pellon G, Freney J, Renaud F.N.R. Bacterial adherence of staphylococcus epidermidis to intraocular lenses:A bioluminescence and scanning electron microscopy study. Investigative Ophthalmology & Visual Science 2003;44(10):4388-4394.
    [6]Arthur S.N, Peng Q, Escobar-Gomez M, Apple D.J. Silicone oil adherence to silicone intraocular lenses. International Ophthalmology Clinics 2001;41(3):33-45.
    [7]Dorey M.W, Brownstein S, Hill V.E, Mathew B, Botton G Kertes P.J, El-Defrawy S. Proposed pathogenesis for the delayed postoperative opacification of the hydroview hydrogel intraocular lens. American Journal of Ophthalmology 2003;135(5):591-598.
    [8]Taboada-Esteve J.F, Hurtado-Sarrio M, Duch-Samper A.M, Cisneros-Lanuza A, Menezo-Rozalen J.L. Hydrophilic acrylic intraocular lens clouding:A clinicopathological review. European Journal of Ophthalmology 2007;17(4):588-594.
    [9]Learning D.V. Practice styles and preferences of ASCRS members-2003 survey. Journal of Cataract & Refractive Surgery 2004;30(4):892-900.
    [10]Philipson B, Fagerholm P, Calel B, Grunge A. Herapin surface modified introcular lenses:3-month follow-up of a randomized, double-masked clinical-trial. Journal of Cataract & Refractive Surgery 1992; 18(1):71-78.
    [11]Philipson B, Fagerholm P, Calel B, Grunge A, Hallnas K, Lydahl E, Ohman L. Herapin surface modified intraocular lenses:a one-year follow-up of a safety study. Acta Ophthalmologica 1990;68(5):601-603.
    [12]Okajima Y, Saika S, Sawa M. Effect of surface coating an acrylic intraocular lens with poly(2-methacryloyloxyethyl phosphorylcholine) polymer on lens epithelial cell line behavior. Journal of Cataract & Refractive Surgery 2006;32(4):666-671.
    [13]Yuen C, Williams R, Batterbury M, Grierson I. Modification of the surface properties of a lens material to influence posterior capsular opacification. Clin Experiment Ophthalmol 2006;34(6):568-574.
    [14]Li D.J, Cui F.Z, Gu H.Q. F+ ion implantation induced cell attachment on intraocular lens. Biomaterials 1999;20(20):1889-1896.
    [15]Cooke C.A, McGimpsey S, Mahon G, Best R.M. An in vitro study of human lens epithelial cell adhesion to intraocular lenses with and without a fibronectin coating. Investigative Ophthalmology & Visual Science 2006;47(7):2985-2989.
    [16]Gabriel S, Dubruel P, Schacht E, Jonas A.M, Gilbert B, Jerome R, Jerome C. Electrografting of poly(ethylene glycol) acrylate:A one-step strategy for the synthesis of protein-repellent surfaces. Angewandte Chemie-International Edition 2005;44(34):5505-5509.
    [17]Yammine P, Pavon-Djavid G, Helary G, Migonney V. Surface modification of silicone intraocular implants to inhibit cell proliferation. Biomacromolecules 2005;6(5):2630-2637.
    [18]Bozukova D, Pagnoulle C, De Pauw-Gillet M.C, Desbief S, Lazzaroni R, Ruth N, Jerome R, Jerome C. Improved performances of intraocular lenses by poly(ethylene glycol) chemical coatings. Biomacromolecules 2007;8(8):2379-2387.
    [19]Yao K, Huang X.D, Huang X.J, Xu Z.K. Improvement of the surface biocompatibility of silicone intraocular lens by the plasma-induced tethering of phospholipid moieties. Journal of Biomedical Materials Research Part A 2006;78A(4):684-692.
    [20]Qu C. Experimental studies on surface modification of intraocular lens. Dissertation for the Doctoral Degree. Hangzhou:Zhejiang University; 2004.
    [21]Eloy R, Parrat D, Duc T.M, Legeay G, Bechetoille A. Invitro evaluation of inflammatory cell response after CF4 plasma surface modification of poly(methylmethacrylate) intraocular lenses. Journal of Cataract and Refractive Surgery 1993;19(3):364-370.
    [22]袁佳琴,孙徐郭,王顾,祁黄.氟-肝素表面修饰人工晶状体的实验研究.眼科新进展2003;23(03):153-156.
    [23]Matsushima H, Iwamoto H, Mukai K, Obara Y. Active oxygen processing for acrylic intraocular lenses to prevent posterior capsule opacification. Journal of Cataract & Refractive Surgery 2006;32(6):1035-1040.
    [24]Miyake K, Ota I, Miyake S, Maekubo K. Correlation between intraocular lens hydrophilicity and anterior capsule opacification and aqueous flare. Journal of Cataract & Refractive Surgery 1996;22:764-769.
    [25]Vargas L.G, Peng Q, Apple D.J, Escobar-Gomez M, Pandey S.K, Arthur S.N, Hoddinott D.S.M, Schmidbauer J.M. Evaluation of 3 modern single-piece foldable intraocular lenses-Clinicopathological study of posterior capsule opacification in a rabbit model. Journal of Cataract & Refractive Surgery 2002;28(7):1241-1250.
    [26]Nishi O, Nishi K, Wickstrom K. Preventing lens epithelial cell migration using intraocular lenses with sharp rectangular edges. Journal of Cataract & Refractive Surgery 2000;26(10):1543-1549.
    [27]曲超.人工晶状体表面改性的实验研究[博士学位论文].杭州:浙江大学;2004.
    [28]曲超.α-烯丙基葡糖苷对聚甲基丙烯酸甲酯人工晶状体的表面修饰.生物医学工程学杂志2004;21(1):56-58.
    [29]曲超.人工晶状体亲水化处理对巨噬细胞黏附和一氧化氮合成的影响.中华眼科杂志2004;40(5):45-47.
    [30]黄晓丹.前表面磷脂修饰的硅凝胶人工晶状体表面生物学特性研究.中华眼科杂志2007;43(2):58-62.
    [31]Huang X.D, Yao K, Zhang H, Huang X.J, Xu Z.K. Surface modification of silicone intraocular lens by 2-methacryloyloxyethyl phosphoryl-choline binding to reduce Staphylococcus epidermidis adherence. Clinical and Experimental Ophthalmology 2007; 35(5):462-467.
    [32]姚克,曲超.α-烯丙基葡糖苷表面修饰的人工晶状体及其制造方法.中华人民共和国发明专利.2003.
    [33]姚克,黄晓丹.表面磷脂修饰的软性人工晶状体及其制造方法.中华人民共和国发明专利.2005.
    [34]姚克,曲超.一种前表面亲水化处理的疏水性人工晶状体及其制造方法.中 华人民共和国发明专利.2003.
    [35]Sarra-Bournet C, Turgeon S, Mantovani D, Laroche G. Comparison of atmospheric-pressure plasma versus low-pressure RF plasma for surface functionalization of PTFE for biomedical applications. Plasma Processes and Polymers 2006;3(6-7):506-515.
    [36]Titov V.A, Rybkin V.V, Shikova T.G, Ageeva T.A, Golubchikov O.A, Choi H.S. Study on the application possibilities of an atmospheric pressure glow discharge with liquid electrolyte cathode for the modification of polymer materials. Surface & Coatings Technology 2005; 199(2-3):231-236.
    [37]王长全.大气压下介质阻挡放电等离子体对材料表面改性及其建模研究[博士学位论文].杭州:浙江大学;2006.
    [38]阮久福,孟月东,舒兴胜.等离子体表面改性与大气压辉光放电的产生.印染2006;10(09):62-65.
    [39]徐旭.大气压介质阻挡放电三种模式的电学特征.高电压技术2006;32(1):12-15.
    [40]王瑶.聚丙烯酸酯人工晶状体的表面改性及生物相容性研究[博士学位论文].杭州:浙江大学;2009.
    [41]黄永刚.低温等离子体技术在生物材料表面改性中的应用.材料导报2004;18(2):45-47.
    [42]Xu Z.K, Nie F.Q, Qu C, Wan L.S, Wu J, Yao K. Tethering poly(ethylene glycol)s to improve the surface biocompatibility of poly(acrylonitrile-co-maleic acid) asymmetric membranes. Biomaterials 2005;26(6):589-598.
    [43]Xu H.Y, Kaar J.L, Russell A.J, Wagner W.R. Characterizing the modification of surface proteins with poly(ethylene glycol) to interrupt platelet adhesion. Biomaterials 2006;27(16):3125-3135.
    [44]Bozukova D, Pagnoulle C, De Pauw-Gillet M.C, Desbief S, Lazzaroni R, Ruth N, Jerome R, Jerome C. Improved performances of intraocular lenses by poly(ethylene glycol) chemical coatings. Biomacromolecules 2007;8(8): 2379-2387.
    [45]Sakthi Kumar D, Fujioka M, Asano K, Shoji A, Jayakrishnan A, Yoshida Y. Surface modification of poly(ethylene terephthalate) by plasma polymerization of poly(ethylene glycol). Journal of Materials Science:Materials in Medicine 2007;18(9):1831-1835.
    [46]Satomi T, Nagasaki Y, Kobayashi H, Otsuka H, Kataoka K. Density control of poly(ethylene glycol) layer to regulate cellular attachment. Langmuir 4009 2007; 23(12):6698-6703.
    [47]Sugiura S, Edahiro J.I, Sumaru K, Kanamori T. Surface modification of polydimethylsiloxane with photo-grafted poly(ethylene glycol) for micropatterned protein adsorption and cell adhesion. Colloids and Surfaces B-Biointerfaces 2008;63(2):301-305.
    [48]Kim M.K, Park I.S, Park H.D, Wee W.R, Lee J.H, Park K.D, Kim S.H, Kim Y.H. Effect of poly(ethylene glycol) graft polymerization of poly(methyl methacrylate) on cell adhesion:In vitro and in vivo study. Journal of Cataract & Refractive Surgery 2001;27(5):766-774.
    [1]Mateo N.B, Ratner B.D. Relating the surface properties of intraocular lens materials to endothelial cell adhesion damage. Investigative Ophthalmology & Visual Science 1989;30(5):853-860.
    [2]Eloy R, Parrat D, Duc T.M, Legeay G, Bechetoille A. In vitro evaluation of inflammatory cell response after CF4 plasma surface modification of poly(methyl methacrylate) intraocular lenses. Journal of Cataract & Refractive Surgery 1993;19(3):364-370.
    [3]Mateo N.B, Ratner B.D. Relating the surface-properties of intraocular lens materials to endothelial cell adhesion damage. Investigative Ophthalmology & Visual Science 1989;30(5):853-860.
    [4]Lee H.I, Kim M.K, Ko J.H, Lee H.J, Wee W.R, Lee J.H. The efficacy of an acrylic intraocular lens surface modified with polyethylene glycol in posterior capsular opacification. Journal of Korean Medical Science 2007;22(3):502-507.
    [5]Yao K, Huang X.D, Huang X.J, Xu Z.K. Improvement of the surface biocompatibility of silicone intraocular lens by the plasma-induced tethering of phospholipid moieties. Journal of Biomedical Materials Research Part A 2006; 78A(4):684-692.
    [6]曲超.人工晶状体表面改性的实验研究[博士学位论文].杭州:浙江大学;2004.
    [7]Borgioli D.M, Coster D.J, Fan R.F.T, Henderson J, Jacobi K.W, Kirkby G.R, Lai Y.K, Menezo J.L, Montard M, Strobel J, Wollensak J. Effect of heparin surface modification of polymethylmethacrylate intraocular lenses on signs of postoperative inflammation after extracapsular cataract extraction-one year results of a double-masked multicenter study. Ophthalmology 1992;99(8):1248- 1255.
    [8]Kim M.K, Park I.S, Park H.D, Wee W.R, Lee J.H, Park K.D, Kim S.H, Kim Y.H. Effect of poly(ethylene glycol) graft polymerization of poly(methyl methacrylate) on cell adhesion:In vitro and in vivo study. Journal of Cataract & Refractive Surgery 2001;27(5):766-774.
    [9]Werner L. Biocompatibility of intraocular lens materials. Current Opinion in Ophthalmology 2008;19(1):41-49.
    [10]Thouvenin D, Arne J.L, Lesueur L. Comparison of fluorine-surface-modified and unmodified lenses for implantation in pediatric aphakia. Journal of Cataract & Refractive Surgery 1996;22(9):1226-1231.
    [11]Yuen C, Williams R, Batterbury M, Grierson I. Modification of the surface properties of a lens material to influence posterior capsular opacification. Clinical and Experimental Ophthalmology 2006;34(6):568-574.
    [12]Matsushima H, Iwamoto H, Mukai K, Obara Y. Active oxygen processing for acrylic intraocular lenses to prevent posterior capsule opacification. Journal of Cataract & Refractive Surgery 2006;32(6):1035-1040.
    [13]Liu C.Z, Brown N.M.D, Meenan B.J. Dielectric barrier discharge (DBD) processing of PMMA surface:Optimization of operational parameters. Surface & Coatings Technology 2006;201(6):2341-2350.
    [14]Fang Z, Qiu Y, Luo Y. Surface modification of polytetrafluoroethylene film using the atmospheric pressure glow discharge in air. Journal of Physics D-Applied Physics 2003;36(23):2980-2985.
    [15]Wang Y, Liu Z, Xu Z, Yao K. Surface modification of acrylate intraocular lenses with dielectric barrier discharge plasma at atmospheric pressure. Science in China Series B:Chemistry 2009;52(8):1235-1243.
    [16]Bozukova D, Pagnoulle C, De Pauw-Gillet M.C, Ruth N, Jerome R, Jerome C. Imparting antifouling properties of poly(2-hydroxyethyl methacrylate) hydrogels by grafting poly(oligoethylene glycol methyl ether acrylate). Langmuir 2008; 24(13):6649-6658.
    [17]Rupp F, Scheideler L, Rehbein D, Axmann D, Gels-Gerstorfer J. Roughness induced dynamic changes of wettability of acid etched titanium implant modifications. Biomaterials 2004;25(7-8):1429-1438.
    [18]Xu Z.K, Nie F.Q, Qu C, Wan L-S, Wu J, Yao K. Tethering poly(ethylene glycol)s to improve the surface biocompatibility of poly(acrylonitrile-co-maleic acid) asymmetric membranes. Biomaterials 2005;26(6):589-598.
    [19]Nie F.Q, Xu Z.K, Ye P, Wu J, Seta P. Acrylonitrile-based copolymer membranes containing reactive groups:effects of surface-immobilized poly(ethylene glycol)s on anti-fouling properties and blood compatibility. Polymer 2004;45(2):399-407.
    [20]任煜,邱夷平.低温等离子体对高聚物材料表面改性处理时效性的研究进展.材料导报2007;12(1):45-46.
    [21]Radmacher M, Tillmann R.W, Fritz M, Gaub H.E. From molecules to cells-Imaging soft samples with the atomic force microscope. Science 1992; 257(5078): 1900-1905.
    [22]Alcantar N.A, Aydil ES, Israelachvili J.N. Polyethylene glycol-coated biocompatible surfaces. Journal of Biomedical Materials Research 2000;51(3): 343-351.
    [23]Sakthi Kumar D, Fujioka M, Asano K, Shoji A, Jayakrishnan A, Yoshida Y. Surface modification of poly(ethylene terephthalate) by plasma polymerization of poly(ethylene glycol). Journal of Materials Science:Materials in Medicine 2007;18(9):1831-1835.
    [24]Tze-Man K, Jui-Che L, Cooper S.L. Surface characterization and platelet adhesion studies of plasma-sulphonated polyethylene. Biomaterials 1993;14(9): 657-664.
    [25]Hollick E.J, Spalton D.J, Ursell P.G, Pande M.V. Biocompatibility of poly(methyl methacrylate), silicone, and AcrySof intraocular lenses:Randomized comparison of the cellular reaction on the anterior lens surface. Journal of Cataract & Refractive Surgery 1998;24(3):361-366.
    [26]Richter-Mueksch S, Kahraman G, Amon M, Schild-Burggasser G, Schauersberger J, Abela-Formanek C. Uveal and capsular biocompatibility after implantation of sharp-edged hydrophilic acrylic, hydrophobic acrylic, and silicone intraocular lenses in eyes with pseudoexfoliation syndrome. Journal of Cataract & Refractive Surgery 2007;33(8):1414-1418.
    [27]Thein-Han W.W, Shah J, Misra R.D.K. Superior in vitro biological response and mechanical properties of an implantable nanostructured biomaterial:Nanohydroxyapatite-silicone rubber composite. Acta Biomaterialia 2009;5(7):2668-2679.
    [28]Versura P, Torreggiani A, Cellini M, Caramazza R. Adhesion mechanisms of human lens epithelial cells on 4 intraocular lens materials. Journal of Cataract & Refractive Surgery 1999;25(4):527-533.
    [29]Saika S, Miyamoto T, Ohnishi Y. Histology of anterior capsule opacification with a polyHEMA/HOHEXMA hydrophilic hydrogel intraocular lens compared to poly(methyl methacrylate), silicone, and acrylic lenses. Journal of Cataract & Refractive Surgery 2003;29(6):1198-1203.
    [30]Yuen C, Williams R, Batterbury M, Grierson I. Modification of the surface properties of a lens material to influence posterior capsular opacification. Clin Experiment Ophthalmol 2006;34(6):568-574.
    [31]Bozukova D, Pagnoulle C, De Pauw-Gillet M.C, Desbief S, Lazzaroni R, Ruth N, Jerome R, Jerome C. Improved performances of intraocular lenses by poly (ethylene glycol) chemical coatings. Biomacromolecules 2007;8(8):2379-2387.
    [32]Jung I.K, Bae J.W, Choi W.S, Choi J.H, Park K.D. Surface Graft Polymerization of Poly(ethylene glycol) Methacrylate onto Polyurethane via Thiol-Ene reaction: preparation and characterizations. Journal of Biomaterials Science-Polymer Edition 2009;20(10):1473-1482.
    [33]Michel R, Pasche S, Textor M, Castner D.G. Influence of PEG architecture on protein adsorption and conformation. Langmuir 2005;21(26):12327-12332.
    [34]Zanini S, Muller M, Riccardi C, Orlandi M. Polyethylene glycol grafting on polypropylene membranes for anti-fouling properties. Plasma Chemistry and Plasma Processing 2007;27(4):446-457.
    [35]康国栋,王同华,曹义鸣,袁权.聚乙二醇接枝方法及其在膜表面化学改性中的应用.膜科学与技术2006;22(06):81-87.
    [1]Abela-Formanek C, Amon M, Schild G, Schauersberger J, Heinze G, Kruger A. Uveal and capsular biocompatibility of hydrophilic acrylic, hydrophobic acrylic, and silicone intraocular lenses. Journal of Cataract & Refractive Surgery 2002 Jan;28(1):50-61.
    [2]王桂琴.何炳林.硅凝胶软性人工晶状体表面特性及其生物相容性.离子交换与吸附2000;16(05):472-478.
    [3]何守志.晶状体病学.北京:人民卫生出版社,2004.
    [4]Gabriel M. M, Ahearn D. G, Chan K. Y, Patel A. S. In vitro adherence of Pseudomonas aeruginosa to four intraocular lenses. Journal of Cataract & Refractive Surgery 1998 Jan;24(1):124-129.
    [5]Werner L. Biocompatibility of intraocular lens materials. Current Opinion in Ophthalmology 2008;19(1):41-49.
    [6]Amon M. Biocompatibility of intraocular lenses. Journal of Cataract & Refractive Surgery 2001;27(2):178-179.
    [7]Mc Culley J. P. Biocompatibility of intraocular lenses. Eye Contact Lens 2003 2003;29(3):155-163.
    [8]Findl O, Buehl W, Bauer P, Sycha T. Interventions for preventing posterior capsule opacification. Cochrane Database Syst Rev 2007(3):CD003738.
    [9]Mullner-Eidenbock A, Amon M, Schauersberger J, Kruger A, Abela C, Petternel V, Zidek T. Cellular reaction on the anterior surface of 4 types of intraocular lenses. Journal of Cataract & Refractive Surgery 2001;27(5):734-740.
    [10]Borcia G, Anderson C. A, Brown N. M. D. The surface oxidation of selected polymers using an atmospheric pressure air dielectric barrier discharge. Part Ⅰ. Applied Surface Science 2004;221(1-4):203-214.
    [11]王长全.大气压介质阻挡放电等离子体对材料表面改性及其建模研究[博士
    学位论文].杭州:浙江大学;2006.
    [12]黄晓丹.硅凝胶人工晶状体的表面改性及生物相容性研究[博士学位论文].杭州:浙江大学;2008.
    [13]Pereira F. A. S, Werner L, Milverton J, Coroneo M. T. Miyake-Apple posterior video analysis/photographic technique. Journal of Cataract & Refractive Surgery 2009;35(3):577-587.
    [14]Vargas L. G, Izak A. M, Apple D. J, Werner L, Pandey S. K, Trivedi R. H. Implantation of a single-piece, hydrophilic, acrylic, minus-power foldable posterior chamber intraocular lens in a rabbit model-Clinicopathologic study of posterior capsule opacification. Journal of Cataract & Refractive Surgery 2003;29(8):1613-1620.
    [15]Shah S. M, Spalton D. J, Taylor J. C. Correlations between laser flare measurements and anterior chamberprotein concentrations. Investigative Ophthalmology & Visual Science 1992;33(10):2878-2884.
    [16]杨培增.临床葡萄膜炎.北京:人民卫生出版社,2007.
    [17]Richter-Mueksch S, Kahraman G, Amon M, Schild-Burggasser G, Schauersberger J, Abela-Formanek C. Uveal and capsular biocompatibility after implantation of sharp-edged hydrophilic acrylic, hydrophobic acrylic, and silicone intraocular lenses in eyes with pseudoexfoliation syndrome. Journal of Cataract & Refractive Surgery 2007;33(8):1414-1418.
    [18]王桂琴,彭秀军,顾汉卿.表面修饰硅凝胶人工晶状体植入兔眼的生物相容性.国际眼科杂志2006;6(01):54-56.
    [19]Mester U, Fabian E, Gerl R, Hunold W, Hutz W, J. Strobel, H. Hoyer, T. Kohnen. Posterior capsule opacification after implantation of CeeOn Edge 911A, PhacoFlex SI-40NB, and AcrySof MA60BM lenses-One-year results of an intraindividual comparison multicenter study. Journal of Cataract & Refractive Surgery 2004;30(5):978-985.
    [20]Vargas L. G, Peng Q, Apple D. J, Escobar-Gomez M, Pandey S. K, Arthur S. N, Hoddinott D. S. M, Schmidbauer J. M. Evaluation of 3 modern single-piece foldable intraocular lenses-Clinicopathological study of posterior capsule opacification in a rabbit model. Journal of Cataract & Refractive Surgery 2002;28(7):1241-1250.
    [21]Nishi O, Nishi K, Wickstrom K. Preventing lens epithelial cell migration using intraocular lenses with sharp rectangular edges. Journal of Cataract & Refractive Surgery 2000;26(10):1543-1549.
    [22]Abela-Formanek C, Amon M, Schauersberger J, Kruger A, Nepp J, Schild G. Results of hydrophilic acrylic, hydrophobic acrylic, and silicone intraocular lenses in uveitic eyes with cataract:comparison to a control group. Journal of Cataract & Refractive Surgery 2002;28(7):1141-1152.
    [23]Yan Q, Perdue N, Sage E. H. Differential responses of human lens epithelial cells to intraocular lenses in vitro:hydrophobic acrylic versus PMMA or silicone discs. Graefes Archive for Clinical & Experimental Ophthalmology 2005; 243(12): 1253-1262.
    [24]Saika S. Relationship between posterior capsule opacification and intraocular lens biocompatibility. Progress in Retinal and Eye Research 2004 May;23(3):283-305.
    [25]Yuan Z. X. Physical and cytological characters of carbon, titanium surface modified intraocular lens in rabbit eyes. Graefes Archive for Clinical and Experimental Ophthalmology 2003;241(10):840-844.
    [26]Mamalis N. Intraocular lens biocompatibility. Journal of Cataract & Refractive Surgery 2002 Jan;28(1):1-2.
    [27]Darby I, Skalli O, Gabbiani. G. Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Laboratory Investigation 1990;63(1):21-29.
    [28]Grinnell F. Fibroblasts, myofibroblasts, and wound contraction. Journal of Cell Biology 1994;124(4):401-404.
    [29]Saika S, Kawashima Y, Miyamoto T, Okada Y, Tanaka S. I, Ohmi S, Minamide A, Yamanaka S, Ohnishi Y, Ooshima A, Yamanaka A. Immunolocalization of prolyl 4-hydroxylase subunits, alpha-smooth muscle actin, and extracellular matrix components in human lens capsules with lens implants. Experimental Eye Research 1998;66(3):283-294.
    [30]Tanaka S, Saika S, Ohmi S, Miyamoto T, Ishida I, Okada Y, Yamanaka O, Ohnishi Y, Ooshima A. Cellular fibronectin, but not collagens, disappears in the central posterior capsules during healing after lens extraction and IOL implantation in rabbits. Japanese Journal of Ophthalmology 2002;46(2):147-152.
    [31]Linnola R. J, Werner L, Pandey S. K, Escobar-Gomez M, Znoiko S. L, Apple D. J. Adhesion of fibronectin, vitronectin, laminin, and collagen type Ⅳ to intraocular lens materials in pseudophakic human autopsy eyes:Part 2:explanted intraocular lenses. Journal of Cataract & Refractive Surgery 2000;26(12):1807-1818.
    [32]Linnola R. J, Werner L, Pandey S. K, Escobar-Gomez M, Znoiko S. L, Apple D. J. Adhesion of fibronectin, vitronectin, laminin, and collagen type Ⅳ to intraocular lens materials in pseudophakic human autopsy eyes-Part 1:Histological sections. Journal of Cataract & Refractive Surgery 2000;26(12):1792-1806.
    [33]Saika S, Miyamoto T, Ohnishi Y. Histology of anterior capsule opacification with a polyHEMA/HOHEXMA hydrophilic hydrogel intraocular lens compared to poly(methyl methacrylate), silicone, and acrylic lenses. Journal of Cataract & Refractive Surgery 2003;29(6):1198-1203.
    [1]Kohnen T. How far we have come:from Ridley's first intraocular lens to modern IOL technology. Journal of Cataract & Refractive Surgery 2009;35(12):2039.
    [2]Father of the intraocular lens. Harold Ridley, M.D. Journal of Cataract & Refractive Surgery 1997;23(1):4-5.
    [3]Apple D.J, Sims J. Harold Ridley and the invention of the intraocular lens. Survey of Ophthalmology 1996;40(4):279-292.
    [4]Werner L. Biocompatibility of intraocular lens materials. Current Opinion in Ophthalmology 2008;19(1):41-49.
    [5]Lee J.S, Li C.Y, Lin Y.C, Chang S.Y, Lin K.K. Ripple-like intraocular lens damage from a neodymium:YAG laser. Journal of Cataract & Refractive Surgery 2003;29(3):621-623.
    [6]Werner L, Apple D.J, Kaskaloglu M, Pandey S.K. Dense opacification of the optical component of a hydrophilic acrylic intraocular lens-A clinicopathological analysis of 9 explanted lenses.2000 Jun; Nurnberg, Germany. Elsevier Science Inc. p 1485-1492.
    [7]Werner L, Pandey S.K, Apple D.J, Escobar-Gomez M, McLendon L, Macky T.A. Anterior capsule opacification-Correlation of pathologic findings with clinical sequelae. Ophthalmology 2001;108(9):1675-1681.
    [8]Tognetto D, Toto L, Sanguinetti G, Cecchini P, Vattovani O, Filacorda S, Ravalico G. Lens epithelial cell reaction after implantation of different intraocular lens materials-Two-year results of a randomized prospective trial. Ophthalmology 2003;110(10):1935-1941.
    [9]Kodjikian L, Burillon C, Roques C, Pellon G, Freney J, Renaud F.N.R. Bacterial adherence of Staphylococcus epidermidis to intraocular lenses:A bioluminescence and scanning electron microscopy study. Investigative Ophthalmology & Visual Science 2003;44(10):4388-4394.
    [10]Arthur S.N, Peng Q, Escobar-Gomez M, Apple D.J. Silicone oil adherence to silicone intraocular lenses. International Ophthalmology Clinics 2001;41(3):33-45.
    [11]Farbowitz M.A, Zabriskie N.A, Crandall A.S, Olson R.J, Miller K.M. Visual complaints associated with the AcrySof acrylic intraocular lens. Journal of Cataract & Refractive Surgery 2000;26(9):1339-1345.
    [12]Learning D.V. Practice styles and preferences of ASCRS members-2003 survey. Journal of Cataract & Refractive Surgery 2004;30(4):892-900.
    [13]Werner L, Apple D.J, Escobar-Gomez M, Ohrstrom A, Crayford B.B, Bianchi R, Pandey S.K. Postoperative deposition of calcium on the surfaces of a hydrogel intraocular lens. Ophthalmology 2000;107(12):2179-2185.
    [14]Werner L, Pandey SK, Escobar-Gomez M, Visessook N, Peng Q, Apple DJ. Anterior capsule opacification-A histopathological study comparing different IOL styles.1999 Oct; Orlando, Florida. Elsevier Science Inc. p 463-471.
    [15]Dorey M.W, Brownstein S, Hill V.E, Mathew B, Botton G, Kertes P.J, El-Defrawy S. Proposed pathogenesis for the delayed postoperative opacification of the hydroview hydrogel intraocular lens. American Journal of Ophthalmology 2003;135(5):591-598.
    [16]Taboada-Esteve J.F, Hurtado-Sarrio M, Duch-Samper A.M, Cisneros-Lanuza A, Menezo-Rozalen J.L. Hydrophilic acrylic intraocular lens clouding:A clinicopathological review. European Journal of Ophthalmology 2007;17(4):588-594.
    [17]Hollick E.J, Spalton D.J, Ursell P.G. Surface cytologic features on intraocular lenses:can increased biocompatibility have disadvantages? Arch Ophthalmol 1999;117(7):872-878.
    [18]Schauersberger J, Amon M, Kruger A, Abela C, Schild G, Kolodjaschna J. Lens epithelial cell outgrowth on 3 types of intraocular lenses. Journal of Cataract & Refractive Surgery 2001;27(6):850-854.
    [19]Schauersberger J, Amon M, Kruger A, Abela C, Schild G, Kolodjaschna J. Comparison of the biocompatibility of 2 foldable intraocular lenses with sharp optic edges. Journal of Cataract & Refractive Surgery 2001;27(10):1579-1585.
    [20]Koch M.U, Kalicharan D, van der Want J.J.L. Lens epithelial cell layer formation related to hydrogel foldable intraocular lenses. Journal of Cataract & Refractive Surgery 1999;25(12):1637-1640.
    [21]Saika S, Miyamoto T, Ishida I, Ohnishi Y, Ooshima A. Osteopontin:A component of matrix in capsular opacification and subcapsular cataract. Investigative Ophthalmology & Visual Science 2003;44(4):1622-1628.
    [22]Saika S, Miyamoto T, Ohnishi Y. Histology of anterior capsule opacification with a polyHEMA/HOHEXMA hydrophilic hydrogel intraocular lens compared to poly(methyl methacrylate), silicone, and acrylic lenses. Journal of Cataract & Refractive Surgery 2003;29(6):1198-1203.
    [23]Saika S, Miyamoto T, Tanaka S, Tanaka T, Ishida I, Ohnishi Y, Ooshima A, Ishiwata T, Asano G, Chikama T, Shiraishi A, Liu CY, Kao C.W.C, Kao W.W.Y. Response of lens epithelial cells to injury:Role of lumican in epithelial-mesenchymal transition. Investigative Ophthalmology & Visual Science 2003; 44(5):2094-2102.
    [24]Ursell P.G, Spalton D.J, Pande M.V, Hollick E.J, Barman S, Boyce J, Tilling K. Relationship between intraocular lens biomaterials and posterior capsule opacification. Journal of Cataract & Refractive Surgery 1998;24(3):352-360.
    [25]Lundgren B, Holst A, Tarnholm A, Rolfsen W. Cellular reaction following cataract-surgery with implantation of the heparin-surface-modified intraocular-lens in rabbits with experimental uveitis. Journal of Cataract & Refractive Surgery 1992;18(6):602-606.
    [26]Shah S.M, Spalton D.J. Comparison of the postoperative inflammatory response
    in the normal eye with herapin-surface-modified and poly (methyl methacrylate) intraocular lenses. Journal of Cataract & Refractive Surgery 1995;21(5):579-585.
    [27]程金伟.肝素化人工晶状体预防后囊膜混浊的Meta分析.眼科研究2008;26(6):23-25.
    [28]Winther-Nielsen A, Johansen J, Pedersen G.K, Corydon L. Posterior capsule opacification and neodymium:YAG capsulotomy with heparin-surface-modified intraocular lenses. Journal of Cataract & Refractive Surgery 1998;24(7):940-944.
    [29]Kienast A, Kammerer R, Weiss C, Klinger M, Menz D.H, Dresp J, Ohgke H, Solbach W, Laqua H, Hoerauf H. Influence of a new surface modification of intraocular lenses with fluoroalkylsilan on the adherence of endophthalmitis-causing bacteria in vitro. Graefes Archive for Clinical & Experimental Ophthalmology 2006;244(9):1171-1177.
    [30]Data H.M, Demoto J, Hule. H; Method for the passivation of an intraocular lens. US Patent.2004.
    [31]袁佳琴 孙徐 郭王顾 祁黄.氟-肝素表面修饰人工晶状体的实验研究.眼科新进展2003;6(03):65-67.
    [32]Linnola R.J, Holst A. Evaluation of a 3-piece silicone intraocular lens with poly(methyl methacrylate) haptics. Journal of Cataract & Refractive Surgery 1998;24(11):1509-1514.
    [33]Matsushima H, Iwamoto H, Mukai K, Katsuki Y, Nagata M, Senoo T. Preventing secondary cataract and anterior capsule contraction by modification of intraocular lenses. Expert Review of Medical Devices 2008;5(2):197-207.
    [34]程冰.后房型人工晶状体材料的生物相容性.中华眼科杂志2006;4(04):369-372.
    [35]Tanaka T, Shigeta M, Yamakawa N, Usui M. Cell adhesion to acrylic intraocular lens associated with lens surface properties. Journal of Cataract & Refractive Surgery 2005;31(8):1648-1651.
    [36]Yuen C, Williams R, Batterbury M, Grierson I. Modification of the surface properties of a lens material to influence posterior capsular opacification. Clin Experiment Ophthalmol 2006;34(6):568-574.
    [37]Shigeta M, Tanaka T, Koike N, Yamakawa N, Usui M. Suppression of fibroblast and bacterial adhesion by MPC coating on acrylic intraocular lenses. Journal of Cataract & Refractive Surgery 2006;32(5):859-866.
    [38]Matsushima H, Iwamoto H, Mukai K, Obara Y. Active oxygen processing for acrylic intraocular lenses to prevent posterior capsule opacification. Journal of Cataract & Refractive Surgery 2006;32(6):1035-1040.
    [39]Schroeder A.C, Schmidbauer J.M, Sobke A, Seitz B, Ruprecht K.W, Herrmann M. Influence of fibronectin on the adherence of Staphylococcus epidermidis to coated and uncoated intralocular lenses. Journal of Cataract & Refractive Surgery 2008;34(3):497-504.
    [40]Liu H.L, Wu L, Fu S.Y, Hou Y.S, Liu P, Cui H, Liu J.J, Xing L, Zhang X.M. Polylactide-glycoli acid and rapamycin coating intraocular lens prevent posterior capsular opacification in rabbit eyes. Graefes Archive for Clinical and Experimental Ophthalmology 2009;247(6):801-807.
    [41]Matsushima H, Mukai K, Gotoo N, Yoshida S, Yoshida T, Sawano M, Senoo T, Obara Y, Clark JI. The effects of drug delivery via hydrophilic acrylic (hydrogel) intraocular lens systems on the epithelial cells in culture. Ophthalmic Surgery Lasers & Imaging 2005;36(5):386-392.
    [42]Nishi O, Nishi K, Morita T, Tada Y, Shirasawa E, Sakanishi K. Effect of intraocular sustained release of indomethacin on postoperative inflammation and posterior capsule opacification. Journal of Cataract & Refractive Surgery 1996;22:806-810.
    [43]Tetz M.R, Ries M.W, Lucas C, Stricker H, Volcker H.E. Inhibition of posterior capsule opacification by an intraocular-lens-bound sustained drug delivery system:An experimental animal study and literature review. Journal of Cataract & Refractive Surgery 1996;22(8):1070-1078.
    [44]刘园园.纳米氟尿嘧啶涂层人工晶状体的制备及抑制后囊膜混浊的实验研究[硕士学位论文].上海:第二军医大学;2009.
    [45]Oshika T, Nagata T, Ishii Y. Adhesion of lens capsule to intraocular lenses of polymethylmethacrylate, silicone, and acrylic foldable materials:an experimental study. British Journal of Ophthalmology 1998;82(5):549-553.
    [46]Watanabe Y, Ueda T, Yamauchi Y, Yoshimura M, Tamai Y, Izumi S, Moriwaki Y, Yamada M, Inatomi M, Koide R. [Change in intraocular pressure after intraocular lens implant during a follow-up period of over 10 years]. Nippon Ganka Gakkai Zasshi 1998;102(1):54-58.
    [47]Boyce J.F, Bhermi G..S, Spalton D.J, El-Osta A.R. Mathematical modeling of the forces between an intraocular lens and the capsule. Journal of Cataract & Refractive Surgery 2002;28(10):1853-1859.
    [48]Meacock W.R, Spalton D.J, Boyce J.F, Jose R.M. Effect of optic size on posterior capsule opacification:5.5 mm versus 6.0 mm AcrySof intraocular lenses. Journal of Cataract & Refractive Surgery 2001;27(8):1194-1198.
    [49]Nishi O, Nishi K. Effect of the optic size of a single-piece acrylic intraocular lens on posterior capsule opacification. Journal of Cataract & Refractive Surgery 2003;29(2):348-353.
    [50]Auffarth G.U, Golescu A, Becker K.A, Volcker H.E. Quantification of posterior capsule opacification with round and sharp edge intraocular lenses. Ophthalmology 2003; 110(4):772-780.
    [51]Findl O, Menapace R, Sacu S, Buehl W, Rainer G. Effect of optic material on posterior capsule opacification in intraocular lenses with sharp-edge optics Randomized clinical trial. Ophthalmology 2005;112(1):67-72.
    [52]Findl O, Buehl W, Menapace R, Sacu S, Georgopoulos M, Rainer G. Long-term effect of sharp optic edges of a polymethyl methacrylate intraocular lens on posterior capsule opacification:A randomized trial. Ophthalmology 2005;112(11):2004-2008.
    [53]Werner L, Mamalis N, Pandey S.K, Izak A.M, Nilson C.D, Davis B.L, Weight C, Apple D.J. Posterior capsule opacification in rabbit eyes implanted with hydrophilic acrylic intraocular lenses with enhanced square edge. Journal of Cataract & Refractive Surgery 2004;30(11):2403-2409.
    [54]Vock L, Crnej A, Findl O, Neumayer T, Buehl W, Sacu S, Rainer G, Menapace R. Posterior Capsule Opacification in Silicone and Hydrophobic Acrylic Intraocular Lenses with Sharp-edge Optics Six Years After Surgery. Am J Ophthalmol 2009.
    [55]Werner L, Mamalis N, Izak A.M, Pandey S.K, Davis B.L, Nilson C.D, Weight C. Posterior capsule opacification in rabbit eyes implanted with 1-piece and 3-piece hydrophobic acrylic intraocular lenses. Journal of Cataract & Refractive Surgery 2005;31(4):805-811.
    [56]Vyas A.V, Narendran R, Bacon P.J, Apple D.J. Three-hundred-sixty degree barrier effect of a square-edged and an enhanced-edge intraocular lens on centripetal lens epithelial cell migration-Two-year results. Journal of Cataract & Refractive Surgery 2007;33(1):81-87.
    [57]Nagamoto T, Fujiwara T. Inhibition of lens epithelial cell migration at the intraocular lens optic edge-Role of capsule bending and contact pressure. Journal of Cataract & Refractive Surgery 2003;29(8):1605-1612.
    [58]Nishi O, Nishi K, Akura J. Speed of capsular bend formation at the optic edge of acrylic, silicone, and poly(methyl methacrylate) lenses. Journal of Cataract and Refractive Surgery 2002;28(3):431-437.
    [59]Cheng J.W, Wei R.L, Cai J.P, Xi G.L, Zhu H, Li Y, Ma X.Y. Efficacy of different intraocular lens materials and optic edge designs in preventing posterior capsular opacification:A meta-analysis. American Journal of Ophthalmology 2007; 143(3): 428-436.
    [60]Tassignon M, De Groot V, Vrensen G. Bag-in-the-lens implantation of intraocular lenses. Journal of Cataract & Refractive Surgery 2002;28(7):1182-1188.
    [61]De Groot V, Leysen I, Neuhann T, Gobin L, Tassignon M.J. One-year follow-up of bag-in-the-lens intraocular lens implantation in 60 eyes. Journal of Cataract & Refractive Surgery 2006;32(10):1632-1637.
    [62]Meacock W.R, Spalton D.J. Effect of intraocular lens haptic compressibility on the posterior lens capsule after cataract surgery. Journal of Cataract & Refractive Surgery 2001;27(9):1366-1371.
    [63]Apple D.J, Peng Q, Visessook N, Werner L, Pandey S.K, Escobar-Gomez M, Ram J, Auffarth G.G.U. Eradication of posterior capsule opacification Documentation. of a marked decrease in Nd:YAG laser posterior capsulotomy rates noted in an analysis of 5416 pseudophakic human eyes obtained postmortem. Ophthalmology 2001;108(3):505-518.
    [64]Wesendahl T.A, Hunold W, Auffarth G.U, Apple D.J. Area of contact of the artificial lens and posterior capsule. Systematic study of various haptic parameters. Ophthalmologe 1994;91(5):680-684.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700