大肠癌发生发展及转移相关分子的筛选和生物学功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题旨在通过差异蛋白质组学的方法,寻找与大肠癌发生发展及转移相关的蛋白质分子,研究这些蛋白质与大肠癌发生发展的关系。近期的研究表明,肿瘤的进展和淋巴结转移程度都是决定患者预后的重要因素。寻找与大肠癌发生发展及转移相关的分子,对于揭示大肠癌发生发展的分子机理,以及预测患者的预后都具有非常重要的意义。
     本课题收集了15例临床组织标本,通过双向电泳技术对组织总蛋白进行分离分析,并对差异表达蛋白点进行MALDI-TOF-MS分析,得到了33个相关分子。其中FHC的表达水平随肿瘤转移的发生进展而下降,而UCHL1的表达水平则随转移的发生进展而上升。随后,我们通过Western blot和免疫组化的方法对这一结果进行了研究。
     免疫组化的实验结果显示,UCHL1高表达与肿瘤T分期及淋巴结转移具有显著相关性。UCHL1是泛素水解酶家族的重要成员,它参与调控细胞内很多重要代谢活动。我们的研究发现,UCHL1高表达能够促进HCT8细胞在体外的增殖和迁移能力。而其突变体C90S则失去了这种能力,这实验结果说明,UCHL1的泛素水解酶功能对于其促进生长、转移的功能是必不可少的。我们的研究还发现,UCHL1可能是通过激活β-catenin/TCF4通路来发挥其功能的。免疫荧光实验的结果显示,在UCHL1高表达的细胞中,β-catenin的表达量也有所提高,两者存在共定位现象,并且主要定位于细胞核。另外,UCHL1的高表达能够使β-catenin的蛋白量呈现高水平,而mRNA的表达量却基本不变。同时,UCHL1能够促进β-catenin/TCF4通路下游调控基因的表达。这说明,UCHL1可能是通过降低β-catenin的泛素化水平,使其在核内堆积,从而激活β-catenin/TCF4通路来发挥功能的。
     另外,免疫组化结果显示,FHC在大肠癌组织中的表达量有所下降,且其表达下降与肿瘤的转移具有明显的相关性。FHC在铁代谢途径中发挥重要的作用,具有贮存和释放铁离子的功能。我们初步研究了FHC的生物学功能,发现FHC高表达能够降低细胞体外生长和迁移的能力。
     上述研究结果表明,UCHL1和FHC具有重要的生物学功能,在大肠癌发生及进展中起很重要的作用,可能是重要的标志性分子。研究这些相关的蛋白质分子对揭示大肠癌发生发展及转移的机制有重要意义,也可能为肿瘤诊断和治疗提供有效的标志物和靶点。
The focus of this study was to use differential protein expression to investigate operative pathways in development and metastasis of human colorectal cancer (CRC). The presence or absence of lymph node metastases is a strong independent prognostic factor for CRC survival. Investigating proteins associated with tumor process and lymph node metastasis (LNM) process is crucial for understanding the molecular mechanisms underlying the CRC process and predicting the CRC prognosis. In the present study, proteins from CRC tissues and adjacent normal mucosa were examined using two-dimensional gel electrophoresis coupled with MALDI-TOF-MS. Thirty-three differentially expressed proteins were identified. The expression levels of Ferritin Heavy Chain (FHC) were decreased in LNM CRC as compared to those of non-LNM CRC, while the expression of Ubiquitin C-terminal hydrolase-L1 (UCH-L1) were increased. The results were confirmed by western blotting and immunohistochemical staining.
     For UCHL1, immunohistochemichal staining showed that UCHL1 high expression was significantly related to tumor (T) stage and lymph node metastasis (LNM). UCHL1 is an important deubiquitinating enzyme, it is involved in the regulation of distinct critical cellular processed. We found UCHL1 overexpression increased cell growth and migration activities of HCT8 cells in vitro. We further elucidated that the mutant C90S had no effection on cell growth and migration in vitro, which proved that deubiquitinating activity of UCHL1 was crucial for its functions. We also proved that UCHL1 may promote cellular growth and migration by activatingβ-catenin/TCF4 pathway. Immunofluorescence analysis showed that cells transiently transfected with UCHL1 expressed moreβ-catenin protein consistently. Moreover, UCHL1 overexpression can increaseβ-catenin expression in vitro in protein manner but not mRNA manner, and activateβ-catenin-dependent gene expression.
     For FHC, immunohistochemical staining showed that FHC expression was decreased in colorectal cancer tissues and was significantly related to lymph node metastasis. FHC plays an important role in the storage and release of iron and is pivotal to coordinating iron metabolism. We found that FHC overexpression decreaed cell growth and migration activities of HCT8 cells in vitro.
     Our results proved that UCH-L1 and FHC were not only biomarkers for CRC, but functional proteins that played a significant role in cell migration. The proteins we identified will contribute significantly to understanding the tumor process and metastasis process of CRC and may provide useful markers for diagnosis and targets for therapeutic intervention.
引文
1 Parkin DM, Bray F, Ferlay J, et al.Global Cancer Statistics, CA Cancer J Clin, 2005;5:74-108.
    2 Baxter NN, Virnig DJ, Rothenberger DA, Morris AM, Jessurum J, Virnig BA.2005. Lymph node evaluation in colorectal cancer patients:a population-based study. J Natl Cancer Inst 97:219-225.
    3 Chang GJ, Rodriguez-Bigas MA, Skibber JM, Moyer VA.2007. Lymph node evaluation and survival after curative resection of colon cancer:systematic review. J Natl Cancer Inst 99:433-441.
    4 Baxter NN, Virnig DJ, Rothenberger DA, Morris AM, Jessurum J, Virnig BA.2005. Lymph node evaluation in colorectal cancer patients:a population-based study. J Natl Cancer Inst 97:219-225.
    5 Chang GJ, Rodriguez-Bigas MA, Skibber JM, Moyer VA.2007. Lymph node evaluation and survival after curative resection of colon cancer:systematic review. J Natl Cancer Inst 99:433-441.
    6 Derwinger K, Carlsson G, Gustavsson B.2008. A study of lymph node ratio as a prognostic marker in colon cancer. Eur J Surg Oncol 34:771-775.
    7 Kavallaris M, Marshall GM.2005. Proteomics and disease:opportunities and challenges. Med J Aust 182:575-579.
    8 O'Farrell PH. High resolution two-dimensional electrophoresis of proteins[J]. J Biol Chem,1975,250(10):4007-4021.
    9 Klose J, kobalz U. Two-dimensional electrophoresis of protens:an updated protocol and implications for a functional anlysis of the genome[J]. Electrophoresis,1995,16: 1034-1059.
    10 Alfonso P, Nunez A, Madoz-Furpide J, Lombardia L, Sanchez L, Casal JI.2005. Proteomic expression analysis of colorectal cancer by two-dimensional differential gel electrophoresis. Proteomics 10:2602-2611.
    11 Friedman DB, Hill S, Keller JW, Merchant NB, Levy SE, Coffey RJ, Caprioli RM. 2004. Proteome analysis of human colon cancer by two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics 3:793-811.
    12 Tokumaru Y, Yamashita K, Osada M, et al(2004). Inverse correlation between cyclin Al hypermethylation and p53 mutation in head and neck cancer identified by reversal of epigenetic silencing. Cancer Research.64(17):5982-5987.
    13 Tokumaru Y, Yamashita K, Kim MS, et al(2008).The role of PGP9.5 as a tumor suppressor gene in human cancer.International Journal of Cancer.123(4):753-759.
    14 Schagdarsurengin U, Gimm O, Dralle H, et al(2006). CpG island methylation of tumor-related promoters occurs preferentially in undifferentiated carcinoma. Thyroid. 16(7):633-642.
    15 Yu J, Tao Q, Cheung KF, et al(2008). Epigenetic identification of ubiquitin carboxyl-terminal hydrolase L1 as a functional tumor suppressor and biomarker for heaptocellular carcinoma and other digestive tumors.48(2):508-518.
    16 Brait M, Begum S, Carvalho AL, et al(2008). Aberrant promoter methylation of multiple genes during pathogenesis of bladder cancer. Cancer Epidemiology,Biomarkers& Prevention.17(10):2786-2794.
    17 Sato N, Fukushima N, Maitra A, et al(2003). Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays.Cancer Research.63(13):3735-42.
    18 Hong SM, Kelly D, Griffith M, et al(2008). Multiple genes are hypermethylated in intraductal papillary mucinous neoplasms of the pancreas.Moden Pathology. 21(12):1499-1507.
    19 Okochi-Takada E, Nakazawa K, Wakabayashi M, et al(2006). Silencing of UCHL1 gene in human colorectal and ovarian cancers. International Journal of Cancer. 119(6):1338-1344.
    20 Mizukami H, Shirahata A, Goto T, et al(2008). PGP9.5 methylation as a marker for metastatic colorectal cancer. Anticancer Research.28(5A):2697-2670.
    21. Ian N.M. Day, Rod J. Thompson(2009). UCHL1(PGP9.5):Neuronal biomarker and ubiquitin system protein. Progress in Neurobiology.995:1-36.
    22 Hibi K, Liu Q,Beaudry GA, et al(1998). Serial ananlysis of gene expression in non-small cell lung cancer.Cancer Research.58:5690-5694.
    23 Tezel E, Hibi K, Nagasaka T, et al(2000). PGP9.5 as a prognostic factor in pancreatic cancer.Clinical Cancer Research.6(12):4764-4767.
    24 Wilkinson KD, Lee KM, Deshpande S, et al(1989). The neuron-specific protein PGP9.5 is a ubiquitin carboxyl-terminal hydorlase. Science.246(4930):670-673.
    25 Liu Y, Fallon L, Lashuel H A, et al(2002). The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility. Cell. 111(2):209-218.
    26 Rieko Setsuie, Keiji Wada(2007). The function of UCHL1 and its relation to neurodegenerative diseases.Neurochemistry International.51:105-111.
    27 Christopher N.Larsen,Joanne S.Price,Keith D.Wilkinson(1996). Substrate binding and catalysis by ubiquitin C-terminal hydrolase:identification of two active site residues.35:6735-6744.
    28 Bheda A, Yue W, Gullapalli A, et al(2009). Positive reciprocal regulation of ubiquitin C-terminal hydrolase L1 and β-catenin/TCF signaling. Plos One. 4(6):e5595.
    29 Jessica B, Keith R, Matthew JB, et al(2008). Overexpression of cellular iron import proteins is associated with malignant progression of esophageal adenocarcinoma. Clin Cancer Res.14(2):379-387.
    30 Roberto M, Michela S, Ornella F, et al(2006). Differential expression proteomics of human colon cancer. Am J Physiol Gastrointest Liver Physiol. 1(290):G1329-G1338.
    31 Haiping P, Hong Z, Shan Z, et al(2007). Proteome analysis and tissue microarray for profiling protein markers associated with lymph node metastasis in colorectal cancer. Journal of Proteome Research.6:2495-2501.
    32 Ott V, Guenther K, Steinert R, et al(2001). Accuracy of two-dimensional electrophoresis for target discovery in human colorectal cancer. Pharmacogenomics J. 1:142-151.
    33 Hanash S(2003). Disease proteomics. Nature.422:226-232.
    34 Mueller MM, Fusenig NE(2004). Friends or foes-bipolar effects of the tumour stroma in cancer. Nat Rev Cancer.4:839-849.
    35 Wilkinson KD, Lee KM, Deshpande S, et al(1989). The neuron-specific protein PGP 9.5 is a ubiqutin carboxyl-terminal hydrolase. Science.246:670-673.
    36 Schofield JN, Day IN, Thompson RJ, et al(1995). PGP9.5, a ubiquitin C-terminal hydrolase; pattern of mRNA and protein expression during neural development in the mouse. Brain Res Dev Brain Res.85:229-238.
    37 Tezel E, Hibi K, Nagasaka T, et al(2000). PGP9.5 as a prognostic factor in pancreatic cancer. Clin Cancer Res.6:4764-4767.
    38 Leiblich A, Cross SS, Catto JW, et al(2007). Human prostate cancer cells express neuroendocrine cell markers PGP 9.5 and chromogranin A. Prostate.67:1761-1769.
    39 Takase T, Hibi K, Yamazaki T, et al(2003). PGP9.5 overexpression in esophageal squamous cell carcinoma. Hepatogastroenterology.50:1278-1280.
    40 Yamazaki T, Hibi K, Takase T, et al(2002). PGP9.5 as a marker for invasive colorectal cancer. Clinical Cancer Research.8:192-195.
    41 Mandelker DL, Yamashita K, Tokumaru Y, et al(2005). PGP9.5 promoter methylation is an independent prognostic factor for esophageal squamous cell carcinoma. Cancer Res.65:4963-4968.
    42 Okochi-Takada E, Nakazawa K, Wakabayashi M, et al(2006). Silencing of the UCHL1 gene in human colorectal and ovarian cancers. Int J Cancer.119:1338-1344.
    43 Hibi K, Westra WH, Borges M, et al(1999). PGP9.5 as a candidate tumor marker for non-small-cell lung cancer. Am J Pathol.155:711-715.
    44 Kim HJ, Kim YM, Lim S, et al(2009). Ubiquitin C-terminal hydrolase-L1 is a key regulator of tumor cell invasion and metastasis. Oncogene.28:117-127.
    45 Ames BN, Shigenaga MK, Hagen TM(1993). Oxidants, antioxidants, and degenerative diseases of aging. Proc Natl Acad Sci U S A.90:7915-7922.
    46 Chen X, Yang G, Ding WY, et al(1999). An esophagogastroduodenal anastomosis model for esophageal adenocarcinogenesis in rats and enhancement by iron overload. Carcinogenesis 20:1801-1808.
    47 Boult J, Roberts K, Brookes MJ, et al(2008). Overexpression of Cellular Iron Import Proteins Is Associated with Malignant Progression of Esophageal Adenocarcinoma. Clin Cancer Res.14:379-387.
    48 Giusti L, Iacconi P, Ciregia F(2008). Fine-needle aspiration of thyroid nodules: proteomic analysis to identify cancer biomarkers. J Proteome Res.7:4079-4088.
    49 Wu CG, Groenink M, Bosma A, et al(1997). Rat ferritin-H:CDNA cloning, differential expression and localization during hepatocarcinogenesis. Carcinogenesis. 18:47-52.
    50 Cohen C, Shulman G, Budgeon LR(1984). Immunohistochemical ferritin in testicular seminoma. Cancer.54:2190-2194.
    51 Weinstein RE, Bond BH, Silberberg BK(1982). Tissue ferritin concentration in carcinoma of the breast. Cancer.50:2406-2409.
    52 Vet JA, van Moorselaar RJ, Debruyne FM, et al(1997). Differential expression of ferritin heavy chain in a rat transitional cell carcinoma progression model. Biochim Biophys Acta.1360:39-44.
    53 Brookes MJ, Hughes S, Turner FE, et al(2006). Modulation of iron transport proteins in human colorectal carcinogenesis. Gut.55:1449-1460.
    54 Bilello JP, Cable EE, Isom HC(2003). Expression of E-cadherin and other paracellular junction genes is decreased in iron-loaded hepatocytes. Am J Pathol. 162:1323-1338.
    55 Birchmeier W, Weidner KM, Behrens J(1993). Molecular mechanisms leading to loss of differentiation and gain of invasiveness in epithelial cells. J Cell Sci Suppl. 17:159-164.
    56 Yutaka T, Keishi Y, Myoung SK, et al(2008). The role of PGP9.5 as a tumor suppressor gene in human cancer. Int J Cancer.123:753-758.
    57 Wang WJ, Li QQ, Xu JD, et al(2008). Over-expression of ubiquitin carboxy terminal hydrolase-L1 induces apoptosis in breast cancer cells. Int J Cancer. 33(5):1037-1045.
    58 Anjali B, Julia S, Joseph SP(2009). Expression and functional studies of ubiquitin C-terminal hydrolase L1 regulated genes. PLoS ONE.4(8):e6764.
    59 Otavia LC, Vicente R, Meera P, et al(2002). Interaction and colocalization of PGP9.5 with JAB1 and p27Kipl. Oncogene.21:3003-3010.
    60 Polyak D, Kato JY, Solomon MJ, et al(1994). P27Kip1, a cyclin-Cdk, inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev.8(1):9-22.
    61 Kim HJ, Kim YM, Lim S, et al(2009). Ubiquitin C-terminal hydrolase-L1 is a key regulator of tumor cell invasion and metastasis. Oncogene.28:117-127.
    62 Pickart C M(2004). Back to the future with ubiqutin. Cell.116(2):181-190.
    63 Arber N, Hibshoosh H, Moss SF, et al(1996). Increased expression of cyclin D1 is an early event in multistage colorectal carcinogenesis. Gastroenterology.10:669-674.
    64 Sutter T, Doi S, Carnevale KA(1997). Expression of cyclins D1 and E in human colon adenocarcinomas. J Med.28:285-309.
    65 Shtutman M, Zhurinsky J, Simcha 1(1999). The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A.96:5522-5527.
    66 Tetsu O, McCormick F(1999). Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature.398:422-426.
    67 Surendran K, Simon TC, Liapis H, et al(2004). Matrilysin (MMP-7) expression inrenal tubular damage:association with Wnt4. Kidney Int.65:2212-2222.
    68 Marchenko ND, Marchenko GN, Weinreb RN, et al(2004). Beta-catenin regulates the gene of MMP-26, a novel metalloproteinase expressed both in carcinomas and normal epithelial cells. Int J Biochem Cell Biol.36:942-956.
    69 Takahashi M, Tsunoda T, Seiki M, et al(2002). Identification of membrane-type matrix metalloproteinase-1 as a target of the beta-catenin/Tcf4 complex in human colorectal cancers. Oncogene.21:5861-5867.
    70 Arosio R, Levi S(2002). Ferritin, iron homeostasis, and oxidative damage. Free Radic Biol Med.33:457-463.
    71 Torti FM, Torti SV(2002). Regulation of ferritin genes and proteins. Blood. 99:3505-3516.
    72 Shigemiki O, Shungo H, Yukiko Imanishi,et al(2009). Downregulation of ferritin heavy chain increases labile iron pool, oxidative stress and cell death in cardiomyocytes. Journal of Molecular and Cellular Cardiology.46:59-66.
    73 Can GP, Concetta B, Francesca Z, et al(2004). Ferritin heavy chain upregulation by NF-κB inhibits TNFa-induced apoptosis by suppressing reactive oxygen species. Cell.119:529-542.
    74 Brookes MJ, Boult J, Roberts K, et al(2008). A role for iron in Wnt signaling. Oncogene.27(7):966-975.
    1 Roman K, Erika F, Rudolf H, et al(1991). Crystallin alphaB is a small heat shock protein. Proc Natl Acad Sci U S A.88:3652-3656.
    2. Hitotsumatsu T, Iwaki T, Fukui M, et al(1996). Distinctive immunohistochemical profiles of small heat shock proteins (heat shock protein 27 and alpha B-crystallin) in human brain tumors. Cancer.77:352-361.
    3. Ivanov O, Chen F, Wiley EL, et al(2007). alphaB-crystallin is a novel predictor of resistance to neoadjuvant chemotherapy in breast cancer. Breast Cancer Res Treat. 111(3):411-417.
    4. Moyano JV, Evans JR, Chen F, et al(2006). AlphaB-crystallin is a novel oncoprotein that predicts poor clinical outcome in breast cancer. J Clin Invest. 116:261-270.
    5. Chin D, Boyle GM, Williams RM, et al(2005). Alpha B-crystallin, a new independent marker for poor prognosis in head and neck cancer. Laryngoscope. 115:1239-1242.
    6. Mao YW, Liu JP, Xiang H, et al(2004). Human alphaA-and alphaB-crystallins bind to Bax and Bcl-X(S) to sequester their translocation during staurosporine-induced apoptosis. Cell Death Differ.11:512-526.
    7. Kamradt MC, Lu M, Werner ME, et al(2005). The small heat shock protein alpha B-crystallin is a novel inhibitor of TRAIL-induced apoptosis that suppresses the activation of caspase-3. J Biol Chem.280:11059-11066.
    8 Satoru K, Jifnesh G, Narsing AR(2009). Expression of alpha-crystallins in retinoblastoma. Arch Ophthalmol.127(2):187-192.
    9 Aoyama A, Steiger RH, Frohli E, et al(1993). Expression of alphaB-crystallin in human brain tumors. Int J Cancer.55(5):760-764.
    1 Wilkinson K D, Lee K M, Deshpande S, et al(1989). The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science.246(4930):670-673.
    2 Mayer A N, Wilkinson K D(1989). Detection, resolution, and nomenclature of multiple ubiquitin carboxyl-terminal esterases from bovine calf thymus. Biochemistry. 28(1):166-172.
    3 Osawa Y, Wang Y L, Osaka H, et al(2001). Cloning, expression, and mapping of a mouse gene, Uchl4, highly homologous to human and mouse Uchl3. Biochem Biophys Res Commun.283(3):627-633.
    4 Pickart C M(2004). Back to the future with ubiqutin. Cell.116(2):181-190.
    5吴慧娟,张志刚(2006).泛素-蛋白酶体途径及意义.国际病理科学与临床杂志.26(1):7-101.
    6何洪智,赵晓航,张立勇,等(2002).蛋白质泛素化降解途径与肿瘤发生的关系.世界华人消化杂志.10(12):1365-1368.
    7 Nandi D, Tahiliani P, Kumar A, et al(2006). The ubiquitin-proteasome system. J Biosci.31(1):137-155.
    8 Ian N.M. Day, Rod J. Thompson(2009). UCHL1(PGP9.5):Neuronal biomarker and ubiquitin system protein. Progress in Neurobiology.995:1-36.
    9 Liu Y, Fallon L, Lashuel H A, et al(2002). The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility. Cell.111(2):209-218.
    10 Amerik A Y, Hochstrasser M(2004). Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta.1695(1-3):189-207.
    11 Das C, Hoang Q Q, Kreinbring C A, et al(2006). Structural basis for conformational plasticity of the Parkinson!s disease-associated ubiquitin hydrolase UCH-L1. Proc Natl Acad Sci USA.103(12):4675-4680.
    12 Rieko Setsuie, Keiji Wada(2007). The function of UCHL1 and its relation to neurodegenerative diseases.Neurochemistry International.51:105-111.
    13 Osaka H,Wang YL,Takada K, et al(2003). Ubiquitin carboxy-termianl hydrolase L1 binds to and stabilizes monoubiquitin in neuron.Human Molecular Genetics. 12(16):1945-1958.
    14 Christopher N.Larsen,Joanne S.Price,Keith D.Wilkinson(1996). Substrate binding and catalysis by ubiquitin C-terminal hydrolase:identification of two active site residues.35:6735-6744.
    15 Haglund K, Dikic 1(2005). Ubiquitylation and cell signaling. Embo J. 24(19):3353-3359.
    16 Schofield J N, Day I N, Thompson R J, et al(1995). PGP9.5, a ubiquitin C-terminal hydrolase; pattern of mRNA and protein expression during neural development in the mouse. Brain Res Dev Brain Res.85(2):229-238.
    17 Gong B, Cao Z, Zheng P, et al(2006). Ubiquitin hydrolase UCH-L1 rescues beta-amyloid-induced decreases in synaptic function and contextual memory. Cell. 126(4):775-788.
    18 Kon Y, Endoh D, Iwanaga T(1999). Expression of protein gene product 9.5, a neuronal ubiquitin C-terminal hydrolase, and its developing change in sertoli cells of mouse testis. Mol Reprod Dev.54(4):333-341.
    19孙兆贵,孔维华,颜山,等(2003).蟾蜍泛素羧基末端水解酶(tUCH)以不依赖其UCH活性的方式参与卵母细胞成熟调控.实验生物学报.36(2):105-112.
    20 Kwon J, Kikuchi T, Setsuie R, et al(2003). Characterization of the testis in congenitally ubiquitin carboxy-terminal hydrolase-1 (Uch-L1) defective (gad) mice. Exp Anim.52(1):1-9.
    21 Wang Y L, Liu W, Sun Y J, et al(2006). Overexpression of ubiquitin carboxyl-terminal hydrolase L1 arrests spermatogenesis in transgenic mice. Mol Reprod Dev.73(1):40-49.
    22 Kwon J, Mochida K, Wang Y L, et al(2005). Ubiquitin C-terminal hydrolase L-1 is essential for the early apoptotic wave of germinal cells and for sperm quality control during spermatogenesis. Biol Reprod.73(1):29-35.
    23 Sekiguchi S, Kwon J, Yoshida E, et al(2006). Localization of ubiquitin C-terminal hydrolase LI in mouse ova and its function in the plasma membrane to block polyspermy. Am J Pathol.169(5):1722-1729.
    24 Mochida K, Matsubara T, Kudo H, et al(2002). Molecular cloning and immunohistochemical localization of ubiquitin C-terminal hydrolase expressed in testis of a teleost, the Nile Tilapia, Oreochromis niloticus. J Exp Zool. 293(4):368-383.
    25 Sekiguchi S, Takatori A, Negishi T, et al(2005). Localization of ubiquitin carboxyl-terminal hydrolase-Ll in cynomolgus monkey placentas. Placenta. 26(1):99-103.
    26 Leroy E, Boyer R, Auburger G, et al(1998). Polymeropoulos, M. H., The ubiquitin pathway in Parkinson's disease. Nature.395(6701):451-452.
    27 Saigoh K,Wang Y L, Suh J G, et al(1999). Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat Genet.23(1):47-51.
    28 Elbaz A, Levecque C, Clavel J, et al(2003). S18Y polymorphism in the UCH-L1 gene and Parkinson"s disease:evidence for an age-dependent relationship. Mov Disord.18(2):130-137.
    29 Hibi K, Liu Q,Beaudry GA, et al(1998). Serial ananlysis of gene expression in non-small cell lung cancer.Cancer Research.58:5690-5694.
    30 Tezel E, Hibi K, Nagasaka T, et al(2000). PGP9.5 as a prognostic factor in pancreatic cancer.Clinical Cancer Research.6(12):4764-4767.
    31 Tokumaru Y, Yamashita K, Osada M, et al(2004). Inverse correlation between cyclin A1 hypermethylation and p53 mutation in head and neck cancer identified by reversal of epigenetic silencing. Cancer Research.64(17):5982-5987.
    32 Tokumaru Y, Yamashita K, Kim MS, et al(2008).The role of PGP9.5 as a tumor suppressor gene in human cancer.International Journal of Cancer.123(4):753-759.
    33 Schagdarsurengin U, Gimm O, Dralle H, et al(2006). CpG island methylation of tumor-related promoters occurs preferentially in undifferentiated carcinoma. Thyroid. 16(7):633-642.
    34 Yu J, Tao Q, Cheung KF, et al(2008). Epigenetic identification of ubiquitin carboxyl-terminal hydrolase L1 as a functional tumor suppressor and biomarker for heaptocellular carcinoma and other digestive tumors.48(2):508-518.
    35 Brait M, Begum S, Carvalho AL, et al(2008). Aberrant promoter methylation of multiple genes during pathogenesis of bladder cancer. Cancer Epidemiology,Biomarkers& Prevention.17(10):2786-2794.
    36 Sato N, Fukushima N, Maitra A, et al(2003). Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays.Cancer Research.63(13):3735-42.
    37 Hong SM, Kelly D, Griffith M, et al(2008). Multiple genes are hypermethylated in intraductal papillary mucinous neoplasms of the pancreas.Moden Pathology. 21(12):1499-1507.
    38 Okochi-Takada E, Nakazawa K, Wakabayashi M, et al(2006). Silencing of UCHL1 gene in human colorectal and ovarian cancers. International Journal of Cancer. 119(6):1338-1344.
    39 Fukutomi S, Seki N, Koda K, et al(2007). Identification of methylation-silenced genes in colorectal cancer cell lines:genomic screening using oligonucleotide arrays.Scandinavian Journal of Gastroenterology.42(12):1486-1494.
    40 Kim JH, Jung EJ, Lee HS, et al(2009). Comparative analysis of DNA methylation between primary and metastatic gastric carcinoma.Oncology Reports. 21(5):1251-1259.
    41 Fukutomi S, Seki N, Koda K, et al(2007). Identification of methylation-silenced genes in colorectal cancer cell lines:genomic screening using oligonucleotide arrays.Scandinavian Journal of Gastroenterology.42(12):1486-1494.
    42 Okochi-Takada E, Nakazawa K, Wakabayashi M, et al(2006). Silencing of UCHL1 gene in human colorectal and ovarian cancers. International Journal of Cancer. 119(6):1338-1344.
    43 Fellenberg J, Lehner B, Witte D(2010). Silencing of the UCHL1gene in giant cell tumor of bone. International Journal of Cancer. DOI 10.1002/ijc.25205.
    44 Seliger B, Handke D, Schabel E, Bukur J, et al(2009). Epigenetic control of the ubiquitin carboxyl terminal hydrolase 1 in renal cell carcinoma. Journal of Translational Medicine.7:90.
    45 Kagara I, Enokida H, Kawakami K, et al(2008). CpG hypermethylation of the UCHL1 gene promoter is associated with pathogenesis and poor prognosis in renal cell carcinoma. The Journal of Urology.180(1):343-351.
    46 Wang Y.Yu Q,Cho AH,Rondeau G,Welsh J,Adamson E,Mercola D, McClelland M(2005). Survey of differentially methylated promoters in prostate cancer cell lines.Neoplasia.7(8):748-760.
    47 Lee YM, Lee JY, Kim MJ, et al(2006). Hypomethylation of the protein gene product 9.5 promoter region in gallbladder cancer and its relationship with clinicopathological features. Cancer Sci.97(11):1205-1210.
    48 Mizukami H, Shirahata A, Goto T, et al(2008). PGP9.5 methylation as a marker for metastatic colorectal cancer. Anticancer Research.28(5A):2697-2670.
    49 Mizukami H, Goto T, Kitamura Y, et al(2009). PGP9.5 was less frequently methylated in advanced gastric carcinoma. Hepato-gastroenterology. 56(94-95):1576-1579.
    50 Mandelker DL, Yamashita K, Tokumaru Y, et al(2005). PGP9.5 promotor methylation is an independent prognostic factor for esophageal suqamous cell carcinoma. Cancer Research.65(11):4963-4968.
    51 Yamamoto E, Toyota M, Suzuki H, et al(2008). LINE-1 hypomethylation is associated with increased CpG island methylation in Helicobacter pylori-related enlarged-fold gastritis.Cancer Epidemology, Biomarkers &Prevention. 17(10):2555-2264.
    52 Yamashita K, Park HL, Kim MS, et al(2006). PGP9.5 methylation in diffuse-type gastric cancer. Cancer Research.66(7):3921-3927.
    53 Bittencourt Rosas SL, Caballero OL, Dong SM, et al(2001). Methylation status in the promoter region of the human PGP9.5 gene in cancer and normal tissues. Cancer Letter.170(1):73-79.
    54 Harada T, Harada C, Wang YL, et al(2004). Role of ubiquitin carboxy terminal hydrolase-L1 in neural cell apoptosis induced by ischemic retinal injury in vivo. American Society for Investigative Pathology.164(1):59-64.
    55 Kwon J, Wang YL, Setsuie R, et al(2004).Two closely related ubiquitin C-terminal hydrolase isozymes functions as reciprocal modulators of germ cell apoptosis in cryptorchid testis.
    56 Wang WJ, Li QQ, Xu JD, et al(2008). Over-expression of ubiquitin carboxy terminal hydrolase-L1 induces apoptosis in breast cancer cell. International Journal of Oncology.33(5):1037-1045.
    57 Tanaka T, Kuramitsu Y, Fujimoto M, et al(2008). Downregulation fo two isoforms of ubiquitin carboxyl-terminal hydrolase isozyme L1 correlates with high metastatic potentials of human SN12C renal cell carcinoma cell clones. Electrophoresis. 29(12):2651-2659.
    58 Yamazaki T, Hibi K, Takase T, et al(2002). PGP9.5 as a marker for invasive colorectal cancer. Clinical Cancer Research.8:192-195.
    59 Kim HJ, Kim YM, Lim S, et al(2009). Ubiquitin C-terminal hydrolase-L1 is a key regulator of tumor cell invasion and metastasis. Oncogene.28:117-127.
    60 Shackelford J, Maier C, Pagano JS (2003). Epstein-Barr virus activates beta-catenin in type III latently infected B lymphocyte lines:association with deubiquitinating enzymes. Proc Natl Acad Sci U S A.100:15572-15576.
    61 Shackelford J, Pagano JS(2005). Targeting of host-cell ubiquitin pathways by viruses. Essays Biochem.41:139-156.
    62 Bheda A, Yue W, Gullapalli A, et al(2009). Positive reciprocal regulation of ubiquitin C-terminal hydrolase L1 and β-catenin/TCF signaling. Plos One. 4(6):e5595.
    63 Yang Y, Yu X(2003). Regulation of apoptosis:the ubiquitous way. FASEB J. 17:790-799.
    64 Maki CG, Howley PM(1997). Ubiquitination of p53 and p21 are differentially affected by ionizing and UV radiation. Mol Cell Biol.17:355-363.
    65 Kwon J, Wang YL, Setsuie R(2004). Two closely related ubiquitin C-terminal hydrolase isozymes function as reciprocal modulators of germ cell apoptosis in cryptorchid testis. Am J Pathol.165:1367-1374.
    66 Osaka H, Wang YL, Takada K(2003). Ubiquitin carboxy terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Hum Mol Genet.12:1945-1958.
    67 Wilkinson KD, Lee KM, Deshpande S, et al(1989). The neuron-specific protein PGP9.5 is a ubiquitin carboxyl-terminal hydorlase. Science.246(4930):670-673.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700