特殊受限空间火灾轰燃的重构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火灾调查作为火灾科学研究的一个重要分支,集成多学科交叉,正在取得越来越广泛的关注。而火灾重构正是依据科学方法确定火灾中最真实的发生发展过程。轰燃是室内火灾过程中的一个瞬间,但却是特别重要的阶段。在空间狭小,通风不畅的特殊受限空间内很容易发生轰燃。在火灾调查中,轰燃分析的应用可以提供很多的有价值的信息,包括揭示火灾起源和蔓延的信息,提供判断的理论依据。本文基于火灾重构的角度对轰燃现象进行重构研究。
     火灾重构研究中材料的分析是建立重构模型的基础,尤其是固态可燃物的热解过程是火灾轰燃发生和发展的重要因素。首先对典型的固体可燃性材料的热解过程进行了研究,采用热重分析和热分析动力学方法,分别对尼龙和胶合板材料进行了研究。通过所得到的动力学参数可以用以预测不同温度下材料热解产物的百分含量,推测在特定条件下的轰燃发生的可能性,同时为轰燃的数值模拟重构提供了基础数据。
     建立了不同尺寸的轰燃模拟实验台,通过实验模拟重构,改变实验中的各种工况,包括顶棚高度的变化、火源位置、补风条件、火源半径的变化等因素,研究了腔室内发生轰燃的临界条件;利用区域模拟的两层结构模型,非线性动力学模型中的热增益和热损失的变化解释了腔室火灾的发展:壁面温度的无量纲数U_c与火源半径是决定轰燃发生与否的主要影响因素:利用修正后的非线性动力学模型,可以较好判断腔室内能否发生轰燃,同时预测烟气层最高稳定温度。
     研究了轰燃过程中的尺度模拟准则。建立了无量纲的腔室油池火的控制方程及无量纲组合数组,结合经验羽流的速度与热释放速率的关系,认为无量纲的能量产生速率为主导控制作用,根据无量纲能量产生速率恒定,确立了腔室油池火的尺度准则,并将该尺度关系用于模拟实验的设计。
     通过对受限空间火灾轰燃的数值实验重构,比较了CFAST和FDS的数值模拟结果与实验值的差别。CFAST在模拟火源热解和燃烧反应上存在不足,使其在火场重构中的应用受到限制;它模拟的烟气层温度普遍高于实验值。但是CFAST在轰燃理论的研究上可以起到辅助作用;FDS能模拟火源的热解和燃烧过程,进而较好预测腔室火灾的发展过程。
     通过全尺寸房间的轰燃实验,分析了轰燃的经验模型、BFD参数曲线估计法和FDS场模拟软件在火场重构的实际应用中的可行性。结果表明FDS模拟具有较广的适用性。BFD曲线对房间内发生轰燃的过程中烟气层温度曲线的预测以及最高温度的判断强于FDS。通过McCaffrey的模型来估算房间内的最大热释放速率,进而确定FDS模拟所需的网格密度,是一套有效的方法。
Fire investigation, an important branch in the fire science research, is obtaining more and more attention in the world as an interdisciplinary research. Fire reconstruction is used to determine the most likely development of a fire using a scientifically based methodology. Flashover is a rapidly occurring transitional event in the development of a compartment fire. It can be easily occurred in the specially confined compartment, where ventilation is poor in such limited space. In fire investigation, proper application of flashover analysis can be very valuable tool in unraveling the mysteries of a fire's origin and development, and presenting the theoretical basis for judgment. In this paper flashover is under research from the point of fire reconstruction.
     The basement of construction of fire reconstruction model is the analysis of material. Especially the thermal degradation of combustible material in solid phase related with the occurrence and development of flashover. First the thermogravimetric evaluation of typical solid combustible material, including nylon and plywood, was studied with thermogravimetric analysis and thermal kintiecs . The kinetics parameters obtained could be used to predict the percentage composition of pyrolysis product under different temperatures, which might indicate the possibility of flashover under certain circumstances. Meanwhile the study could provide the basic data for numerical simulation for flashover reconstruction.
     The model compartments of different scales were constructed. The experimental reconstruction was done under various experimental conditions, including the height of ceiling, the location of fire source, the ventilation condition, the radius of fire, etc. The critical conditions of occurrence of flashover were studied in such compartment. With the help of two-layer zone model, the change of heat gain and heat loss in the nonlinear dynamics could well explain the development of compartment fire. The wall temperature parameter U_c and the radius of fire were the primary factors in the development flashover. The nonlinear dynamics model could judge the occurrence of flashover and predict the highest stable temperature in the smoke layer.
     The scale modeling in the process of flashover was studied.The dimensionless control equations of pool fire in compartment were established .Under the analysis of the relation of the plume velocity and the heat release rate, the dimensionless variable of heat release rate was considered to take the leading control effect. This induced the establishment of the scaling rule for the pool fire in a compartment by this constant rate variable of heat release, which could be applied in the design of model experiment.
     The numerical simulation results in CFAST and FDS were compared with the experimental results by the numerical experiment reconstruction of the flashover in this confined compartment. CFAST was weak in modeling the thermal degradation of fire source and the combustion reaction, which would limit the application of CFAST in fire scene reconstruction. FDS could well predict the development process of compartment fire by modeling the thermal degradation of fire source and the combustion process properly.
     The feasibility of the application of the empirical model of flashover, the BFD curve method and FDS modeling in the fire scene reconstruction were studied by the full scale flashover test. It showed that the FDS modeling had wide applicability, and BFD's ability to predict the temperature curve of smoke layer and the judgment of the highest temperature for the flashover in compartment were better than FDS. It could be an effective way to estimate the highest heat release rate by McCaffrey's model, resulting in the judgment of the mesh dimension in FDS.
引文
[1]范维澄等编著.2004.火灾风险评估方法学[M].科学出版社.北京.1-2.
    [2]Madrzykowski D.State-of-the-art research is the future of fire investigation[J].Fire Safety and Engineering Division Building and Fire Research Laboratory,National Institute of Standards and Technology Gaithersburg,Md.
    [3]Elghazouli A Y,Izzuddin B A.Analytical assessment of the structural performance of composite floors subject to compartment fires[J].Fire Safety Joumal,2001(36):769-793.
    [4]Vettori R L,Madrzykowski D,Walton W D.Simulation of the Dynamics of a Fire in a One-Story Restaurant -Texas,February 14,2000[J].Fire Safety and Engineering Division Building and Fire Research Laboratory,National Institute of Standards and Technology Gaithersburg,Md.
    [5]Lee E P,Ohtani H,Matsubara Y,Seki T.Study on discrimination between primary and secondary molten marks using carbonized residue[J].Fire Safety Journal,2002(37):353-368.
    [6]Roy A.Cooke,Rodger FI.Ide.Principles of Fire Investigation[M].The Institution of Fire Engineers.
    [7]林松.燃烧规律与图痕[J].消防技术与产品信息,2004年12期:70-74.
    [8]Shanley J H,Kennedy J,P M.Program for the Study of Fire Patterns,National Institute of Standards and Technology[C].Annual Conference on Fire Research:Book of Abstracts.October 28-31,1996,Gaithersburg,MD,149-150.
    [9]胡哗,蔡常国.火灾物证的化学分析技术[J].消防技术与产品信息,2004(11):58-63.
    [10]Stauffer E,Lentini J J.ASTM standards for fire debris analysis:a review[J].Forensic Science International,2003(132):63-67.
    [11]宗若雯,廖光煊,王荣辉.化学模式识别技术在火灾调查中应用研究[C].第四届安徽科技论坛-海湾杯自主创新与消防实业发展研讨会,2006年11月.
    [12]王荣辉,宗若雯,王正洲,等.主成分分析法和Fisher判别方法在汽油分类分析过程中的应用[J].中国科学技术大学学报,2006(36):1331-1335.
    [13]李松阳,宗若雯,支有冉.人工神经网络在火灾调查中的应用研究[C].第五届安徽科技论坛—海湾杯自主创新与消防实业发展研讨会,2007年11月.
    [14]廖光煊,宗若雯,刘乃安等.火灾科学的重要分支—火灾调查研究[C].中国科协2005年学术年会论文集科学发展观与公共消防安全(第24分会场).
    [15]任松发,任汉信,柯润.火灾调查模拟试验研究[J].武警学院学报,2003,19(1):39-41.
    [16]范维澄.1993.火灾科学导论[M].武汉:湖北科学技术出版社.www.firearson.com.
    [17]Madrzykowski D.Fire Research:Providing New Tools for Fire Investigation.www.firearson.com.
    [18]Icove D J,Dehaan J D.Forensic Fire Scene Reconstruction[M].Pearson Prentice Hall,Upper Saddle River,New Jersey 07458.
    [19]NIST NCSTAR 1,Final Reports of the Federal Building and Fire Investigation of the World Trade Center Disaster[R].http://wte.nist.gov/reports_oetober05.htm.
    [20]Usmani A S,Chung Y C,Torero J L.How did the WTC towers collapse:a new theory[J].Fire Safety Journal,2003,38:501-533.
    [21]Quintiere J G,M.di Matzo,Becker R.A suggested cause of the fire-induced collapse of the World Trade Towers[R].Fire Safety Journal,2002,37:707-716.NIST NCSTAR 1-5.
    [22]NIST NCSTAR 1-5:Reconstruction of the Fires in the World Trade Center Towers[R].http://wtc.nist.gov/reports_october05.htm.
    [23]Madrzykowski D,Forney G P,Walton W D.Simulation of the Dynamics of a Fire in a Two-Story Duplex.Iowa,December 22,1999[R].Fire Safety and Engineering Division Building and Fire Research Laboratory,National Institute of Standards and Technology Gaithersburg,Md.
    [24]Madrzykowski D,Walton W D.Cook County Administration Building Fire.69 West Washington,Chicago,Illinois,October 17,2003:Heat Release Rate Experiments and FDS Simulations,[R]NIST Special Publication 1021;July 2004.489.
    [25]Bryner N P,Kerber S.Simulation of the Dynamics of a Fire in the Basement of a Hardware Store.New York,June 17,2001 JR],NISTIR 7137;May 2004.57.
    [26]Madrzykowski D,Vettori,Robert L.Simulation of the Dynamics of the Fire at 3146 Cherry Road NE,Washington D C,May 30,1999[R],NISTIR 6510;April 2000.
    [27]Hertzberg T,Blomqvist P,Tuovinen H.Reconstruction of an arson hospital fire[J].Fire and materials,2006,31(4):225-240.
    [28]Tzu-Sheng Shen,Yu-Hsiang Huang,ShenoWen Chien.Using fire dynamic simulation(FDS)to reconstruct an arson fire scene[J].Building and Environment,2008(43):1036-1045.
    [29]姜蓬,邱榕,蒋勇.基于数值模拟的某大厦特大火灾过程调查[J].燃烧科学与技术,2007,13(1):76-80.
    [30]张小芹,宗若雯,方廷勇,等.火灾中木耳燃烧特性及数值模拟研究[J].燃烧科学与技术,2006,12:447-452.
    [31]Zhang Xiaoqin,Zong Ruowen,Yao Bin,et al.Preliminary Experimental Study of Different Scale on the Combustion Characteristics ofAgaric in Fire[J].中国科学技术大学学报,2006,36,96-102.
    [32]Ruowen Zong, Xiaoqin Zhang, Songyang Li, et al. Investigation of a Combustible Material in the Fire of Hengyang Merchant's Building[J], Fire and Material, in press.
    [33] NFPA消防手册1948年,第十版,第30章.
    [34] Thomas P H, Bullen M L, Quintiere J G, et al. Flashover and instabilities in fire behavior[J]. Combustion and Flame, 1980(38):159-171.
    [35] NFPA 921: Guide for Fire and Explosion Investigations, 2004
    [36]Rasbash D J., Major fire disasters involving flashover [J]. Fire Safety Journal, 1991, 171:85-93.
    [37]PH Thomas, ML Bullen, JG Qunitiere, BJ McCaffrey, Flashover and Instabilities in Fire Behavior [J], Combustion and Flames, 1980(38):159-171.
    [38]Mitler H E, Steckler K D. Wall fires and the approach to flashover in an enclosure[J]. Safety Science, 1995,20(1):71-78.
    [39]Cadorin J F, Franssen J M. A tool to design steel elements submitted to compartment fires-OZone V2. Part 1: pre- and post-flashover compartment fire model[J]. Fire Safety Journal, 2003,38:395-427.
    [40]Luo Mingchun, Beck V A. Study of non-flashover and flashover fires in a full-scale multi-room building [J]. Fire Safety Journal, 1996,26:191-219.
    [41]Yii Ee H, Buchanan, Fleischmann A H, Charles M. Simulating the effects of fuel type and geometry on post-flashover fire temperatures[J]. Fire Safety Journal, 2006,41: 62-75.
    [42]Waterman T E. Room flashover-criteria and synthesis[J]. Fire technology, 1968,4:25-31.
    [43]Hagglund B, Jannson R, Onnermark B. Fire development in residential rooms after ignition from nuclear explosions, FOA C20016-DG (A3), Forsvarets Forskningsanstalt, Stockholm, 1974.
    [44]Fang JB. Fire buildup in a room and the role of interior finish materials. Natl Bur Stand (U.S.), TN879, 1975., J.B.Fang, Measurement of the behavior of incidental fires in a compartment [R], National Bureau of Standards, USA, NBSIR 679.
    [45]Lee BT, Breese JN. Submarine compartment study performance evaluation of hull insulation[R]. Natl Bur Stand (U.S.), NBSIR 78-1584, 1979.
    [46]Quintiere JG, McCaffrey BJ. The burning of wood and plastic cribs in an enclosure: Vol. I. [R], Natl Bur Stand (U.S.), NBSIR 80-2054, 1980.
    [47]Babrauskas V. Full-scale burning behavior of upholstered chairs[R]. Natl Bur Stand (U.S.), TN 1103,1979.
    [48]Babrauskas V. Combustion of mattresses exposed to flaming ignition sources (I): Full-scale tests and hazard analysis[R], Natl. Bureau of Standards, USA, 1977.
    [49]Richard P D, Paul R A, Richard B W, et al. Defining flashover for fire hazard calculations[J]. Fire Safety Journal, 1999, 32:331-345.
    [50]Klopovic S,Turan OE Flames Venting Extemally During Full-Scale Flashover Fires:Two Sample Ventilation Cases[J].Fire Safety Journal,1998(31):117-142.
    [51]Drysdale D.An introduction to fire dynamics.New York:Wiley,1990:283.
    [52]Graham TL,Makhviladze G,Roberts JP.On the Theory of Flashover Development[J].Fire Safety Journal,1995,25:229-259.
    [53]Graham TL,Makhviladze G,Roberts JP.Effects of the thermal inertia of the walls upon flashover development[J].Fire Safety Journal,1999,32:35-60.
    [54]Jolly S,Saito K.Scale modeling of fires with emphasis on room flashover phenomenon[J].Fire Safety Journal,1992(18):139-182.
    [55]Bishop S R,Holbom P G,Beard A N,et al.Nonlinear Dynamics of Flashover in Compartment Fires[J].Fire Safety Journal,1993(21):11-45.
    [56]Chow W K.New Inspection Criteria for Flashover in Compartmental Fires[J].Fire and Materials,1999,23(1):13-15.
    [57]Beard A N,Drysdale D D,Holbron P G,et al.A non-linear model of flashover[J].Fire science and technology,1992,12:11-27.
    [58]Bear A N,Drysdale D,Holbom P G,et al.A model of instability and flashover[J].Journal of appl ied fire science,1995,4(1):3-16.
    [59]Min-kyu LEE.A Study of dominant element of flashover effect with characteristic fire load[J].消防科学与技术,2004(1):15-19.
    [60]梁福明.2001.建筑室内火灾轰燃现象非线性动力学研究[D]:北京大学.
    [61]杜兰萍,马一太,刘圣春.标准房间火灾轰燃特性的实验研究[J].热科学与技术,2006(5):69-74.
    [62]Lattimer B Y,Vandsburger U,Roby R J.Species Transport from Post-Flashover Fires[J].Fire Technology,2005,41:235-254.
    [63]靳飞,李国强.全盛期室内火灾参数化模型的参数随机性[J].建筑科学与工程学报,2006,23:44-48
    [64]Dawson C W,Wilson P D,Beard A N.An artificial neural network for flashover prediction:A preliminary study[J].Lecture Notes in Computer Science,1998,1415:254-262.
    [65]Patrick M.Kennedy,etc.,Flashover and fire analysis-a discussion of the practical use of flashover analysis in fire investigations,www.firetactics.com/FLASHOVER%20KENNEDY,pdf.
    [66]Thomas P H.Testing products and materials for their contribution to flashover in rooms[J].Fire and Materials,1981,5(3):103-111.
    [1]Eric Stauffer,John J.Lentini,ASTM standards for fire debris analysis:a review[J].Forensic Science International,132(2003):63-67.
    [2]R.A.Schroeder,R.B.Williamson,Post-fire Analysis of Construction Materials-Gypsum Wallboard[J].Fire and Materials,24(2000):167-177.
    [3]Chen,C.Y.;Ling,Y.C.;Wang,J.T.;Chen,H.Y.,SIMS profiling analysis of electrical arc residues in fire investigation[J].Applied Surface Science,203-204(2003):779-784.
    [4]康怀宁.矿井火灾调查应当采用金相分析技术[J].煤炭学报,2001年03期:71-75.
    [5]E Stauffer,Concept of pyrolysis for fire debris analysts[J].Science & Justice 2003 43:29-40.
    [6]Jose R.Almirall,Kenneth G.Furton,Characterization of background and pyrolysis products that may interfere with the forensic analysis of fire debris[J].J.Anal.Appl.Pyrolysis 71(2004):51-67.
    [7]Beijing Tana,James K.Hardy,Ralph E.Snavely,Accelerant classification by gas chromatography/mass spectrometry and multivariate pattern recognition[J].Analytica Chimica Acta 422(2000):37-46.
    [8]Philip Doble,Mark Sandercock,Eric Du Pasquier,Peter Petocz,Claude Roux,Michael Dawson,Classification of premium and regular gasoline by gas chromatography/mass spectrometry,principal component analysis and artificial neural networks[J].Forensic Science International 132(2003):26-39.
    [9]B.K.Lavine,D.Brzozowski,A.J.Moores,C.E.Davidson,H.T.Mayfield,Genetic algorithm for fuel spill identification[J].Analytica Chimica Acta,437(2001):233-246.
    [10]P.M.L.Sandercock,E.Du Pasquier,Chemical fingerprinting of unevaporated automotive gasoline samples[J].Forensic Science International,134(2003):1-10.
    [11]P.M.L.Sandercock,E.Du Pasquier,Chemical fingerprinting of gasoline 2.Comparison of unevaporated and evaporated automotive gasoline samples[J].Forensic Science International,140(2004):43-59.
    [12]P.M.L.Sandercock,E.Du Pasquier,Chemical fingerprinting of gasoline Part 3.Comparison of unevaporated automotive gasoline samples from Australia and New Zealand[J].Forensic Science Intemational,140(2004):71-77.
    [13]王荣辉,宗若雯,王正洲,廖光煊.主成分分析法和Fisher判别方法在汽油分类分析过程中的应用[J].中国科学技术大学学报,36,2006:1331-1335.
    [14]查正根,宗若雯,李松阳,王荣辉,曾文茹.SPME/GC-MS在对火场残留物分析中的应用及其数据分析[J].火灾科学,16,2007:115-121.
    [15]宗若雯,廖光煊,王荣辉.化学模式识别技术在火灾调查中应用研究[R].第四届安徽科技论坛—海湾杯自主创新与消防实业发展研讨会,2006,11.
    [16]李松阳,宗若雯,支有冉.人工神经网络在火灾调查中的应用研究[R].第五届安徽科技论坛—海湾杯自主创新与消防实业发展研讨会,2007,11.
    [17]Williams F.A.Mechanisms of Fire Spread[R].Symposium(international)of Combustion,1975.
    [18]刘乃安.生物质材料热解失重动力学及其分析方法研究[D].中国科学技术大学,2000.
    [19]陆振荣.热分析动力学的新进展[J].无机化学学报,1998,2期:120-126.
    [20]B.Wielage,Th.Lampke,G.Marx,K.Nestler and D.Starke.Thermogravimetric and differential scanning calorimetric analysis of natural fibres and polypropylene[J].Thermochimica Acta,Volume 337,Issues 1-2,11 October 1999:169-177.
    [21]Joyce D.Sewry,Michael E.Brown."Model-free" kinetic analysis[J].Thermochimica Acta 390(2002):217-225.
    [22]R.H.White and M.A.Dietenberger.Wood Products:Thermal Degradation and Fire,Encyclopedia of Materials:Science and Technology,www.fpl.fs.fed.us/documnts/pdf2001/white01 a.pdf.
    [23]Fei Yao,Qinglin Wu,Yong Lei,Weihong Guo and Yanjun Xu.Thermal decomposition kinetics of natural fibers:Activation energy with dynamic thermogravimetric analysis[J].Polymer Degradation and Stability,Volume 93,Issue I,January 2008:90-98.
    [24]Wichman,I.S,Atreya,A.A Simplified Model for the pyrolysis o fcharring materials[J].Combust.Flame,1987,68:231-247.
    [25]Moghtaderi,B,Novozhilov,V;Fletcher,D.;Kent,J.H.An integral model for the transient pyrolysis of solid materials[J].Fire Mater.1997,21:7-16.
    [26]Staggs,J.E.J.A simplified mathematical model for the pyrolysis of polymers with inert additives[J].Fire Safety J.1999,32:221-40.
    [27]Staggs,J.E.J.Modelling thermal degradation of polymers using single-step first-order kinetics[J].Fire SafetyJ.1999,32:17-34.
    [28]Staggs,J.E.J.A theory for quasi-steady single-step thermal degradation of polymers[J].Fire Mater.1998,22:109-118.
    [29]张小芹,宗若雯,方廷勇等.火灾中木耳燃烧特性及数值模拟研究[J].燃烧科学与技术,2006,12:447-452.
    [30]Zhang Xiaoqin,Zong Ruowen,Yao Bin,Fan Weicheng.Preliminary Experimental Study of Different Scale on the Combustion Characteristics of Agaric in Fire[J].中国科学技术大学学报,2006,36:96-102.
    [31]Ruowen Zong,Xiaoqin Zhang,Songyang Li,We'nru Zeng,Guangxuan Liao.Investigation of a Combustible Material in the Fire of Hengyang Merchant's Building[J].Fire and Material,in press.
    [32]胡荣祖,史启桢.2001年.《热分析动力学》[M].科学出版社.北京.
    [33]沈兴.1995年.差热、热重分析与非等温固相反应动力学[M].冶金工业出版社.北京.
    [34]Kissiger HE,Anal Chem.1957,29,1702.
    [35]H.L.Friedman.Journal of Polymer Letter,4(1966)323.
    [36]Ozawa T.Bull Chem.Soc Jpn 1965,38:1881.
    [37]刘振海,自山立子.2006年.分析化学手册(第二版)第八分册,热分析[M].化学工业出版社.北京.
    [38]李余增.热分析[M].1987年.清华大学出版社.北京.
    [39]Bagchi.T.P,Sem P.K.Thermochinica Aeta 1981.51:175.
    [40]徐亮.典型热塑性装饰材料火灾特性研究[D].中国科学技术大学,2007
    [41]石安富,龚云表.工程塑料[M].上海科学技术出版社,1986,71.
    [42]钟世云,许乾慰,王公善.聚合物降解与热稳定性[M].化学工业出版社.
    [43]Shimasaki C,Watanabe N,Fukushima K,Rengakuji S,Nakamura Y,Ono S,Yoshimura T,Morita H.Takakura Mand Shiroishi A.Polym Degrad Stab 58:171(1997).
    [44]Fangrat J.;Hasemi Y.;Yoshida M.;Hirata T.Surface Temperature at ignition of wooden based slabs[J].Fire Safety Journal,1996.27:249-259.
    [45]Unger,P.E.,Suaberg,E.M.Modeling of Devolotilization Behavior of a Sorting Bituminous coal[C].18'h Symp.(Int.)on Combust.The Comb.Institute.1980:1203-1211.
    [46]伍作鹏,李书田.建筑材料火灾特性与防火保护[M].第一版.北京:中国建筑工业出版社,1999.
    [47]杨昀,张和平等.用锥形量热仪研究胶合板的燃烧特性[J].燃烧科学与技术,2006,12:159-163.
    [48]徐厚生.防火防爆,2004年.化学工业出版社.北京.
    [49]郑彬,赵绪新,张凌,马晓茜.基于热解动力学的有限空间轰燃预测模型[J].火灾科学,2003,12:146-150
    [50]马晓茜.基于Lechteilier法则的林木轰燃特性[J].燃烧科学与技术,第8卷(2002):224-226
    [51]郑彬,赵绪新,孙振刚,马晓茜.室内木质吊顶轰燃过程分析[J].火灾科学,2004,13:148-152.
    [1]Heselden,A J M,Melinek,S J.The early stages of fire growth in a compartment.A co-operative research programme of the CIB(Commission WI 4).First Phase[R].Fire Research note no.1029.
    [2]Holboren P G,Drysdale D D.Experimental and theoretical models of flashover[J].Fire Safety Journal,1993(21)-3:257-266.
    [3]Bishop S R,Drysdale D D.Nonlinear dynamics of flashover in compartment fires[J].Fire Safety Journal,1993(21)-1:11-45.
    [4]MC Luo,YP He,V Beck.Application of field model and two-zone model to flashover fires in a full-scale multi-room single level building[J].Fire safety journal,1997(29):1-25.
    [5]Lennon T,Moore D.The natural fire safety concept-full-scale tests at Cardington[J].Fire Safety Journal,2003(38):623-643.
    [6]任松发,任汉信,柯润.火灾调查模拟试验研究.武警学院学报.2003.19(1).39-41.
    [7]Drysdale,D D.An Introduction to Fire Dynamics.Wiley,Chichester,UK,1999.
    [8]Thomas P H,Bullen M L,Quintiere J G,et al.Flashover and instabilities in fire behavior[J].Combustion and Flame,1980(38):159-171.
    [9]Thomas P H.Fires and flashover in rooms - a simplified theory[J].Fire Safety Journal,1980(3):67-76.
    [10]Beard A N,Drysdale D D,Holbom P G,et al.Non-linear model of flashover[J].Fire Science and Technology,1992(12):11-27.
    [11]Graham T L,Makhviladze G M,Roberts J P.On the theory of flashover development[J].Fire Safety Journal,1995(25):229-259.
    [12]He Y.On Experimental Data Reduction for Zone Model Validation[J].Fire Sciences,1997(15):144-161.
    [13]Philip J.DiNenno,P.E.et.al,.SFPE,Handbook of,Fire Protection Engineering,Third
    Edilion,National Fire Protection Association(NFPA);2002.
    [14]Beard A N,Drysdale D D,Bishop S R.A non-linear model of major fire spread in a tunnel[J],Fire Safety Journal,1995(14):333-357
    [1] Kanury, A. M ., Scaling correlations of flashover experiments[R]. National Bureau of Standards, Gaithersburg, MD, October 1983, NBS-GCR-83-448.
    [2] Blinov, V. I., Khudyakov, G. N., Diffusion Burning of Liquids[C]. Academy of Science, Moscow, 1961, pp.93-100.
    [3]D.B. Spalding, H.C. Hottel, S.L. Bragg, A.H. Lefebvre, D.G. Shepherd, A.C. Scurlock.The art of partial modeling[C], Symposium (International) on Combustion, Volume 9, Issue 1, 1963, Pages 833-843
    [4]Yetter, R. A., Saito, K. Emori, R. I., On the role of sensitivity analysis in scale model development and evaluation[C]. In First Symposium(International)on Scale Modeling, Tokyo, Japan, July. 1988, 380.
    [5]Williams, F.A., Scaling mass fire [J]. Fire Research Abstract and Reviews, 11 (1969) 1-23.
    [6]J. G. Quintiere, Scaling applications in fire research[J]. Fire Safety Journal, 1989, 15(1): 1-12.
    [7]T.C. Waterman. Room flashover scaling of fire conditions[J]. Fire Technology, 1969, 5(1): 32-65.
    [8] P.H. Thomas. Dimensional analysis: a magic art in fire research? [J].Fire Safety Journal, 2000, 34(2): 111-141.
    [9] G. Heskestad. Physical modeling of fire[J]. Journal of Fire and Flammability, 1975, 6(3):253-273.
    [10]T. L. Graham, G. M. Makhviladze & J. P. Roberts, On the theory of flashover development. Fire Safety Journal, 25 (1995) 229-259.
    [11] Thomas P H, Bullen M L, Quintiere J G, et al. Flashover and instabilities in fire behavior[J] Combustion and Flame, 1980(38): 159-171.
    [12] Thomas P H. Fires and flashover in rooms - a simplified theory [J]. Fire Safety Journal, 1980(3): 67-76.
    [13] Zukoski, E. E., Development of a stratified ceiling layer in the early stages of a closed room fire. Fire Materials, 2 (1978) 54-62.
    [14] Alpert, R. L., Calculation of response time of ceiling-mounted fire detectors. Fire Technol., 8 (1972)181-195.
    [15]S. R. Bishop, P. G. Holborn, A. N. Beard & D. D. Drysdale, Nonlinear dynamics of flashover in compartment fires [J]. Fire Safety Journal, 21 (1993) 11-45.
    [16]陈义良,物理流体力学,(2006)102-105.
    [17]V.Babrauskas,Estimating Large Pool Fire Burning Rates.Fire Technology[R],1983,19(04):251-261
    [1]秦文岸,计算机仿真技术在火灾研究中的应用[EB/OL],http://www.fireren.com/article/.lunwen/2004421223423.htm
    [2]DiNenno,P.J.;Drysdale,D.;Beyler,C.L.;Walton,W.D.,Zone Computer Fire Models for Enclosures[M].SFPE Handbook of Fire Protection Engineering.Chapter 7.Section 3.NFPA HFPE-02.
    [3]Mower.The right tool for the job[J].Fire protection engineering.2002(13):39-46.
    [4]汪箭,陈贤富,杨锐,范维澄.计算机模拟与可视化技术在火灾科学研究中的应用[J].火灾科学.2001,10(3):39-46.
    [5]丛北华,廖光煊,韦亚星.计算机模拟在火灾科学与工程研究中的应用[J].防灾减灾工程学报,2003,23:63-69.
    [6]霍然,胡源,李元州.1999.建筑火灾安全工程导论[J].中国科技大学出版社.
    [7]Kerrison L,Mawhinney N,Galea E R,et al.A Comparison of two field models with experimental room fire data[R].Fire Safety Science:Proceedings of the 4th International Symposium,1994:161-172.
    [8]N.Khoudja,Procedures for Quantitative Sensitivity and performance validation of a deterministic fire safety model[S].National Bureau of Standards,Washington DC,USA,NB-GLR-99-544,1988.
    [9]Inberg S H.1927.Fire tests of office occupancies[S].NFPA Quarterly 20:243.
    [10]Graham TL,Makhviladze GM,Robertsj P.On the theory of flashover development[J].Fire Safety Journal.1995,25:2292259.
    [11]Peacock R D,Peneke P A,Bukowski R W,et al.Defining flashover for fire hazard calculations[J].Fire Safety Journal.1999,32:3312345.
    [12]Peacock R D,Fomey G P,Reneke P,Porter R,et al.CFAST,the consolidated model of fire growth and smoke transport[J].National Institute of Standards and Technology.Gaithersburg,Md.NIST Technical note 1299.February 1993.
    [13]Jones W W,A multi-compartment model for the spread of fire[J].Smoke and toxic gases,fire safety journal.1985,9:55-79.
    [14]Ieove D J,Dehaan J D.Forensic Fire Scene Reconstruction[J].Upper Saddle River,New Jersey,2004.
    [15]Mingchun Luo,Yaping He,Beck V.Application of Field Model and Two-zone Model to Flashover Fires in a Full-scale Multi-room Single Level Building[J].Fire Safety Journal.1997(29): 1-25.
    [16]Burnette G E.2003.Fire scene investigation[R].The Daubert challenge.Personal communication(also see www.interfire.org).
    [17]范维澄,孙金华,陆守香等.2004年.火灾风险评估方法学[M].科学出版社,北京.
    [18]Kevin McGrattan,Bryan Klein,Simo Hostikka,Jason Floyd.Fire Dynamics Simulator(Version 5),User's Guide NIST Special Publication 1019-5.
    [19]Madrzykowski D.2000.The future of fire investigation.Fire Chief October:44-50.
    [20]Tzusheng Shen,Yuhsiang Huang,Shenwen Chien.Using fire dynamic simulation(FDS)to reconstruct an arson fire scene[J].Building and Environment,2008(43):1036-1045.
    [21]Verification and Validation of Selected Fire Models for Nuclear Power Plant Applications.NUREG 1824[R],United States Nuclear Regulatory Commission,Washington,DC,2007,31.
    [22]D.W.Marquardt,An Algorithm for Least Squares Estimation of Non-Linear Parameters[J],Journal of the Society of Industrial and Applied Mathematics,1963,11,431-441.
    [1]Icove D J,Dehaan J D.Forensic fire scene reconstruction[M].New Jersey:Brady,2004
    [2]ISO 834.Fire resistance tests-elements of building construction[S].Geneva,Switzerland:International Standard Organization,1975
    [3]ASTM-119-98.Standard test methods for fire testing of building construction and materials[S].Philadelphia:American Society for Testing and Materials,1998
    [4]External fire curve—Section 3.2.2.Eurocode 1,actions on structures—Parts 1-2:general action—actions on structures exposed to fire—EN 1991-1-2[S].Brussels:CEN,2002
    [5]Barnet C R.BFD curve:a new empirical model for fire compartment temperatures[J].Fire Safety J,2002,37(5):437-463
    [6]Versteeg H K,Malalasekera W.An introduction to computational fluid dynamics.The finite volume method[M].Essex,England:Longman Scientific & Technical,1995
    [7]Richard D P,Babrauskas V,et al.Defining flashover for fire hazard calculations[J].Fire Safety J,1999,32(4):331-345
    [8]Babrauskas V,Richard D P,et al.Defining flashover for fire hazard calculations:Part Ⅱ[J].Fire Safety J,2003,38(7):613-622
    [9]宋虎,杨立中,范维澄.通风开口对轰燃影响的数值模拟[J].火灾科学,2001,10(3):167-170
    [10]Babrauskas V.Estimating room flashover potential[J].Fire Technology,1980,16(2):94-104
    [11]Meeaff-rey B J,Quintiere J G,Harkleroad M F.Estimating room fire temperature and the likelihood of flashover using fire test data correlation[J].Fire Technology,1981,17(2):98-119
    [12]Thomas P H.Testing products and materials for their contribution to flashover in rooms[J].Fire and Materials,1981,5(3):103-111
    [13]Barnett C R.Replacing international temperature-time curves with BFD curve[J].Fire Safety J,2002,42(4):321-327
    [14]Law M,O'Brien T.Fire safety of bare external structural steel[M].London:Constrado,1968
    [15]Kim H J,David G L.Heat release rates of burning items in fires[C].Aerospace Sciences Meeting and Exhibit,38th,Reno,NV,Jan.10-13,2000
    [16]张和平,王蔚等.全尺寸墙角火实验中木工板表面火蔓延研究[J]:燃烧科学与技术,2004.12(6):506-510
    [17]杨昀,张和平等.用锥形量热仪研究胶合板的燃烧特性[J].燃烧科学与技术,2006,4(2):159-163
    [18]Akiko N,Norichika K,et al.Development of a Simple Estimation Method of Heat Release Rate based on Classification of Common Combustibles into Category Groups[J].Fire Science and Technology, 2006,25 (1): 31 - 54
    [19] Mcgrattan K, et al. Fire dynamics simulator (version 4)—technical reference guide [M]. NIST Special Publication 1018, BFRL, NIST, 2004
    [20] Petterson N. Assessing the feasibility of reducing the grid resolution in FDS field modeling [R]. New Zealand: University of Canterbury, Christchurch, 2002
    [21] BABRAUSKAS V. Combustion of mattresses exposed to flaming ignition sources, Part I, Full-scale tests and hazard analysis. Natl Bur Stand (U.S.), NBSIR 77-1290,1977
    [22] SFPE Handbook of Fire Protection Engineering, 3rd Edition [M]. Quincy, MA: National Fire Protection Association, 2002, 3 - 26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700