高偏振稳定光子晶体光纤及其与超辐射发光二极管耦合特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
偏振保持光子晶体光纤由于具有双折射系数高、温度稳定性好、结构设计灵活、不受核辐射影响等特点,因此替代传统保偏光纤在外太空及核辐射领域用作光纤传感器的核心部件,越来越受到人们的重视。论文结合国家自然科学基金项目“基于偏振保持光子晶体光纤的光纤陀螺研制”,主要研究光子晶体光纤的偏振特性并探索一种可用于光纤陀螺的高偏振稳定性的偏振保持光子晶体光纤结构。在理论分析的基础上,论文提出了一种新型的具有椭圆内包层的高双折射光子晶体光纤结构,并证明所设计的光纤不仅在理想情况下具有良好的高双折射性能,而且当结构偏离理想设计时,其双折射性能仅有很小的劣化。在保证高双折射以及偏振稳定性的基础之上,论文又进一步对所提结构稍作修改,获得了小模场直径的高双折射光子晶体光纤。在此基础上进一步分析了这种光纤在光纤陀螺中的应用及其与超辐射发光二极管(SLD)的耦合特性。这种光纤在以光纤陀螺为代表的光纤传感领域有着很广阔的应用前景。
     论文的主要研究工作如下:
     1,对偏振保持光子晶体光纤(PM-PCF)的结构、工作机理和偏振特性进行了深入分析。
     2,课题组提出一种新型的高偏振稳定的光纤陀螺用偏振保持光子晶体光纤。数值分析了这种新结构光子晶体光纤在三种不同微扰参数情况下的模场分布及双折射特性,并验证了它们具有更强的抵抗结构微扰的能力。
     3,SLD与PM-PCF的模场分析,以及SLD与PM-PCF的耦合特性分析。分析了调整耦合角度,偏移距离对耦合效率和消光比的影响。
Photonic crystal fiber (PCF) consisting of its high birefringence factor, temperature stability, flexible structural design and free from nuclear radiation, has replace the traditional polarization maintaining fiber used for the core component of the optical fiber sensors in the field of outer space and nuclear radiation. The paper based on National Natural Science Foundation project" FOG Development based on polarization maintaining the photonic crystal fiber ", research in the polarization characteristics of the photonic crystal fiber and the structure of PM-PCF which can be used to develop a high-polarization maintaining FOG The paper propose a new inner cladding structure with near elliptic refractive index distribution., and prove that this Near-Elliptic Inner Cladding PCF, not only has a good high birefringence properties in ideal circumstances, but its birefringence only has a very small deterioration when deviating from ideal structure. In ensuring high birefringence and polarization-stability, the paper further propose some structural changes to obtain a small-diameter field of high birefringence photonic crystal fiber, then further analyze this fiber used in FOG, and its coupling with SLD. This fiber has a broad prospect in the fiber optic gyroscope as the representative in the field of fiber sensor.
     The main researches in the thesis are as follows:
     1. Polarization Maintaining Photonic Crystal Fiber is analyzed in its structure, working mechanism, and other characteristics. PM-PCF has much higher birefringence than traditional PCF.
     2. The project team propose a new type of PM-PCFs used in high-polarization stable fiber optic gyroscope. The paper analyze the mode field distribution and birefringence properties of this new structure of PCF in three different structure perturbation, and verify that this fiber has a stronger ability to resist structural perturbation.
     3. The paper analyzes the mode field of SLD and PM-PCF, and their coupling characteristics. Further more, the analysis of the coupling efficiency and extinction ratio in different coupling angle and offset distance are proposed in this dissertation.
引文
[1]E.Yablonovitch.Inhibited Spontaneous Emission in Solid-State Physics and Electronics.Phys.Rev.Lett..1987.58(20).2059-2061
    [2]S.John.Strong Localization of Photons in Certain Disordered Dielectric Superlattices.Phys.Rev.Lett..1987.58(23).2486-2489
    [3]P.Yeh,A.Variv,C.S.Hong.Electromagnetic Propagation in Periodic Stratified Media.I.General Theory.Opt.Soc.Am..1977.67.423-438
    [4]M.Koshiba,K.Saitoh 2003 Appl.Opt.42 6267
    [5]K.M.Ho,C.T.Chan,C.M.Soukoulis.Existence of a Photonic Gap in Periodic Dielectric Structures.Phys.Rev.Lett..1990.65.3152-3155
    [6]E.Yablonovitch,T.J.Gmitter,K.M.Ho.Photonic Band Structure:The Face-centered-cubic Case Employing Nonspherical Atoms.Phys.Rev.Lett..1991.67(17).2295-2298
    [7]J.D.Joannopoulos,R.D.Meade,J.N.Winn.Photonic Crystals:Molding the Flow of Light.New York.Princeton University Press.1995
    [8]K.Yoshino,Y.Shimoda,Y.Kawagishi,et al.Temperature Tuning of the Stop Band in Transmission Spectra of Liquid-crystal Infiltrated Synthetic Opal As Tunable Photonic Crystal.Appl.Phys.Lett..1999.75(7).932-934
    [9]S.Gupta,G.Tuttle,M.Sigalas,et al.Infrared Filters Using Metallic Photonic Band Gap Structures on Flexible Substrates.Appl.Phys.Lett..1997.71.2412-241
    [10]S.Foteinopoulou,A.Rosenberg,M.M.SigMas,et al.In- and Out-of-plane Propagation of Electromagnetic Waves in Low Index Contrast Two Dimensional Photonic Crystals.J.Appl.Phys..2001.89(2).824-830
    [11]T.M.Monro,D.J.Richardson.Holey optical fibres:Fundamental Properties and Device Applications.C R Physique.2003.(4).175-186
    [12]M.D.Nielsen,J.R.Folkenberg,et al.Bandwidth Comparison of Photonic Crystal fibers and Conventional single-mode fibers.Opt.Express.2004.12(3).430-435
    [13]M.Yan,P.Shum.Antiguiding in Microstructured Optical Fibers.Opt.Express.2004.12(1)104-116
    [14]J.C.Gates,C.W.J.Hillman,J.C.Baggett,et al.Structure and Propagation of Modes of Large Mode Area Holey fibers.Opt.Express.2004.12(5).847-852
    [15]Y.C.Cho,L.M.Lee,J.C.Chen,S.L.Huang,F.J.Kao.Fabrication of nonlinear photonic crystal fiber,in proc.CLEO/Pacific Rim 2003.Dec.2003.2(15-19).752
    [16]D.W.,Y.D.West,N.G.R.Broderick,et al.The fabrication and modeling of non-silica microstructured optical fibers,in Proc.OFC2001.2001.2.TuC4-1-TuC4-3
    [17]A.D.Fitt,K.Furusawa,T.M.Monro,C.P.Please.Modeling the fabrication of hollow fibers:capillary drawing.J.Lightwave Technol..Dec.2001.19(12).1924-1931
    [18]A.B.Fedotov,A.V.Tarasishin,B.A.Kirillov,et al.Holey fibers with 0.4-32-/splmu/m-pitch photonic band-gap cladding:fabrication,characterization,and non-linear optical applications,in proc.Quantum Electronics and Laser Science Conference.2001.78
    [19]P.St.J.Russell.Photonic Crystal Fibers.Science.2003.299(5605).358-362
    [20]T.M.Monro,D.J.Richardson.Holey optical fibres:Fundamental Properties and Device Applications.C R Physique.2003.(4).175-186
    [21]K.Suzjk,H.Kubota,S.Kawanishi.Optical Properties of a low-loss Polarization-Maintaining Photonic Crystal Fiber.Opt.Express.2001.9(13).676-680
    [22]A.O.Blanch,J.C.Knight,W.J.Wadsworth.Highly Birefringent Photonic Crystal Fibers.Opt.Lett..2000.25(18).1325-1327
    [23]T.P.Hansen,J.Broeng,S.E.B.Libori.Highdy Birefringen Index-Guiding Photonic Crystal Fibers.IEEE Photon.Technol.Lett..2001.13(6).588-590
    [24]S.B.Libori,J.Broeng,S.E.B.liboril.Hight-Birefringent Photonic Crytal Fiber.in proc.OFC2001.2001.54(2).1-3
    [25]M.J.Steel,R.M.Osgood.Elliptical-Hole Photonic Crystal Fibers.Opt.Lett..2001.26(4).229-231
    [26]M.J.Steel,R.M.Osgood.Polarization and Dispersive Properties of Elliptical-Hole Photonic Crystal Fibers.J.Lightwave Technol..2001.19(4).495-503
    [27]D.Mogilevtsev,J.Broeng,S.E.Barkou.Design of Polarization-preserving Photonic Crystal Fibers with Elliptical Pores.J.Opt.A:Pure Appl.Opt.2001.3.141-143
    [28]Z.Wan,G.B.Ren,S.Q.Lou.Dependence of Mode Characteristics on the Central Defect in Elliptical Hole Photonic Crystal Fibers.Opt.Express.2003.11(17).1966-1979
    [29]M.Large,A.Argyros,G.Barton.Microstructured Optical Fibers:Why Use Polymers.in proc.ECOC2003.Rimini,Italy.2003.21-25
    [30]J.R.Folkenberg;M.D.Nielsen;H.R.Simonsen,et al.Large Mode-area Polarization Maintaining Photonic Crystal Fibers.in proc.ECOC2004.2004.Paper Mo4.3.2
    [31]A.Ortigosa - Blanch,A.Diez,M.Delgado-Pinar,et al.Microstructure Fiber with Ultra-High Birefringence.in proc.ECOC 2004.2004.Paper Mo4.3.6
    [32]Lou Shuqin,Wang Zhi,Ren Guobin,Jian Shuisheng.Polarization-maintaining Photonic Crystal Fiber.Chinese Physics.2004.13(7).1052-1058
    [33] T. A. Birks, J. C. Knight. Endlessly Single-Mode Photonic Crystal Fiber. Opt. Lett.. 1997. 22(13). 961-963
    
    [34] A. Peyrilloux, S. Fevrier. Comparision between the Finite Element Method, the Localized Function Method and a Novel Equivalent Averaged Index Method for Modelling Photonic Crystal Fibres. J. Opt. A: Pure Appl. Opt.. 2002.4.257-262
    
    [35] J. C. Knight, T. A. Birks. Properties of Photonic Crystal Fiber and the Effective Index Model. J. Opt. Soc. Am. A. 1998.15(3). 748-752
    
    [36] M. Koshiba, K. Saitoh 2003 Appl. Opt. 42 6267
    
    [37] K. Saitoh, M. Koshiba 2001 J. Light. Tech. 19 405
    
    [38] M. Koshiba, Y. Tsuji 2000 J. Light. Tech. 18 737
    
    [39] K. Suzuki, H. Kubota, S. Kawanishi 2001 Opt. Expr. 9 676
    
    [40] J. W. H. Liu 1992 SIAM Rev. 34 82
    
    [41] S. P. Guo, S. Albin. A Simple Plane Wave Implementation Method for Photonic Crystal calculations. Opt. Express. 2003. 11(2). 167-175
    
    [42] Rossella Zolil, Marco Gnanl, Davide Castaldinil, Gaetano Bellanca2, Paolo Bassil. Reformulation of the plane wave method to model photonic crystals. Opt. Express 11. 2003. 2905-2910
    
    [43] M. Qiu. Analysis of Guided Modes in Photonic Crystal Fibers Using the Finite-Difference Time-Domain Method. Microwave Opt. Technol. Lett.. 2001. 30(5). 327-330
    
    [44] M. J. Steel, H. L. Rao. Simulation Tools for Calculating Loss in Microstructured Optical Fiber, in proc. SPIE. 2003.4998. 97-104
    
    [45] K. S. Yee. Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media. IEEE Trans. Antennas and Propagat.. 1966.14. 302-307
    
    [46] A. J. Ward, J. B. Pendry. Refraction and Geometry in Maxwell's Equations. J. Modern Opt.. 1996.43.773-793
    
    [47] Y. J. Zhu, Y. C. Chen, P. Huray, et al. Application of a 2D-CFDTD algorithm to the analysis of photonic crystal fibers (PCFs). Microwave Opt.ical Technol. Lett.. 2002. 35. 10-14
    
    [48] F. Fogli, L. Saccomandi, P. Bassi, et al. Full vectorial BPM modeling of index-guiding photonic crystal fibers and couplers. Opt. Express. 2002. 10.54-59
    
    [49] F. G Shi. Finite-Difference Imaginary-Distance Beam Propagation Method for Modeling of the Fundamental Mode of Photonic Crystal Fibers. Opt. Commun.. 2003. 225. 151-156
    
    [50] M. Koshiba. Full-Vectorial Imaginary-Distance Beam Propagation Method Based on a Finite Element Scheme: Application to Photonic Crystal Fibers. IEEE J. Quantum Electron.. 2002. 38(7). 927-933
    [51]T.M.Monro,D.J.Richardson,N.G.R.Broderick,et al.Modeling large air fractio holey optical fibers.J.Lightwave Technol..2000.18.50-56
    [52]Wang Z,Ren G.B,Lou S Q,et al.Supercell Lattice Method for Photonic Crystal Fibers.Opt.Express.2003.11(9).980-991
    [53]任国斌,王智,娄淑琴等.椭圆孔光子晶体光纤的本地正交函数模型.物理学报.2004.53(2).484-489
    [54]S.Guenneau,S.Lasquellec.Modeling of Photonic Crystal Optical Fibers with Finit Elements.IEEE Trans.Magnetics.2002.38(21).1261-1264
    [55]A.Peyrilloux,S.Fevrier.Comparision between the Finite Element Method,the Localized Function Method and a Novel Equivalent Averaged Index Method for Modelling Photonic Crystal Fibres.J.Opt.A:Pure Appl.Opt..2002.4.257-262
    [56]T.Fujisawa,M.Koshiba.Finite Element Characterization of Chromatic Dispersion in Nonlinear Holey Fibers.Opt.Express.2003.11(13).1481-1489
    [57]S.S.A.Obayya,B.M.A.Rahman,K.T.V.Grattan.Accurate finite element modal solution of photonic crystal fibres,in IEE Proc.Optoelectron..Oct.2005.152.5
    [58]娄书琴.保偏光子晶体光纤的研究[博士学位论文].北京交通大学图书馆.北京交通大学.2005.56-67
    [59]J.Ju,W.Jin,M.S.Demokan.Design of Single-Polarization Single-Mode Photonic Crystal Fiber at 1.30 and 1.55 μm.J.Lightwave Technol..Feb.2006.24.2
    [60]Kunimasa Saitoh,Masanori Koshiba.Single-Polarization Single-Mode Photonic Crystal Fibers.IEEE Photon.Technol.Lett..2003.15(10).1284-1386
    [61]娄淑琴,王智,任国斌,简水生.“折射率导模高双折射光子晶体光纤的偏振特性.电子学报.2005.33(3).82-87
    [62]W.K.Burns,A.D.Kersey.Fiber-Optic Gyroscopes with Depolarized Light.J.Lightwave Technol..1992.10(5).
    [63]延凤平.消偏干涉型光纤陀螺的研制[博士学位论文].北方交通大学.1996.
    [64]L.Wang,et al.A highly efficient polarized superfluorescent fiber source for fiber-optic gyroscope applications.IEEE Photon.Technol.Lett..Oct.2003.15(10).1357-1359
    [65]R.Zhang,et al.Research on depolarized technology of interferometric all-fiber optic depolarized gyroscope.J.Shanghai Jiaotong University.Jan.2003.37(1).145-148
    [66]Y.W.Lee,J.Jung,B.Lee.Multiwavelength-switchable SOA-fiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter.IEEE photon,technol.Lett.2004.16(1).54-56
    [67]H.C.Lefever.The fiber-optic gyroscope.New York.Artech Housem Inc.1993.
    [68]K.Saitoh,M.Koshiba 2002 IEEE J.Quan.Elec.38 927
    [69]J.W.H.Liu 1992 SIAM Rev.34 82
    [70]G.Agrawal 1995 Acad.Press(San Diego,CA)2dn Edit.
    [71]M.J.Steel,T.P.White,C.Martijn 2001 Opt.Lett.26 488
    [72]Lou S Q,Ren G B,Yan F P,Jian S S 2005 Acta Phys.Sin.54 1229(in Chinese)[娄淑琴、任国斌、延凤平、简水生 2005 物理学报 54 1229]
    [73]S.C.Rashleigh and R.Ulrich,"Polarization mode dispersion in single-mode fibers,"OPti.lett.,Vol.8,No.3,60-62
    [74]A.Yariv,P.Yeh;Optical Waves in Orystals,New York,1984,132
    [75]Ymada J I,Murakami Y,Sakai J I.et al.characteristics of a hemispherical microlens for coupling between asemiconductor laser and single-mode fiber[J].IEEE Journal of Quantum Electronics,1980,16(10):1067-1072.
    [76]王贵甫 贺安之 李振华 汪绳武.SLD 光源对光纤陀螺性能的影响.传感器与微系统.2006.Vol.25,33.28-30
    [77]计敏,易向阳,唐祖荣,陈其道,罗江财.1.3μm波长超辐射发光二极管组件.半导体光电.1995.01 23
    [78]谢辉 郑云生 马宏 超辐射发光二极管组件.光通信技术.2004.Vol.4 28-30
    [79]韦文生,周克足,张春熹,王天民 超辐射LD与带类球透镜保偏光纤的耦合技术.激光与红外.2005.35 272-274
    [80]刘骁,陈于武,杨瑶 锥形微透镜保偏光纤与超辐射发光二极管的耦合 半导体光电2006.27 294-296
    [81]K.Saitoh,M.Koshiba 2002 IEEE J.Quan.Elec.38 927

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700