不同温度和浓度梯度下磁流体双扩散对流的格子Boltzmann方法模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
格子Boltzmann方法(Lattice Boltzmann Method, LBM)是基于微观层面上的一种新的数值模拟方法。LBM是把研究对象抽象为在微观上比分子大,在宏观上又无限小的微观粒子来研究。与传统数值模拟方法相比,LBM具有物理图像清晰、边界处理容易、计算效率高、本质并行性等独特优点。目前,LBM己成功应用于微尺度流动与换热、多孔介质、磁流体力学、晶体生长等许多领域。
     本论文是用格子Boltzmann方法来模拟不同温度浓度梯度下矩形腔内二元混合导电气体的双扩散对流。我们采用常用的温度浓度格子Bhatnagar-Gross-Krook(TCLBGK)模型,并用D2G9模型来模拟速度场,用D2Q4模型模拟温度场和浓度场。并且认为矩形腔的上下壁是绝热的,左右壁温度和浓度是变化的,磁场沿x轴方向均匀加在矩形腔内。在模拟计算中,我们取Prandtl数Pr=1,Lewis数Le=2,热Raleigh数RaT=105,Hartmann数Hα=0,25,50,无量纲热产生和热吸收量Φ=0,方腔长宽比A=2,浓度与温度的效应比N=0.8,1.3。为了更详细的反映矩形腔左右壁温度浓度对双扩散对流的影响,我们分别模拟了左右壁温度梯度从下往上由0线性增加到2.0而浓度梯度不变为常数1.0、浓度梯度从下往上由0线性增大到2.0而温度梯度不变为常数1.0和温度浓度梯度都是由0线性增大到2.0时三种情况下的双扩散对流。
     数值结果表明:对于第一种情况,在磁场强度Ha的取值范围内时,N=0.8和N=1.3对流都出现了明显的分层现象,且分为上层由热浮力效应驱动的沿顺时针方向旋转的热流动和下层由浓度浮力效应驱动的沿逆时针方向旋转的传质流动。在矩形腔的中上部温度梯度大于常浓度梯度的区域,热对流占主要地位;然而,在矩形腔的下部温度梯度小于常浓度梯度的区域,浓度梯度驱动的传质对流占主要地位。这种现象表明温度梯度越大热对流越强。
     对于第二种情况,在磁场强度Ha的取值范围内时,N=0.8和N=1.3对流也分方向相反的上下两层,但浓度浮力效应驱动的逆时针旋转的传质对流在上部,且占据了空腔的大部分区域,而热浮力效应驱动的顺时针热流动占据下部的小部分区域。此现象表明浓度梯度对溶质扩散对流有重要的影响。且当Ha=0时,无论N=0.8还是N=1.3,在空腔下部区域都出现了溶质扩散停滞现象,但随着Ha的增大,传质区域增大。这表明此情况下磁场可以加强传质对流。
     对于第三种情况,浓度梯度与温度梯度相互影响,对于N=0.8,热浮力效应占主导地位,流线基本没有出现分层现象,整个流场区域几乎只有热流动在沿顺时针方向旋转;对于N=1.3,浓度效应占主导地位,对流出现了明显的分层,但沿逆时针方向旋转的溶质扩散对流占据了空腔的大部分区域。此种情况表明浓度梯度和温度梯度相同时,传质对流和传热对流的强弱分别取决于各自的浮力效应。
The lattice Boltzmann method is a new numerical scheme based on microscopic model for fluids flow. According to LBM, fluid particles are much larger than the molecules on the microscopic level. However, on the macroscopic level, fluid particles are' infinitely small. Compared with the traditional Computational Fluid Dynamics (CFD) methods, LBM has many unique advantages, such as simple codes, easy implementation of boundary conditions, and fully parallelism. These features make LBM apply successfully to many fields, such as microscale flow and Transfer, the porous media, magnetohydrodynamics, the crystal growth etc.
     In this paper, the two-dimensional, hydromagnetic double-diffusive convection of a binary gas mixture is simulated by a temperature-concentration lattice Bhatnagar-Gross-Krook (TCLBGK) model in a rectangular enclosure with the top and bottom walls being insulated, while linearly variable temperature or concentration gradient or both are imposed along the left and right walls from the bottom to the top and a uniform magnetic field is applied in x-direction. We take the Prandtl number Pr=1, the Lewis Le =2, the thermal Raleigh numberRaT=105, the Hartmann number Ha=0,25,50, the dimensionless heat generation or absorption (?)=0, the aspect ration A=2 for the enclosure and the ratio of buoyancy forces N=0.8,1.3. For more details about temperature and concentration gradients on the impact of double-diffusive convection, there are three possible circumstances to consider about the left and right walls of the cavity. One is that linearly variable temperature and constant concentration are imposed along the left and right walls, another is that constant temperature and linearly variable concentration are imposed along the two walls, the other is linearly variable temperature and linearly variable concentration.
     In the first case, the calculation was firstly carried out at various values of the Hartmann number Ha for Le=2.0, N=0.8 and 1.3. The streamlines at N=0.8 and 1.3 are obviously stratified throughout the Ha range, and each recirculation cell splits into two smaller circulating cells of opposite directions situated close to each of the insulated upper and lower walls. The temperature gradient is larger than the constant concentration that in the upper part of the rectangular cavity, a large central clockwise thermal recirculation closes to the insulated upper wall. It is shown that thermal convection is stronger when temperature gradient is larger. For the second case, compared with the first case, however, there are some differences between them. For N=0.8, the flow is still primarily dominated by thermal buoyancy effects, but a large central clockwise thermal recirculation closes to the insulated lower wall, for N=1.3, the flow is also mainly dominated by compositional buoyancy effects, whereas, a big counterclockwise compositional recirculation exists in the insulated upper wall. It is found that variable concentration gradient has influence on the mass transfer. In the last case, For N=0.8, the zone of heat transfer ocuppies the cavity almost exclusively. For N=1.3, the diffusion of solute ocuppies the cavity almost exclusively. This situation shows that the strength of convection of the mass transfer and heat transfer depends on the strength of their buoyancy, respectively, when the concentration and temperature gradients are the same.
引文
[1]Batchelor G K. An Introduction to Fluid Dynamics[M]. Cambridge:Cambridge University Press,1970.
    [2]何雅玲,王勇,李庆.格子Boltzmann方法的理论及应用[M].北京:科学出版社,2009.
    [3]朱立明,柯葵.流体力学[M].上海:同济大学出版社,2009
    [4]赵秀艳.金属射流的MHD特性分析[D].山东:山东农业大学,2009
    [5]郭照立,郑楚光,李青.流体动力学的格子Boltzmann方法[M].湖北:湖北科学技术出版社,2002
    [6]彭伟.格子Boltzmann方法基本模型比较及应用[D].湖北:华中科技大学,2004
    [7]蒋荣勤.高雷诺数下格子Boltzmann方法的应用研究[D].哈尔滨:哈尔滨工程大学,2008
    [8]Wolfram S. Cellular automation fluids I:Basic theory[J]. J. Stat. Phys,1986,45: 471-529.
    [9]Frisch U, dHumi'e eres D, Hasslacher B et al. Lattice gas hydrodynamics in two and three dimensions[J]. Complex Systems,1987,1:649-707.
    [10]郭照立,郑楚光.格子Boltzmann方法的原理及应用[M].北京:科学出版社,2009
    [11]McNamara G R, Zanetti G. Use of the Boltzmann equation to simulate lattice gas automata[J]. Phy. Rev. Lett.,1988,61:2332-2335
    [12]Higuera F, Jimenez J. Boltzmann approach to lattice gas simulation[J]. Europhys.Lett, 1989,9:663-668
    [13]Chen S, Chen H, Martinez D O, and Matthaeus W H. Lattice Boltzmann model for simulation of magnetohydrodynamics[J]. Phys.Rev. Lett.1991,67:3776-3779.
    [14]Koelman J. A simple lattice Boltzmann scheme for Navier-Stokes fluid flow[J]. Europhys.Lett.1991,15:603-607.
    [15]Qian Y, d'Humieres D, and Lallemand P. Lattice BGK models for Navier-Stokes equation[J]. Europhys.Lett.1992,17:479-484
    [16]段杰峰LBGK模型的分布式并行算法研究及其实现[D].上海:上海大学,2007.
    [17]余亮.求解变系数对流扩散方程的一类新的LBGK格式[D].湖北:华中科技大学,2008.
    [18]胡守信.直管道中绕平板面流动的格子气仿真[J].计算物理,1989,6:457-464
    [19]李元香.格子气流体动力学的九点矩模型[J].武汉大学学报(并行计算专刊),1991,22-31
    [20]郭亚丽.纳米流体固着液滴蒸发等流动与传热问题的LBM分析[D].大连:大连理工大学,2009.
    [21]郑林.微尺度流动与传热的格子Boltzmann方法模拟[D].湖北:华中科技大学,2006.
    [22]陈兴旺.不可压磁流体的LBGK模型[D].湖北:华中科技大学,2006.
    [23]Inamuro T, Konishi N, Ogino F. A Galilean invariant model of the lattice Boltzmann method for multiphase fluid flows using free-energy approach. Computer Physics Communications[J].2000,129:32-45
    [24]Luo L S. Theory of lattice Boltzmann method:lattice Boltzmann models for nonideal gases[J]. Physical Review E.2000,62(4):4982-4996
    [25]He X, Shan X, Doolen G.. Discrete Boltzmann equation model for non-ideal gases[J]. Physical Review E(R).1998,57(1):13-16
    [26]Dardis O, McCloskey J. Lattice Boltzmann scheme with real numbered solid density for the simulation of flow in porous media[J]. Physical Review E.1998, 57(4):4834-4837
    [27]Spaid M A A, Phelan F R J. Lattice Boltzmann Methods for modeling microscale flow in fibrous porous media. Physics of Fluids.1997,9:2468-2474
    [28]Spaid M A A, Phelan F R J. Modeling void formation dynamics in fibrous media with the lattice Boltzmann method. Composites Part A.1998,29:749-755
    [29]Guo Z L, Zhao T S. Lattice Boltzmann model for incompressible flows through porous media[J]. Physical Review E.2002,66(3):036304
    [30]Martinez D O, Chen S, et al. Lattice Boltzmann magnetohydrodynamics[J]. Physics of Plasmas,1997,1:1850~1867
    [31]吴其芬,李桦.磁流体力学[M].长沙:国防科技大学出版社,2006.
    [32]李元香.模拟流体力学的离散运动论模型.数值计算与计算机应用[J].1995,3:233-240
    [33]杨正东.基于格子Boltzmann方法的磁流体特性研究[D].南京:南京理工大学动力工程学院,2004.
    [34]李元香,康立山,陈毓屏.格子气自动机[M].北京:清华大学出版社,1994.
    [35]严微微.多孔介质内复杂流体的格子Boltzmann模拟[D].金华:浙江师范大学,2006.
    [36]Bhatnagar P, Gross E P, and Krook M K. A model for collision processes in systems[J]. Physics Reviews,1954,94:511
    [37]Bhatnagar P L, Gross E P, Krook M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems[J]. Physical Review,1954,94:511—525.
    [38]Chapman S, Cowling T G. The Mathematic Theory of Non-uniform Gases[M].3rd edition. Cambridge:Cambridge University Press,1970.
    [39]Wolf-Gladrow D A. Lattice-gas Cellular Automata and lattice Boltzmann Models:An Introduction[M]. New York:Springer,2000.
    [40]Guo Z L, Zhao T S. Lattice Boltzmann model for incompressible flows through porous media[J], Phys. Rev. E.2002,66:036304
    [41]陶文铨,何雅玲.跨尺度和可压缩交变流动与换热中的科学问题及其现代数值模拟方法研究[C].北京:香山科学会议第240次学术研讨会,2004.
    [42]Chen Y, Ohashi H, Akiyama M. Thermal lattice Bhatnagar-Gross-Krook model without nonlinear deviations in macrodynamic equations[J]. Physical Review E,1994, 50(4):2776-2783.
    [43]C Ma. Lattice BGK simulations of double diffusive natural convection in arectangular enclosure in the presences of magnetic field and heat source[J]. Nonlinear Analysis: Real World Applications 2008.
    [44]阮剑.格子Boltzmann方法及其对复杂流场的实现[D].湖北:华中理工大学,
    [45]杨朝蓉.自然对流作用下枝晶生长的数值模拟[D].南京:东南大学,2009
    [46]Ziegler D P. Boundary conditions for lattice Boltzmann simulations[J]. Journal of Statistical Physics,1993,71(5-6):1171-1177.
    [47]Guo Z L, Zheng C G, Shi B C, An Extrapolation Method for Pressure and Velocity Boundary Condition in Lattice Boltzmann Method[J], Applied Compu. Fluid Dynamics.2000,198-202
    [48]Guo Z L, Zheng C G, Shi B C, Non-equilibrium extrapolation method for velocity and pressure boundary condition in lattice Boltzmann method[J]. Chinese Phys., 2002,11(04):366-374
    [49]Chen S Y, Martinez D.and Mei R, On boundary conditions in lattice Boltzmann method[J]. Phys. Fluids.1997,8:2527-2536
    [50]Beghein C, Haghighat F and Allard F. Numerical study of double-diffusive natural convection in a square cavity[J]. Int. J. Heat Mass Transfer.1992,35:833.
    [51]Schmitt R W. Double Diffusion in Oceanography [J]. Annu. Rev. Fluid Mech.,1994, 26:255-285
    [52]Chamkha A J, Al-Naser H. Hydromagnetic double-diffusive convection in a rectangular enclosure with opposing temperature and concentration gradients[J]. Int. J. Heat Mass Transfer,2002,45(12):2465-2483
    [53]Rahman M, Sharif M A R. Numerical study of laminar natural convection in inclined rectangular enclosures of various aspect ratios[J]. Heat Transfer A,2003,44(4): 355-373.
    [54]Kamotani Y, Wang L W, Ostrach S, and Jiang HD. Experimental study of natural convection in shallow enclosures with horizontal temperature and concentration gradients[J]. Int. J. Heat Mass Transfer,1985,28(1):165-173.
    [55]Han H, Kuehn T H. Double diffusive natural convection in a vertical rectangular enclosure—Ⅱ. Numerical study[J]. Int. J. Heat Mass Transfer,1991,34(2):461-171.
    [56]Hajri I, Omri A, and Ben Nasrallah S. A numerical model for the simulation of double-diffusive natural convection in a triangular cavity using equal order and control volume based on the finite element method[J]. Desalination,2007,206(1-3): 579-588.
    [57]Qian Y H, d'Humieres D, and Lallemand P. Lattice BGK Models for Navier-Stokes Equation[J]. Europhys. Lett.,1992,17(6):479-484.
    [58]Yan W W, Liu Y, Guo Z L, and Xu Y S. International Journal of Modern Physics[J], 2006,17:771.
    [59]Chen S, To lke J, and Krafczyk M. International Journal of Heat and Fluid Flow[J], 2010,31:217.
    [60]Chen S, Doolen G D. Lattice Boltzmann method for fluid flows[J]. Annu. Rev. Fluid Mech.,1998,30:329-364.
    [61]Guo Z, Zhao T S. Numer. A lattice Boltzmann model for convection heat transfer in porous media[J]. Heat Transfer, Part B,2005,47:157-177.
    [62]Lallemand P, Luo L S. Theory of the lattice Boltzmann method:Acoustic and thermal properties in two and three dimensions[J]. Phy.Rev.E,2003,68(3):036706
    [63]Guo Z, Zhao T S, and Shi Y. Preconditioned lattice-Boltzmann method for steady flows[J]. Phy.Rev.E,2004,70 (6):066706.
    [64]Qu K, Shu C, and Chew Y T. Alternative method to construct equilibrium distribution functions in lattice-Boltzmann method simulation of inviscid compressible flows at high Mach number [J].Phy.Rev.E,2007,75 (3):036706.
    [65]Xu Y, Liu Y, Xia Y, and Wu F. Lattice-Boltzmann simulation of two-dimensional flow over two vibrating side-by-side circular cylinders[J]. Phy.Rev.E,2008,78(4): 046314.
    [66]郭照立,李青,郑楚光.双扩散自然对流的格子Boltzmann模拟[J]. Chinese Journal of Computational Physics,2002,19:483.
    [67]Zou Q, Hou S, and Doolen G D. An improved incompressible lattice Boltzmann moldel for time-independent flows[J].Stat. Phys,1995,81:35-48.
    [68]Ma C. Lattice BGK simulations of double diffusive natural convection in a rectangular enclosure in the presences of magnetic field and heart source[J]. Nonlinear Analysis:Real World Applications,doi:10.1016/j.nonrwa.2008.07.006.
    [69]Guo Z, Zheng C, and Shi B. Discrete lattice effects on the forcing term in the lattice Boltzmann method[J]. Phys. Rev. E,2002,65(4):046308.
    [70]叶萌.磁流体流动与能量传递的格子Boltzmann方法[D].南京:南京理工大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700