用户名: 密码: 验证码:
风力机叶片流固耦合数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了从风中汲取更多的风能,风力机大型化是必然趋势。随着风力机尺寸的增加,风轮叶片将越来越细长,更具柔性。风力机经常运行于随机变动的自然大气环境中,变化的载荷与柔性结构耦合作用,使风轮叶片变形和结构振动不可避免,并且可能使叶片振动过大,或振动失稳,甚至导致疲劳破坏。此外,为了降低风力发电成本,许多新型叶片设计方法被提出,其研究都必须建立在叶片气动弹性特性的研究基础上,需要考虑气动力、弹性力以及惯性力的耦合作用,因此,建立准确、可靠的风力机叶片流固耦合分析方法,研究叶片气动载荷与结构变形之间的相互作用,对叶片的设计和性能分析非常必要,具有重要的工程实用意义。
     流体域中翼型及风力机叶片的定常和非定常气动特性是流固耦合特性研究的基础。首先着眼于截面翼型的迎角变化,分析全方位迎角变化对翼型气动特性的影响,以及叶片外型的改变对截面迎角以及叶片气动特性的影响。翼型的振荡运动引起当地迎角不断变化,而且复杂的运动可以看做是简单运动的叠加,因此研究了不同形式的振荡翼型的非定常气动特性,为三维叶片流固耦合特性研究奠定基础。
     对于流固耦合数值方法,弱耦合方式以其可将流体和结构计算分别看成独立模块、耦合界面的网格不需要完全一致、可以直接利用现有成熟的商业流体软件和结构软件等特点,被广泛应用于流固耦合特性的研究中。因此,本文采用弱耦合方式,连接商用CFD与CSD软件,建立流固耦合数值模拟方法,以标准算例AGARD445.6机翼为例,通过机翼颤振边界的计算确认了流固耦合方法。在此基础上,以三叶片2.5MW上风向风力机DF90为研究对象,研究了不同风速下叶片的流固耦合特性,分析了叶片变形与载荷及分布的相互影响机理,结果显示:流固耦合计算的各项性能参数均呈周期性震荡,震荡幅值随时间快速减小,收敛到稳定值;当来流低于额定风速时,考虑流固耦合对功率值的影响较小,超过额定风速后,流固耦合计算的功率值有明显的降低。轴向推力与其保持相同的变化规律。流固耦合作用改变当地扭角,影响截面压力分布,从而影响整个叶片的载荷分布;叶片在挥舞、摆振和展向三个方向的变形均呈现出一阶振动形态,从叶根到叶尖逐渐增大,其中,挥舞变形最为显著。高风速下挥舞变形减小,而摆振方向变形随风速增大而增大,扭转变形在高风速明显增大。应力主要集中在中叶展附近,沿弦向应力主要集中在最大厚度位置附近。最大应力值出现在额定风速下。
     进一步研究了不同轮毂风速下风切变对风轮气动弹性特性的影响规律。对比分析了风速、风切变以及切变和叶片变形的叠加效应对风轮流固耦合特性的影响机理,结果显示:切变来流的影响:切变使来流风速均值减小,是导致载荷降低的原因之一;整个风轮的气弹载荷仍然显示出3p波动;单个叶片载荷和流动参数随方位角呈近似余弦函数型式的周期性波动,在整个风轮旋转平面内呈上下不对称式分布;耦合的影响:风轮载荷和叶片变形呈周期性震荡,但耦合作用对风轮整体载荷及其振幅影响较小;耦合作用使内叶展扭角减小,载荷增加;外叶展扭角增大,载荷减小,从而减小了轴向载荷极值;风轮旋转平面内,叶片载荷极值方位角与风速极值方位角不对应:在内叶展,滞后于风速极值方位角;在外叶展,气动计算值逐渐超前,而气弹计算值更加滞后;风速的影响:与均匀来流条件下流固耦合的影响保持相同的规律,当来流速度超过额定风速后,考虑流固耦合作用的功率值有明显的降低。这是由于高风速对应叶片桨距角比较大,使叶尖截面迎角降至负攻角,压力系数分布曲线出现交叉,形成使截面翼型低头的力矩,而扭转变形又加剧了攻角的降低,从而使载荷在外叶展区域出现了明显的下降。
In order to absorb more wind energy, wind turbines become larger and larger, the blades become slender and more flexible. Wind turbines often operate in the stochastically changed natural atmosphere, which would lead to load fluctuations on the rotor blades. Consequently, coupling effects of variable loads on the flexible structure will easily induce unavoidable deformation and vibration of the rotor structure. In addition, for low cost of wind power, new type wind turbine blades were developed base on the study methods of aeroelastic characteristics, which need to consider the coupled effects of the aerodynamic, elastic and inertia force together. Therefore, it is very necessary to establish accurate and reliable methods to analyze fluid-structure coupling effects of wind turbine rotors, and to better reveal the interaction between aerodynamic loads and the structural deformations, for the blades design and Analyze, which has important practical meaning in project.
     In fluid domain, steady and unsteady aerodynamic characteristics is the foundation of the fluid-structure coupling characteristics of airfoils and wind turbine blades. Firstly, with a view of the attack angle of section airfoil, the analyse of the influences of the attack angle variation in0~360°range of2D airfoils, and by the blade profile modification were carried out. Oscillating movements of the airfoils could also cause the local attack angle variation. Moreover, complex motion can be regarded as the superposition of simple movements, therefor, the study of the unsteady aerodynamic characteristics of oscillating airfoil in particular forms is the basis of the fluid-structure coupling characteristics of wind turbine blades.
     In loosely coupled approach, the fluid and structure equations are solved separately using different solvers and the information exchanged at the interface or the boundary. This approach gives us the flexibility of choosing different commercial codes for each of the modules. Therefore, we employ MpCCI code as a loosely coupled data exchanging platform, which coupling commercial CFD and CSD codes. On the basis of the verification of the coupling approach through the standard example of AGARD445.6flutter boundary simulation, a full3D fluid-structure coupled simulation of a megawatt wind rotor in different wind speed condition is performed, and the results reveal that:The performance parameters of the fluid-structure coupling simulation show periodic oscillation, and the oscillation amplitudes decrease rapidly and converge to a stable value. When the inflow speed is lower than the rated wind speed, fluid-structure interaction has little effects on the blade power. If the inflow exceeds the rated wind speed, the fluid-structure coupling power value decreases significantly. The thrusts are the same. Fluid structure interactions effect the local attack angle, the pressure distribution of the section airfoils and the loads distribution along the whole blades. The displacements in the flapwise, edgewise and spanwise direction show the first order shape, that large at root and small at tip. In the case of high wind speed, flapwise deformation decreases while edgewise grow larger. Stress focus at the middle section along blade span, and maximum thickness position chordwise. Maximum stress presents at the rated wind speed.
     Furthermore, fluid structure coupling characteristics of wind rotor in shear inflow condition is studied. Comparison of the variable wind speed, the shear inflow effects, and the interaction of the blades deformation and the shear inflow effects show that:Due to wind shear inflow, the aeroelastic loads keep the same characteristics to aerodynamic loads as the decrease in value due to the average wind speed decrease, and the3p pulsation in loads in a rotating circle, flow parameters of one blade present as a cosine curve in a rotating circle. the up-down asymmetric characteristic appears in the rotating plane because of the wind shear inflow. For the coupling effects, the performance parameters show periodic oscillations, fluid structure coupling has little effect on the periodic oscillations and their amplitude. Blade torsion decreases at inner span, while loads increase, and the outer part of the blades is on the contrary. The tangential and normal force extreme values are not corresponding to the wind speed extreme values, and the spanwise distributions are quite different between the aeroelastic and aerodynamic loads mainly due to the torsion of the blades.
引文
[1]GWEC, Globle Wind Report 2011. http://gwec.net/wp-content/uploads/2012/06/Annual_report_2011_lowres.pdf
    [2]中国风能协会.2012年中国风电装机容量统计.2013年3月.http://www.cwea.org.cn/upload/20130313001.pdf
    [3]贺德馨.中国规模化风电场发展中的几个问题与对策[J].风能,2010,(8):34-36
    [4]Hansena M O L, Sφensena J N, Voutsinasb S, et al. State of the Art in Wind Turbine Aerodynamics and Aeroelasticity[C]. Progress in Aerospace Sciences, 2006,42:285-330
    [5]Moeller, T.,1997. Blade cracks signal new stress problem. WindPower Monthly 25.
    [6]胡颖,2010年我国风电产业发展回顾与展望.能设备2011.02,17-20.
    [7]Larwood, S., Zuteck M. Swept Wind Turbine Blade Aeroelastic Modeling for Loads and Dynamic Behavior. Windpower.2006
    [8]Veers P, Bir G, Lobitz D. AEROELASTIC TAILORING IN WIND-TURBINE BLADE APPLICATIONS. Windpower.1998
    [9]Karaolis, N. M., Mussgrove, P. J., and Jeronimidis, G. (1988) Active and Passive Aeroelastic Power Control using Asymmetric Fibre Reinforced Laminates for Wind Turbine Blades. Proc.10th British Wind Energy Conf., D. J. Milbrow Ed., London, March 22-24,1988.
    [10]Beyene A, Mangalekar D, Miller R, Alexander S, Villegas S. A new turbine concept, the oceanic engineering society of the institute of electrical and electronic engineers. In:OCEANS 2006 ASIA conference/exhibition, May 16-19,Singapore.
    [11]邢景棠.流固耦合力学概述.力学进展.1997.第27卷第1期.
    [12]Kamakoti R., Shyy W., Fluid-structure interaction for aeroelastic applications[J]. Progress in Aerospace Sciences,2004,40:535-558.
    [13]叶正寅,张伟伟,史爱明等.流固耦合力学基础及其应用.哈尔滨:哈尔滨工业大学出版社,2010
    [14]Farhat, C., Zee, K.G., Geuzaine, P.. Provably second-order time- accurate loosely coupled solution algorithms for transient nonlinear computation alaeroelasticity. Comput. Methods Appl. Mech. Engrg.,2006,195(20):1973-2001
    [15]Timothy J. Barth, Michael Griebel, David E. Keyes, et al. Fluid Structure Interaction Ⅱ-Modelling, Simulation, Optimization[M].2010.
    [16]刘长春. Level Set方法模拟界面运动.中国科学院工程热物理研究所.2007.
    [17]Shu T, Kazuyasu S, Satoshi I, et al. A Review of Full Eulerian Methods for Fluid Structure Interaction Problems. ASME.2012.
    [18]Hirt, C. W., Amsden, A. A., and Cook, J. L.,1974, "An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds," J. Comput. Phys.,14, pp.227-253.
    [19]Belytschko, T.,1980, "Fluid-Structure Interaction," Comput. Struct.,12, pp.459-469.
    [20]Hughes, T. J. R., Liu, W. K., and Zimmermann, T. K.,1981, "Lagrangian-Eulerian Finite Element Formulation for Incompressible Viscous Flows," Comput. Methods Appl. Mech. Eng.,29, pp.329-349.
    [21]Tezduyar, T. E., Behr, M., and Liou, J.,1992, "A New Strategy for Finite Element Computations Involving Moving Boundaries and Interfaces-The Deforming-Spatial-Domain/Space-Time Procedure:Ⅰ. The Concept and the Preliminary Numerical Tests," Comput. Methods Appl. Mech. Eng.,94, pp.339-351.
    [22]Tezduyar, T. E., Behr, M., Mittal, S., and Liou, J.,1992, "A New Strategy for Finite Element Computations Involving Moving Boundaries and Interfaces-The Deforming-Spatial-Domain=Space-Time Procedure:Ⅱ. Computations of Free-Surface Flows, Two-Liquid Flows, and Flows With Drifting Cylinders," Comput. Methods Appl. Mech. Eng.,94, pp.353-371.
    [23]Tezduyar, T. E., and Sathe, S.,2007, "Modeling of Fluid-Structure Interactions With the Space-Time Finite Elements:Solution Techniques," Int. J. Numer. Methods Fluids,54, pp.855-900.
    [24]Takizawa, K., and Tezduyar, T. E.,2011, "Multiscale Space-Time Fluid-Structure Interaction Techniques," Comput. Mech.,48(3), pp.247-267.
    [25]钱若军,董石麟,袁行飞.流固耦合理论研究进展.空间结构.2008.
    [26]Sarrate J., Huerta A., Donea J. Arbitrary Lagrangian-Eulerian formulation for fluid-rigid body interaction. Comput. Methods Appl. Mech. Engrg.190(2001) 3171-3188.
    [27]Gillebaart T, A H van Zuijlen, Bijl H. Aerodynamic analysis of the wing flexibility and the clap-and-peel motion of the hovering DelFly Ⅱ. Proceeding of the international Micro Air Vehicles conference 2011.
    [28]Takashi N., Hughes T.J.R. An arbitrary Lagrangian-Eulerian finite element method for transit dynamic fluid-structure interaction, Computer Method in Applied Mechanics and Engineering,1992.
    [29]Takashi N. ALE finite element computations of fluid-strueture interaetion Problems, Computer Methods in Applied Mechanics and Engineering,1994, 112:291-308.
    [30]Sarrate J., Huerta A., Donea J. Arbitrary Lagrangian-Eulerian formulation for fluid-rigid body interaetion, Computer Methods in Applied Mechanics and Engineering,2001,190:3171-3188.
    [31]王少波,刘元杰.弹性板在粘性流体中的耦合振动分析,机械工程学报.2004,40(7).
    [32]岳宝增,刘延柱,王照林.非线性流固祸合问题的ALE分布有限元数值方法.力学学报.2001,22(1).
    [33]王辉,岑章志,杜庆华.粘性流体中弹性板振动的有限元耦合问题.固体力学学报.1998,19(2).
    [34]Zhao H., Freund J B., Moser R D. A fixed-mesh method for incompressible flow-structure systems with finite solid deformations. Journal of Computational Physics 227 (2008) 3114-3140
    [35]Hirt C, Niehols B. Volume of Fluid Method (VOF) for the dynamics of free boundaries. Journal of Computational Physies.1981;39:201-225.
    [36]Tomiyama A, Zun I, Sou A, Sakaguchi T. Numerical analysis of bubble motion with the VOF method. Nuelear Engineering and Design 1993; 141:69-82.
    [37]Klingner B M, Feldman B E, Chentanez N, et al. Fluid animation with dynamic meshes. ACM Transations Graphics. (SIGGRAPH Proceedings),2006,25: 820-825
    [38]黄冬梅,董水光,陈德华.外挂物投放问题的二维非结构动态网格技术研究.空气动力学学报,2006,24(1):73-79
    [39]郭正,刘君.非结构动网格在三维可动边界问题中的应用.力学学报,2003,35(2):141-146
    [40]周璇,李水乡,孙树.非结构网格变形方法研究进展.力学进展.2011年9月.
    [41]Blom F J. Considerations on the spring analogy. International Journal for Numerical Methods in Fluids,2000,32(6):647-668
    [42]Bar-Yoseph P Z, Mereu S, Chippada S, et al. Automatic monitoring of element shape quality in 2D and 3D computational mesh dynamics. Computational Mechanics,2001,27(5):378-395
    [43]Karman S L, Sahasrabudhe M. Unstructured adaptive elliptic smoothing. AIAA, 2007-0559,2007
    [44]Rendall T C S, Allen C B. Unified fluid-structure interpolation and mesh motion using radial basis functions. International Journal for Numerical Methods in Engineering,2008,74(10):1519-1559
    [45]De Boer A, van der Schoot M S, Bijl H. Mesh deformation based on radial basis function interpolation. Computers & Structures,2007,85:784-795
    [46]Jakobsson S, Amoignon O. Mesh deformation using radial basis functions for gradient-based aerodynamic shape optimization. Computers & Fluids,2007, 36(6):1119-1136
    [47]Morris A M, Allen C B, Rendall T C S. CFD-based optimization of aerofoils using radial basis functions for domain element parameterization and mesh deformation.International Journal for Numerical Methods in Fluids,2008,58(8): 827-860
    [48]Van Zuijlen A H, De Boer A, Bijl H. Higher-order time integration through smooth mesh deformation for 3D fluidstructure interaction simulations. Journal of Computational Physics,2007,224(1):414-430
    [49]Rendall T C S, Allen C B. Improved radial basis function fluid-structure coupling via efficient localized implementation. International Journal for Numerical Methods in Engineering,2009,78(10):1188-1208
    [50]Botsch M, Kobbelt L. Real-time shape editing using radial basis functions. Computer Graphics Forum,2005,24(3):611-621
    [51]Liu X Q, Qin N, Xia H. Fast dynamic grid deformation based on Delaunay graph mapping. Journal of Computational Physics,2006,211(2):405-423
    [52]Christiansen P, et al. The Tjaereborg Wind Turbine. Final Report for CEC, DG XII contract EN3W.0048.DK. ELSAMPROJEKT A/S, report EP92/334. September 1992.
    [53]Hand M, Simms D, Fingersh L, et al. Unsteady Aerodynamics Experiment Phase VI:Wind Tunnel Test Configurations and Available Data Campaigns Technical Report NREL/TP-500-29955. NREL,2001
    [54]Snel H., Schepers J. G., Montgomerie B. The MEXICO project (Model Experiments in Controlled Conditions):The Database and First Results of Data Processing and Interpretation[A]. Journal of Physics:Conference[C].2007
    [55]王勋年.风力机风轮的风洞实验的回顾与展望.全国风力机空气动力学学术会议,2005,12.
    [56]Dahlberg J A, Ronsten G., He D, et al. Wind Tunnel Measurements of Load Variations for a Yawed Wind Turbine with Different Hub Configurations[A]. European Wind Energy Conference Proceedings[C],1989:95-100
    [57]Ronsten G., Dahlberg J A, Meijer S. Pressure Measurements on a 5.35m HAWT in CARDC 12x16m Wind Tunnel Compared to Theoretical Pressure Distributions[A]. European Wind Energy Conference Proceedings[C],1989: 729-735
    [58]刘洋.风力机风轮三维气动性能数值计算方法的研究[D].北京:清华大学,2010
    [59]Hansen A. C., Butterfield C. P. Aerodynamics of Horizontal-Axis Wind Turbines[J]. Annual Review of Fluid Mechanics,1993,25(4):115-149
    [60]Lanzafame R., Messina M. Fluid Dynamics Wind Turbine Design:Critical Analysis, Optimization and Application of BEM theory[J]. Renewable Energy, 2007,32:2291-2305
    [61]Dumitrecu H., Cardos V. Wind Turbine Aerodynamic Performance by Lifting Line Method[J]. International Journal of Rotating Machinery,1998,4(3): 141-149
    [62]沈听.水平轴风力机气动性能预测[D].上海:上海交通大学,2007
    [63]Gupta S., Leishman J. G. Comparison of Momentum and Vortex Methods for the Aerodynamic Analysis of Wind Turbines[A].43rd AIAA Aerospace Sciences Meeting and Exhibit[C]. USA, Navada:2005
    [64]Miller R. H. The Aerodynamics and Dynamic Analysis of Horizontal-Axis Wind Turbines[J]. Journal of Wind Engineering and Industrial Aerodynamics,1983, 15:329-340
    [65]Afjeh A. A., Keith T. G. A Simplified Free Wake Method for Horizontal-Axis Wind Turbine Performance Prediction[J]. Journal of Fluids Engineering,1986, 108:400-406
    [66]Schmitz S., Chattot J. J. Characterization of Three-Dimensional Effects for the Rotating and Parked NREL Phase VI Wind Turbine[J]. Journal of Solar Energy Engineering,2006,128:445-454
    [67]Simms D., Schreck S., Hand M., et al. NREL Unsteady Aerodynamics Experiment in the NASA-Ames Wind Tunnel:a comparision of predictions to measurements[R]. NREL TP-500-29494,2001
    [68]S(?)rensen N. N., Michelsen J. A., Schreck S. Navier-Stokes Predictions of the NREL Phase Ⅵ Rotor in the NASA Ames 80ft×120ft Wind Tunnel[J]. Wind Energy,2002,5(2-3):151-169
    [69]窦秀容.水平轴风力机气动性能及结构动力学特性研究.山东工业大学博士论文,1995.
    [70]李本立,安玉华.风力机其弹性稳定性的研究.太阳能学报.1996,17(4):314-320.
    [71]Chaviaropoulos P. ALCYNOE:CRES' Time-domain Aeroelastic Tool for HAWTS. Ceter for Renewable Energy Sources(CRES),1996
    [72]Locke J, Valencia U. Design studies for twist-coupled wind turbine blades. SAND2002-0522, Sandia National Laboratories, Albuquerque, NM,2004
    [73]Alejandro D. O, Fernando L. P. Structural Analysis of Wind-Turbine Blades by Generalized Timoshenko Beam Model. Journal of Solar Energy Engineering,2010,132/0110115
    [74]Hodges. D. H., Yu. W. A Rigorous Engineering-Friendly Approach for Modeling Realistic Composite Rotor Blades. Wind Energy,2007,10:179-193.
    [75]廖猜猜,王建礼,石可重,徐建中.风力机叶片截面刚度优化设计.工程热物理学报,2010,31(7):1127-1130.
    [76]王建礼,赵晓路,廖猜猜,石可重,徐建中.风力机叶片固有频率优化设计研究.工程热物理学报.2010,31(11):1843-1846
    [77]Parametric T.P.I. Study for Large Wind Turbine Blades. Sandia National Laboratories.SAND2002-2519,2002
    [78]Griffin, D. A. Blade System Design Studies Volume 1:Composite Technologies for Large Wind Turbine Blades. Sandia National Laboratories. SAND2002-1897,2002
    [79]Otero A. D., and Ponta F.L. Finite Element Structural Study of the VGOT Wind Turbine. Int. J. Global Energy.2004,21:221-235
    [80]Otero. A. D. and Ponta, F. L. On the Structural Behavior of Variable Geometry Oval-Trajector Darrieus Wind Turbines. Renewable Energy,34(3):827-833
    [81]BOssanyi E. A. GH Bladed:Theory Manual. Garrad Hassan & Partners Ltd.2007
    [82]Friedmann P. Aeroelastic Stability and Response Analysis of Large Horizontal Axis Wind Turbines. Journal of Industrial Aerodynamics,1980,5:373-401
    [83]王介龙.大型水平轴风力机稱合动力学系统气弹响应与稳定性分析.硕士论文,北京:清华大学.2001
    [84]刘雄,李钢强,陈严,叶枝全.水平轴风力机叶片动态响应分析.机械工程学报.2010,46(12):128-141
    [85]Tony B., David S.,etc. Wind Energy Hand Book. New York John Wiley & Sons, 2005
    [86]陆萍,秦惠芳,栾芝云.基于有限元方法的风力机塔架结构动态分析.机械工程学报,2002,38(9):127-130
    [87]李德源,刘胜祥,黄小华.大型风力机筒式塔架涡致振动的数值分析.太阳能学报,2008,29(11):1432-1437
    [88]Rachid Y., Ismail E. B. Dynamic study of a Wind Turbine Blade With Horizontal Axis. European Journal of Mechanics-A/Solids.2001,20(2):241-252
    [89]Murtagh P. J.,Basu B.,Broderick B. ML Mode Acceleration Approach for Rotating Wind Turbine Blades.2001,218:241-252
    [90]Hnsen M. H. Improved Modal Dynamics of Wind Turbines to Avoid Stall-induced Vibrations. Wind Energy.2003,6:179-195
    [91]Thomsn K,Petersen JT. A Method for determination of damping for edgewise Blade Vibration. Journal of Wind Energy,2001,3:233-246
    [92]Hansen MH, Thomsen K. Rotor Whirling Modes and the Relation to Their Aerodynamic Damping. European Wind Energy Conference, Copenhagen,2001: 422-425
    [93]Rasmussen F,Petersen J T, Winkelaar D, Rawlinson-Smith R. Response of Stall Regulated Wind Turbines-Stall Induced Vibrations. Risoe-R-691,1993
    [94]Rasmussen F,Petersen J T, Madsen H. Dynamics Stall and Aerodynamic Damping. ASME Journal of Solar Energy Engineering,1999,121:150-155
    [95]NWTC Design Codes (FAST by J. Jonkman). http://wind.nrel.gov/designcodes/simulators/fast/. Last modified 12_August-2005
    [96]Bhuhl M. L., Manjock Jr,A. A Comparison of Wind Turbine Aeroelastic Codes Used for Certification. NREL/CP-500-39113,2006
    [97]Lee D, Hodeges D H. A Framework for Dynamics and Aeroelastic Analysis of Horizontal Axis Wind Turbines. AIAA 2002
    [98]Lee D, Hodeges D H. Multi-flexible-body Dynamic Analysis of Horizontal Axis Wind Turbines. Wind Energy,2002,5:281-300
    [99]Bauchau O. A., Bottasso C. L., etc. Modeling Rotorcraft Dynamics with Finite Element Multibody Procedures. Mathematical and Computer Modeling,2001, 33:1113-1137
    [100]Bottasso C L, Croce A, etc. Aero-servo-elastic Modeling and Control of Wind Turbines Using Finite-element Multibody Procedures. Multibody System Dynamics,2006,16:291-308
    [101]Holm-J(?)rgensen K, Nielsen S. R. K. System Reduction in Multibody Dynamics of Wind Turbines. Multibody System Dynamics,2009,21:147-165.
    [102]Dobrev, I.,Massouh, F. Fluid-structure interaction in the case of a wind turbine rotor.18eme Congres Francais de Mecanique.2007.
    [103]Lain S, Quintero B and Lopez Y. Aerodynamic and Structural Evaluation of Horizontal Axis Wind Turbines with Rated Power over 1 MW.
    [104]Maheri A, Noroozi S,Vinney J. Combined Analytical/FEA-based Coupled-aero-structure Simulation of a Wind Turbine With Bend-twist Adaptive Blades [J] Renew Energy,2007,32:916-930.
    [105]Puterbaugh M., Beyene A. Parametric Dependence of a Morphing Wind Turbine Blade on Material Elasticity [J] Energy journal,2011,36:466-474.
    [106]李本立,宋宪耕,贺德馨,安玉华.风力机结构动力学.北京航空航天大学出版社.1999.
    [107]Hirsch C. Numerical computation of internal and external flow:fundamentals of computational fluid dynamics[M]. Butterworth-Heinemann, Burlington,2nd edition,2007.
    [108]Jameson A. Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings[C]. In AIAA 10th Computational Fluid Dynamics Conference, number 1596,1991.
    [109]Jameson A., Schmidt W.,Turkel E. Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta timestepping schemes[C]. In AIAA 14th Fluid and Plasma Dynamics Conference, number 1259,1981.
    [110]Spalart P. R., Allmaras S. R. A One Equation Turbulence Model for Aerodynamic Flows[R]. AIAA 92-0439,1992
    [111]Ashford G. A., Powell K. G. An Unstructured Grid Generation and Adaptative Solution Technique for High-Reynolds Number Compressible Flow[R]. VKI (Von Karman Institute) Lecture Series 1996-06,1996
    [112]Menter F. Two-equation Eddy Viscosity Turbulence Models for Engineering Applications[J]. AIAA Journal,1994,32:1299-1310
    [113]Wilcox D. C. Turbulence modeling for CFD[R]. Canada:DCW Industries,1993
    [114]Abu-Ghannam B J, Shaw R. Natural Transition of Boundary Layers-the Effect of Turbulence, Pressure Gradient, and Flow History. Journal of Mechanical Engineering and Science,1980,22(5):213-228
    [115]Dhawan S, Narasimha R. Some Properties of Boundary Layer During Transition From Laminar to Turbulent Motion. J. Fluid Mech.,1958, (3): 418-437
    [116]Rai M. M. Application of Domain Decomposition Methods to Turbomachinery Flows[A]. ASME Advances and Applications in Computational Fluid Dynamics[C].1988
    [117]Ahrem R, Hackenberg M, Post P, et al. MpCCI-Mesh Based Parallel Code Coupling Interface. Institute for Algorithms and Scientific Computing (SCAI), 2000:10-11.
    [118]Loftin L A, Airfoil section characteristics at high angle of attack[R]. NACA-TN-3241,1954.
    [119]Moriarty, P. J., Hansen, A.C., AeroDyn Theory Manual, NREL/TP-500-36881, 2005.
    [120]Lanzafame R, Messina M. Fluid dynamics wind turbine design:Critical analysis, optimization and application of BEM theory[J]. Renewable Energy, 2007,32(14):2291-2305
    [121]Timmer W A, Van Rooij R P J O M. Some aspects of high angle-of-attack flow on airfoils for wind turbine application[A]. Proceedings of EWEC[C], Copenhagen,2001.
    [122]Loftin L A, Airfoil section characteristics at high angle of attack[R]. NACA-TN-3241,1954.
    [123]张远君.流体力学大全[M].北京:北京航空航天大学出版社,1992,pp228.
    [124]Viterna, L.A.,Janetzke, D.C.1982. Theoretical and Experimental Power from Large Horizontal Axis Wind Turbines. NASA TM-82944. Washington, DC: National Aeronautics and Space Administration, September.
    [125]Moriarty, P. J., Hansen, A.C., AeroDyn Theory Manual, NREL/TP-500-36881, 2005.
    [126]Dindar M, Kaynak U. Effect of Turbulence Modeling on Dynamic Stall of a NACA-0012 Airfoil [R]. AIAA 92-0027,1992.
    [127]De Ruyck J, Hazarika B, Hirsch Ch. Transition and Turbulence structure in the flow of oscillating airfoil[R]. DAJA45-85-C-0039.1989.
    [128]Jones K D, Dohring C M, Platzer M F. Experimental and computational inversitigation of the Knoller-Betz effect[J]. AIAA,1998, Vol.36:1240-1246.
    [129]Allaneau Y, Jameson A. Direct Numerical Simulations of Plunging Airfoils[R]. AIAA-2010-728-462.
    [130]范忠瑶,康顺,赵萍.2.5兆瓦风力机气动性能数值模拟研究.工程热物理学报.2010年第2期.
    [131]Ferrer E, Munduate X. Wind turbine blade tip comparison using CFD[J]. The Science of Making Torque. Journal of Physics:Conference Series 75,2007.
    [132]范立钦,周鼎义.飞机空气动力学[M].西安:西北工业大学出版社.1989.9
    [133]Det Norske Veritas and Riso National Laboratory. Guidelines for design of wind Turbines [M]. Norway:Det Norske Veritas and Riso National Laboratory,2002.
    [134]Spera D A. Wind turbine technology[M]. New York:ASME Press,1994.
    [135]Fuglsang P L, Madsen H A. A design study of a 1 MW stall regulated rotor[R]. 。Denmark:Riso National Laboratory,1995.
    [136]杨科,王会社,徐建中等.基于CFD技术的高性能风力机翼型最优化设计方法.工程热物理学报.第28卷第4期.2007年7月.
    [137]陈进,王旭东,沈文忠等.风力机叶片的形状优化设计.机械工程学报.2010.第46卷第3期.
    [138]刘雄,陈严,叶枝全.水平轴风力机风轮叶片优化设计模型研究.汕头大学学报.2006年2月.第21卷第1期.
    [139]Jureczko M., Pawlak M., Mezyk A., "Optimization of Wind Turbine Blades", Journal of Material Processing Technology,167, pp.463-471,2005.
    [140]Ernesto Benini, Andrea Toffolo. Optimal Design of Horizontal-Axis Wind Turbines Using Blade-Element Theory and Evolutionary Computation.ASME. 2002. Vol.124
    [141]包耳,邵晓荣,刘德庸风力机叶片设计的新方法.机械设计.2005.第22卷第2期.[142]Fuglsang, P., and Madsen, H. A.,1999, "Optimization Method for Wind Turbine Rotors," J. Wind. Eng. Ind. Aerodyn.,80, pp.191-206.
    [143]Pierret S. Designing Turbomachinery Blades by Means of the Function Approximation Concept Based on Artificial Neural Network, Genetic Algorithm, and the Navier-Stokes Equations[D]. PhD thesis, Von Karman Institute for Fluid Dynamics,1999.
    [144]Demeulenaere A, Ligout A, and Hirsch C. Application of multipoint optimization to the design of turbomachinery blades[C]. ASME-GT04-53110, 2004.
    [145]Zuteck M. Adaptive Blade Concept Assessment:Curved Planform Induced Twist Investigation[R]. SAND2002-2996. October 2002
    [146]Larwood S, Zuteck M. Swept Wind Turbine Blade Aeroelastic Modeling for Loads and Dynamic Behavior[C]. Windpower.2006
    [147]赵永辉.气动弹性力学与控制.科学出版社.2007.8.p109.
    [148]Yates E C, Jr, AGARD Dynamic Aeroelastic Configurations for Dynamic Response I-Wing 445.6, July 1988, ISBN 92-835-0463-1.
    [149]Pahlavanloo P. Dynamic Aeroelastic Simulation of the AGARD 445.6 Wing using Edge.2007. FOI-R-2259-SE. ISSN-1650-1942.
    [150]Lee-Raush E M, Batina J T, Wing Flutter boundary prediction using unsteady Euler aerodynamic method, NASA Technical Memorandum 107732, March 1993.
    [151]Haase W, Selmin V, and Winzel B (eds.), Progress in computational Flow-Structure Interaction results of the project UNSI, supported by the European Union 1998-2000, Note on Numerical Fluid Mechanics and Multidisciplinary Design(NNFM), vol.81, Springer-Verlag,2003, ISBN3-540-43902-1.
    [152]Ayabakan S:Loosely-coupled flutter analysis of Agard Wing 445.6.9TH MpCCI USER FORUM.2008.
    [153]Nikbay M, Aysan A. A MULTI-DISCIPLINARY OPTIMIZATION OF AN AIRCRAFT WING BASED ON FLUID-STRUCTURE COUPLING THROUGH MPCCI. Istanbul Teknik Universitesi.10TH MpCCI USER FORUM.2009.
    [154]戴少度.材料力学.国防工业出版社.2000.
    [155]Fadaeinedjad R, Moallem M. The Impact of Tower Shadow, Yaw Error, and Wind Shears on Power Quality in a Wind-iesel System[J]. IEEE Transactions on Energy Conversion,2009,24(1):102-111
    [156]Smith K, Randall G, Malcolm D. Evaluation of Wind Shear Patterns at Midwest Wind Energy[R]. NREL,2002
    [157]Angulo A, Moreno P, Madueno D. Micro-Scale Effects over an Operational Wind Farm CFD Wind Shear Study[A]. Proceedings of the European Wind Energy Conference & Exhibition[C]. Marseille, Francuska:EWEC,2009
    [158]LaWhite N., Walls E., Cohn K. Characterizing Wind Speed and Direction Shear with SoDAR Data[R]. Second Wind Inc.,2007
    [159]周良茂,卢文达,邓祖诚等.近地面风的实测与研究[R].水电部西安热工研究所,1982
    [160]Bailey B. H. Predicting Vertical Wind Profiles as a Function of Time of the Day and Surface Wind Speed[A]. Proceedings of an International Colloquium on Wind Energy[C]. Brighton, UK:BWEA,1981
    [161]IEC 61400-01, Wind Turbines-Part 1. Design Requirements[S]. International Electrotechnical Commission,2005
    [162]王泽军.低层大气急流的季节观测分析[A].科协论坛[C],2008
    [163]Moriarty P. J., Hansen A. C. AeroDyn Theory Manua[R]. NREL/TP-500-36881, 2005
    [164]Tindal A, Johnson C, LeBlanc M, etc. Site-Specific Adjustments to Wind Turbine Power Curves[a]. AWEA Windpower Conference[C]. Houston:AWEA, 2008
    [165]Torbjorn T., Jan-Ake D. Periodic Pulsations from a Three-Bladed Wind Turbine[J]. IEEE Transactions on Energy Conversion,2001,16(2):128-133
    [166]Rareshide E, Tindal A, Johnson C, etc. Effects of Complex Wind Regimes on Turbine Performance[A]. AWEA Windpower Conference[C]. Chicago, US: 2009
    [167]Dolan D. S. L., Lehn P. W. Simulation Model of Wind Turbine 3p Torque Oscillations Due to Wind Shear and Tower Shadow[J]. IEEE Transactions on Energy Conversion,2006,21(3):717-724
    [168]Hasegawa Y., Kikuyama K., Karikomi K., et al. Numerical Analysis of Wind Shear Effects on Horizontal Axis Wind Turbine Rotor Performanc[A].日本机械学会论文集(B编)[C].2002,68
    [169]Sezer-Uzol N., Uzol O. Effect of Steady and Transient Wind Shear on the Wake Structure[R]. AIAA09-1406,2009
    [170]范忠瑶.风力机定常与非定常气动问题的数值模拟.博士学位论文.华北电 力大学.2011
    [171]Zahle F., S(?)rensen N. N. Rotor Aerodynamics in Atmospheric Shear Flow[A]. Proceedings of the European Wind Energy Conference & Exhibition[C]. Brussels, Belgium:EWEC,2008
    [172]Sorensen N. N. UPWIND Aerodynamics and Aero-Elasticity Rotor Aerodynamics in Atmospheric Shear Flow[A]. Proceedings of the European Wind Energy Conference & Exhibition[C]. Milan, Italy:EWEC,2007
    [173]刘磊,石可重,杨科,徐建中.风切变对风力机气动载荷的影响[J].中国工程热物理学报.2010,31(10):1667-1670
    [174]Snel H. Review of Aerodynamics for Wind Turbines[J]. Wind Energy,2003; 6: 203-211
    [175]Duque E. P. N., Burklund M. D., Johnson W. Navier-Stokes and Comprehensive Analysis Performance Predictions of the NREL phase VI Experiment J]. Journal of Solar Energy Engineering,2003; 125:457-467
    [176]Chao D. D., van Dam C. P. Computational Aerodynamic Analysis of a Blunt Trailing-Edge Airfoil Modification to the NREL Phase Ⅵ Rotor[J]. Wind Energy,2007,10:529-550
    [177]Le P. A., Gleize V. Improved Navier-Stokes Computations of a Stall-Regulated Wind Turbine Using Low Mach Number Preconditioning[A].44th AIAA Aerospace Sciences Meeting and Exhibit[C], Reno:AIAA 2006-1502,2006
    [178]雷延生.风力机流场数值计算与叶片设计[D].南京:南京航空航天大学,2009
    [179]Benjanirat S. Computational Studies of Horizontal Axis Wind Turbine in High Wind Speed Conditon Using Advanced Turbulence Models[D]. Georgia, USA: Georgia Institute of Technology,2007
    [180]Langtry R. B. A Correlation-Based Transition Model Using Local Variables for Unstructured Parallelized CFD Codes[D]. Ottawa, Kanada:Institut fur Thermische Stromungsmaschinen und Maschinenlaboratorium,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700