用户名: 密码: 验证码:
生物质在流化床中热解过程的动力学数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质热化学转化提供了一种经济有效的方法将生物质转化为常规气体、液体和固体燃料以替代化石燃料,缓解能源危机和温室气体污染问题。本文旨在建立生物质热解气化和热解液化过程的三维动力学模型,模拟并分析生物质热解转化过程不同操作条件对产物产率和分布的影响,为优化反应器设计和操作提供指导。近年来数值计算方法的进步和计算机计算性能的提高使计算流体动力学(CFD)数值模拟仿真应用到生物质热化学转化过程成为现实。通过CFD模拟生物质热化学转化在不同操作条件下的动力学过程,可以使发生在反应器内的动态过程实现可视化,有助于更好的理解和研究热化学转化过程的物理和化学现象。本文分别建立了不同生物质在流化床中空气气化制氢、水蒸汽气化制氢和快速热解制生物质油的过程的CFD模型,模型全面考虑了转化过程湍流、辐射传热、传质和化学反应的影响,研究分析了不同操作条件产物产率和分布,检验了模型的灵敏性和有效性。
     本文通过建立废水污泥在流化床中热解气化过程的三维动力学模型,模拟并详细分析了污泥气化的动力学过程,根据温度场和产物浓度场分布信息分析,将反应器分为热解区、氧化区、气化区和干舷区,并通过分析不同操作温度和空气当量比ER对产物产率和分布以及温度场分布的影响,得出污泥气化为了得到更多的CO和H_2时适宜温度操作范围是1073~1273K,适宜ER取值范围是0.15~0.4,与文献总结的实验结果是一致的,证明了模型的灵敏度很高,有效性也很好。同时,通过考察合成气(H_2+CO)含量和H_2/CO摩尔比,分析了根据应用目的来提高合成气质量的可行条件。
     通过构建生物质在流化床中气化动力学过程三维模型,模拟了松树屑在流化床中水蒸汽气化制氢气和稻壳在流化床中空气气化制氢气的过程,分析了气化剂的量和操作温度对氢气含量和分布的影响,并分析了实验操作设计的改进方法。
     通过构建生物质在流化床中热解液化的三维动力学模型,再现了稻壳热解生物质油的过程。由于生物质热解生物质油机理复杂,缺乏足够精确的化学反应动力学实验数据,降低了模型的普适性,精确的动力学数据,对于模型完善和预测结果的准确性有决定性意义。
     研究结果表明,计算流体动力学模型对于分析生物质热化学转化过程是一个有效的工具,包括分析实验操作条件选择、动力学过程可视化以及预测产物产率和分布方面,计算流体力学模型都显示出强大的功能。
Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. The main objective of this study is to develop comprehensive three-dimensional dynamic models capable of describing the biomass gasification or fast pyrolysis process in a fluidized bed and predicting the product and temperature distribution in the reactor. The model results can help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced Computational fluid dynamic (CFD) as a widely used approach to provide efficient design solutions in biomass thermochemical process. The model results help to show the dynamics process visible and give more insight within the reactor under different operating conditions, which is a benefit to better understanding of the chemical and physical process. In this study, the CFD models on biomass gasification or steam gasification for hydrogen and fast pyrolysis for bio-oil, are developed. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are considered and sub-models for turbulence, radiation and other individual processes are included. The product and temperature distributions are studied. The model results are proved to be sensitive and valid.
     A three-dimensional CFD model of a fluidized bed for sewage sludge gasification is developed. According to the analysis of temperature and product distribution of simulations, the gasifier can be divided into four zones approximately, which are pyrolysis, oxidation, gasification and freeboard zone, respectively. The effects of temperature and Equivalent Ratio (ER) on product and temperature distributions show that the suitable temperatures are 1073-1273K and the suitable ER is 0.15-0.4 for higher content of CO and H_2. The predicted results are in good agreement with the experiment data, which proves the model is sensitive and valid. Simultaneity, with respect to the analysis of simulation data, the model provides possible conditions to get higher quality syngas with more H_2+CO and/or higher H_2/CO ratio according to the application intention.
     The three-dimensional CFD models for steam gasification of pine waste and air gasification of rice husk in fluidized beds are developed, respectively. The effects of the gasification agency amount and operating temperature on hydrogen content and distribution are studied. The optimization of the reactor design is analyzed.
     A three-dimensional CFD model of biomass fast pyrolysis for bio-oil in a fluidized bed is developed. The simulations give insight to the producing process of bio-oil. The mechanisms of biomass fast pyrolysis for bio-oil are very complex. The kinetics data of the process are difficult to determine. The accurate kinetics data is needed to optimize the model in the future.
     The studies show that CFD is a powerful tool for biomass thermochemical process applications including operating conditions analysis, dynamics process visible and product prediction.
引文
1.陆强;朱锡锋;李全新:郭庆祥:朱清时,生物质快速热解制备液体燃料,《化学进展》2007年Z2期。
    2.http://cdm.ccchina.gov.cn/WebSite/CDM/UpFile/2008/20081216247639.pdf
    3.http://www.cresp.org.cn/uploadfiles/89/611/biomass_power_generation_biom ass_power_generation_en.pdf
    4.http://www.newenergy.org.cn/Html/0048/2004811_847.html
    5.ftp://ftp.cordis.europa.eu/pub/coal-steel-rtd/docs/coal_steel_synopsis_2007_d ef_en.pdf
    1.Blasi,C.D.,Modeling chemical and physical processes of wood and biomass pyrolysis.Progress in Energy and Combustion Science 2008,34,47-90.
    2.Eaton,A.M.;Smoot,L.D.;Hill,S.C.;Eatough,C.N.,Components,formulations,solutions,evaluation,and application of comprehensive combustion models.Progress in Energy and Combustion Science 1999,25,387-436.
    3.Mohan,D.;Charles U.Pittman,J.;Steele,P.H.,Pyrolysis of Wood/Biomass for Bio-oil:A Critical Review.Energy & Fuels 2006,20,848-889.
    4.Norton,T.;Sun,D.W.;Grant,J.;Fallon,R.;Dodd,V.,Applications of computational fluid dynamics(CFD)in the modelling and design of ventilation systems in the agricultural industry:A review.Bioresource Technology 2007,98,(12),2386-2414.
    5.Moghtaderi,B.,The state-of-the-art in pyrolysis modelling of lignocellulosic solid fuels.Fire and Materials 2006,30,(1),1-34.
    6.Wurzenberger,J.C.;Wallner,S.;Raupenstrauch,H.;Khinast,J.G.,Thermal conversion of biomass:Comprehensive reactor and particle modeling.Aiche Journal 2002,48,(10),2398-2411.
    7.Babu,B.V.;Chaurasia,A.S.,Pyrolysis of biomass:improved models for simultaneous kinetics and transport of heat,mass and momentum.Energy Conversion and Management 2004,45,(9-10),1297-1327.
    8.Corella,J.;Sanz,A.,Modeling circulating fluidized bed biomass gasifiers.A pseudo-rigorous model for stationary state.Fuel Processing Technology 2005,86,(9),1021-1053.
    9.Sheng,C.D.;Azevedo,J.L.T.,Modeling biomass devolatilization using the chemical percolation devolatilization model for the main components.Proceedings of the Combustion Institute 2003,29,407-414.
    10.Pallare's,J.;Arauzo,I.;Williams,A.,Integration of CFD codes and advanced combustion models for quantitative burnout determination.Fuel 2007,86,2283-2290.
    11.刘明侯,计算流体和传热传质讲义.中国科学技术大学 2003.
    12.Fluent,I.,FLUENT 6.1 User's Guide 2003.
    13.Habibi,A.;Merci,B.;Heynderickx,G.J.,Impact of radiation models in CFD simulations of steam cracking furnaces.Computers & Chemical Engineering 2007,31,(11),1389-1406.
    14.Sofialidis,D.;Faltsi,O.,Simulation of Biomass Gasification in Fluidized Beds Using Computational Fluid Dynamics Approach THERMAL SCIENCE 2001,5,(No.2),95-105.
    15.Fletcher.,D.F.;Haynes.,B.S.;Christo.,F.C.;Joseph.,S.D.,A CFD based combustion model of an entrained flow biomass gasifier.Applied Mathematical Modelling 2000,24,165-182.
    16.Sharma,A.K.,Modeling fluid and heat transport in the reactive,porous bed of downdraft(biomass)gasifier.International Journal of Heat and Fluid Flow 2007,28,1518-1530.
    17.Dixon,T.F.;Mann,A.P.;Plaza,F.;Gilfillan,W.N.,Development of advanced technology for biomass combustion-CFD as an essential tool.Fuel 2005,84,(10),1303-1311.
    18.Kaer,S.K.,Numerical modelling of a straw-fired grate boiler.Fuel 2004,83,(9),1183-1190.
    19.Kaer,S.K.;Rosendahl,L.,Extending the Modelling Capacity of CFD Codes Applied to Biomass-Fired Boilers.Proceedings of ECOS 2003,2003,(Copenhagen, Denmark, June 30-July 2), 251-264.
    
    20. Kaer, S. K.; Rosendahl, L. A.; Baxter, L. L, Extending the Capability of CFD Codes to Assess Ash Related Problems in Biomass Fired Boilers. Proc. 227th ACS Annual Meeting 2004, Division of Fuel Chemistry, (Anaheim California, March 28-April 1), 12.
    
    21. Kaer, S. K.; Rosendahl, L. A.; Baxter, L. L, Towards a CFD-based mechanistic deposit formation model for straw-fired boilers. Fuel 2006, 85, (5-6), 833-848.
    
    22. Shanmukharadhya, K. S., Simulation and thermal analysis of the effect of fuel size on combustion in an industrial biomass furnace. Energy & Fuels 2007, 21, (4),1895-1900.
    
    23. Marias, F., A model of a rotary kiln incinerator including processes occurring within the solid and the gaseous phases. Computers & Chemical Engineering 2003,27,(6), 813-825.
    
    24. Shanmukharadhya, K. S.; Sudhakar, K. G, Effect of fuel moisture on combustion in a bagasse fired furnace. Journal of Energy Resources Technology-Transactions of the Asme 2007, 129, (3), 248-253.
    
    25. Dixit, C. S. B.; Paul, P. J.; Mukunda, H. S., Part Ⅱ: Computational studies on a pulverised fuel stove. Biomass & Bioenergy 2006, 30, (7), 684-691.
    
    26. Goddard, C. D.; Yang, Y. B.; Goodfellow, J.; Sharifi, V. N.; Swithenbank, J.; Chartier, J.; Mouquet, D.; Kirkman, R.; Barlow, D.; Moseley, S., Optimisation study of a large waste-to-energy plant using computational modelling and experimental measurements. Journal of the Energy Institute 2005, 78, (3), 106-116.
    
    27. Backreedy, R. I.; Fletcher, L. M.; Jones, J. M.; Ma, L.; Pourkashanian, M.; Williams, A., Co-firing pulverised coal and biomass: a modeling approach. Proceedings of the Combustion Institute 2005, 30,2955-2964.
    
    28. Abbas, T.; Awais, M. M.; Lockwood, F. C, An artificial intelligence treatment of devolatilization for pulverized coal and biomass in co-fired flames. Combustion and Flame 2003,132, (3), 305-318.
    
    29. Syred, N.; Kurniawan, K.; Grifths, T.; Gralton, T.; Ray, R., Development of fragmentation models for solid fuel combustion and gasification as subroutines for inclusion in CFD codes. Fuel 2007, 86, (14), 2221-2231.
    30.Tan,C.K.;Wilcox,S.J.;Ward,J.,Use of artificial intelligence techniques for optimisation of co-combustion of coal with biomass.Journal of the Energy Institute 2006,79,(1),19-25.
    31.Gera,D.;Mathur,M.P.;Freeman,M.C.;Robinson,A.,Effect of large aspect ratio of biomass particles on carbon burnout in a utility boiler.Energy & Fuels 2002,16,(6),1523-1532.
    32.Ma,L.;Jones,J.M.;Pourkashanian,M.;Williams,A.,Modelling the combustion of pulverized biomass in an industrial combustion test furnace.Fuel 2007,86,(12-13),1959-1965.
    33.Miltner,M.;Miltner,A.;Harasek,M.;Friedl,A.,Process simulation and CFD calculations for the development of an innovative baled biomass-fired combustion chamber.Applied Thermal Engineering 2007,27,(7),1138-1143.
    34.Zarnescu,V.;Pisupati,S.V.,An integrative approach for combustor design using CFD methods.Energy & Fuels 2002,16,(3),622-633.
    35.Saario,A.;Oksanen,A.,Comparison of global ammonia chemistry mechanisms in biomass combustion and selective noncatalytic reduction process conditions.Energy & Fuels 2008,22,(1),297-305.
    36.Norstrom,T.;Kilpinen,P.;Brink,A.;Vakkilainen,E.;Hupa,M.,Comparisons of the validity of different simplified NH3-oxidation mechanisms for combustion of biomass.Energy & Fuels 2000,14,(5),947-952.
    37.Rogerson,J.W.;Kent,J.H.;Bilger,R.W.,Conditional moment closure in a bagasse-fired boiler.Proceedings of the Combustion Institute 2007,31,2805-2811.
    38.Weydahl,T.;Bugge,M.;Gran,I.R.;Ertesvag,I.S.,Computational modeling of nitric oxide formation in biomass combustion.Applied Mechanics and Engineering 2002,7(PART 1),125-142
    1.Berktay,A.;Nas,B.,Biogas production and utilization potential of wastewater treatment sludge.Energy Sources Part α-Recovery Utilization and Environmental Effects 2008,30,(2),179-188.
    2.Marmo,L.,EU strategies and policies on soil and waste management to offset greenhouse gas emissions.Waste Management 2008,28,(4),685-689.
    3.Kim,Y.;Parker,W.,A technical and economic evaluation of the pyrolysis of sewage sludge for the production of bio-oil.Bioresource Technology 2008,99,(5),1409-1416.
    4.黎兵;谭德见;黄永军;陈继辉,污泥循环流化床焚烧技术的研究进展.电 站系统工程 2007, 23,(1), 8.
    
    5.Dominguez, A.; Menendez, J. A.; Pis, J. J., Hydrogen rich fuel gas production from the pyrolysis of wet sewage sludge at high temperature. Journal of Analytical and Applied Pyrolysis 2006,77, (2), 127-132.
    
     6. Ferrasse, J.-H.; Seyssiecq, I.; Roche, N., Thermal gasification: a feasible solution for sewage sludge valorisation? Chem.Eng.Technol. 2003, 26, 941-945.
    
    7. Hartman, M.; Svoboda, K.; Pohorely, M.; Trnka, O., Combustion of Dried Sewage Sludge in a Fluidized-Bed Reactor. Ind. Eng. Chem. Res. 2005, 44,3432-3441.
    
    8. Cui, H.; Ninomiya, Y.; Masui, M.; Mizukoshi, H.; Sakano, T.; Kanaoka, C, Fundamental Behaviors in Combustion of Raw Sewage Sludge. Energy & Fuels 2006,20,77-83.
    
    9. Midillia, A.; Dogrub, ML; Howarthb, C. R.; Lingc, M. J.; Ayhan, T., Combustible gas production from sewage sludge with a downdraft gasifier. Energy Conversion & Management 2001,42,157-172.
    
    10. Dominguez, A.; Fernandez, Y.; Fidalgo, B.; Pis, J. J.; Menendez, J. A., Bio-syngas production with low concentrations of CO_2 and CH_4 from microwave-induced pyrolysis of wet and dried sewage sludge. Chemosphere 2008, 70,(3), 397-403.
    
    11. Dominguez, A.; Menendez, J. A.; Inguanzo, M.; Pis, J. J., Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating. Bioresource Technology 2006,97, (10), 1185-1193.
    
    12. Manya, J. J.; Sanchez, J. L.; Abrego, J.; Gonzalo, A.; Arauzo, J., Influence of gas residence time and air ratio on the air gasification of dried sewage sludge in a bubbling fluidised bed. Fuel 2006, 85, (14-15), 2027-2033.
    
    13. Manya, J. J.; Aznar, M.; Sanchez, J. L; Arauzo, J.; Murillo, M. B., Further experiments on sewage sludge air gasification: Influence of the nonstationary period on the overall results. Industrial & Engineering Chemistry Research 2006, 45, (21),7313-7320.
    
    14. Corella, J.; Toledo, J. M., Incineration of doped sludges in fluidized bed.Fate and partitioning of six targeted heavy metals.I. Pilot plant used and results. Journal of Hazardous Materials 2000,B80,81-105.
    15.Shi,S.P.;Zitney,S.E.;Shahnam,M.;Syamlal,M.;Rogers,W.A.,Modelling coal gasification with CFD and discrete phase method.Journal of the Energy Institute 2006,79,(4),217-221.
    16.Wang,S.J.;Lu,J.D.;Li,W.J.;Li,J.;Hu,Z.J.,Modeling of pulverized coal combustion in cement rotary kiln.Energy & Fuels 2006,20,(6),2350-2356.
    17.Chen,C.X.;Horio,M.;Kojima,T.,Use of numerical modeling in the design and scale-up of entrained flow coal gasifiers.Fuel 2001,80,(10).
    18.Vicente,W.;Ochoa,S.;Aguillon,J.;Barrios,E.,An Eulerian model for the simulation of an entrained flow coal gasifier.Applied Thermal Engineering 2003,23,(15).
    19.Fletcher.,D.F.;Haynes.,B.S.;Christo.,F.C.;Joseph.,S.D.,A CFD based combustion model of an entrained flow biomass gasifier.Applied Mathematical Modelling 2000,24,165-182.
    20.Grammelis,P.;Kakaras,E.,Biomass Combustion Modeling in Fluidized Beds.Energy & Fuels 2005,19,292-297.
    21.Rostami,A.A.;Hajaligol,M.R.;Wrenn,S.E.,A biomass pyrolysis sub-model for CFD applications.Fuel 2004,83,1519-155.
    22.Khiari,B.;Marias,F.;Zagrouba,F.;Vaxelaire,J.,Use of a transient model to simulate fluidized bed incineration of sewage sludge.Journal Of Hazardous Materials 2006,135,(1-3).
    23.Petersen,I.;Werther,J.,Experimental investigation and modeling of gasification of sewage sludge in the circulating fluidized bed.Chemical Engineering and Processing 2005,44,717-736.
    24.J.Manya,J.;Sanchez,J.L.;Gonzalo,A.;Arauzo,J.,Air gasificatin of dried sewage sludge in a fluidized bed:effct of operating conditions and in-bed use of alumina.Energy & Fuels 2005,19,629-636.
    25.Fluent,I.,FLUENT 6.1 User's Guide 2003.
    26.Corella,J.;Sanz,A.,Modeling circulating fluidized bed biomass gasifiers.A pseudo-rigorous model for stationary state.Fuel Processing Technology 2005,86,(9),1021-1053.
    1.Franco,C.;Pinto,F.;Gulyurtlu,I.;Cabrita,I.,The study of reactions influencing the biomass steam gasification process.Fuel 2003,82,(7),835-842.
    2.Jiang,H.;Zhu,X.F.;Guo,Q.X.;Zhu,Q.S.,Gasification of rice husk in a fluidized-bed gasifier without inert additives.Industrial & Engineering Chemistry Research 2003,42,(23),5745-5750.
    1.Zhu,X.F.;Zheng,J.L.;Guo,Q.X.;Zhu,Q.S.,Pyrolysis of rice husk and sawdust for liquid fuel.Journal of Environmental Sciences-China 2006,18,(2),392-396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700