双向增强复合地基承载机理及其设计计算理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双向增强复合地基是由竖向桩体复合地基与土工材料等水平加筋垫层组合而成的一种新型软土地基处治形式,其可充分发挥水平向筋(板)体复合地基和竖向桩体复合地基的优点。目前该处治技术在公路、铁路路基加固等工程实践中应用广泛,取得了良好的加固效果。但其理论研究尚处于初级阶段,尤其是承载机理与设计计算理论研究尚有待进一步深入。为此,本文结合国家高技术研究发展计划(863计划)项目“大面积不均匀公路软弱地基按变形控制双向增强处治技术”(2006AA11Z104)、国家自然科学基金项目“散体材料桩复合地基承载机理及其按变形控制设计理论研究”(51078138)、湖南省研究生创新基金项目及湖南大学优秀博士学位论文基金项目,基于双向增强复合地基已有的研究成果,通过理论分析和室内模型试验研究,对路堤等柔性基础下双向增强复合地基的承载机理及其设计计算理论进行系统深入的研究。
     本文首先分析了刚性桩、柔性桩和散体材料桩的受力变形特性、荷载传递规律等,深入研究了桩体复合地基的承载机理及其破坏模式,筋(板)体复合地基的侧向约束效应、网兜效应和柔性筏基效应、应力扩散效应以及加筋地基的破坏模式,进而对双向增强复合地基的桩-筋(板)-土体系的承载机理及其与路堤填土间的相互作用进行了深入研究。
     其次,针对竖向荷载下散体材料桩和粘结材料桩各自的受力变形特性及其复合地基的荷载传递规律,基于Vesic圆孔扩张理论,导得了散体材料桩桩体极限承载力计算公式;针对竖向荷载作用下散体材料桩桩顶一定深度范围内不仅发生竖向压缩变形且伴有侧向鼓胀变形的特性,导得了散体材料桩复合地基沉降计算公式;引入Mylonakis&Gazetas模型模拟粘结材料桩复合地基中桩与桩及桩与土之间的相互作用,采用理想弹塑性模型模拟桩侧土体应力应变的非线性关系,基于剪切位移法导得了能综合考虑桩-土体系共同作用的粘结材料桩复合地基沉降计算公式。根据软土路基中水平加筋垫层的应力扩散和网兜作用,提出了路堤下筋(板)体复合地基承载力计算公式和考虑桩体作用的双向增强复合地基承载力计算公式,并基于Winkler弹性地基梁模型提出了水平加筋体受力变形分析的矩阵表达式,进而推广应用到双向增强复合地基的受力变形分析,导得了双向增强复合地基的沉降计算矩阵表达式。
     考虑双向增强复合地基中水平加筋体与其上下土体间的摩阻效应及桩土刚度差异,对传统弹性地基梁模型进行改进,将桩体与桩间土体比拟为不同刚度的弹簧体系,导得了能考虑筋土接触摩擦效应的双向增强复合地基沉降计算幂级数解;在此基础上,考虑地基梁变形的几何非线性及其在外荷载、竖向和水平向地基反力作用下产生的纵横耦合变形特性,导得了双向增强复合地基受力变形分析的Galerkin解;进而考虑土体受力变形的非线性,提出了基于理想弹塑性模型的双向增强复合地基受力变形分析的分步计算法。算例分析验证了上述三种解答的正确性和合理性,分析结果还表明筋土界面摩阻效应对加筋体受力变形影响较大。
     再次,基于相似理论设计并完成了单一软土地基、土工格室加筋复合地基、碎石桩复合地基和土工格室+碎石桩双向增强复合地基等四组大比例室内模型试验,从路基竖向承载力和竖向变形的变化规律、土工格室张拉应变发展规律、碎石桩径、竖向变形规律和桩侧土压力分布规律等方面探讨了土工格室加筋垫层、碎石桩复合地基和土工格室+碎石桩双向增强复合地基等的承载变形机理,并利用模型试验数据对前述复合地基沉降以及碎石桩变形计算理论进行了验证分析。自行开发研制出量测桩身鼓胀变形的散体材料桩膨胀量测试仪,成功解决了模型试验中碎石桩鼓胀变形量测这一难题。基于叠梁试验,提出了土工加筋垫层刚度参数测试技术,并给出了土工格室加筋垫层弹性模量的合理取值范围,为理论分析筋(板)体复合地基和双向增强复合地基的受力变形提供了重要参数依据。
     最后,根据深厚软土路基中双向增强复合地基的受力变形特点,提出了按变形控制设计双向增强复合地基的思路。基于双向增强复合地基受力变形分析方法,探讨分析了加筋垫层复合弹性模量、垫层高度、桩体刚度、桩距、路堤高度等因素对双向增强复合地基受力变形的影响,建立了复合地基荷载与变形之间的关系;并基于按变形控制设计思路及相应的设计规范与工程实践,给出了双向增强复合地基设计控制指标参考值,以及按变形控制的双向增强复合地基设计计算步骤与流程。
The new composite foundation treatment reinforced with vertical piles and horizontal geosynthetic reinforcement over piles has been used widely in the geotechnical engineering such as subgrade improvements. The benefit of this foundation treatment is that the piles and geosynthetic reinforcement can give fully play to increasing bearing capacity and reducing settlement of soft soils. Despite a large amount of research and successful field applications, the bidirectional reinforced composite foundation is still not widely used at the same level as conventional methods such as piling, due to the lack of design procedures. Limited work has been done on the working mechanism and design method for road embankment supported by vertical piles with geosynthetic reinforced cushion. The purpose of this thesis is to discuss the working mechanism of this composite foundation and to propose the relative bearing and deformation analytical method. The thesis is funded through the Chinese National863High-Technique Research and Development Project (Contract name "Treatment technique of bidirectional reinforced foundation based on the settlement control for large area and non-uniform soft subgrade in highway construction", Contract No.2006AA11Z104), Chinese National Natural Science Foundation (Contract name "Working mechanism of discrete material pile composite foundation and its design method according to deformation", Contract No.51078138), the Project of Postgraduate's Innovation Fund Support from Hunan Province and the Project of Excellent National Doctorial Dissertations in Hunan University. The main research contents and research character in this paper are as follows:
     Firstly, the working mechanism and failure mode of pile composite foundations were studied based on the analyses of bearing and deformation behavior and load transfer mechanism of various vertical piles such as rigid piles, flexible piles and discrete material piles. The lateral resistance effect, membrane effect (or flexible valve plate effect) and vertical stress dispersion effect of geosynthetic reinforced composite foundations were discussed and its different failure modes were also analyzed. On the base of that, the complex interaction among the pile, geosynthetic reinforcement, and the surrounding soil in the bidirectional reinforced composite foundation was studied. The interaction between the composite foundation and the embankment material was also analyzed.
     Secondly, based on the Vesic cavity expansion theory, an ultimate bearing capacity calculation method for single discrete material piles such as stone columns was proposed. The advantage of the lateral resistance from the surrounding soil and vertical pressure acting on the soils are taken into account in this method. Considering the deformation characteristic of the discrete material pile, an analytical solution for the settlement of the composite foundations reinforced with discrete material piles was presented. From the present solution, the vertical settlement and lateral bulging of the column under any applied loads can be evaluated at any depth. Based on the shear displacement method, a settlement calculation method of composite foundation with cohesive material piles was developed by taking the account of the interaction of piles, and the interaction between pile and soil. In this method, the Mylonakis&Gazetas model was introduced to simulate the interaction of pile and pile, pile and soil. And the elastic-perfectively plastic model was employed to model the nonlinear relationship between the shear stress and shear strain of the surrounding soil. A model and a simple bearing capacity calculation method for the geosynthetic reinforcement-supported embankment on the soft subgrade were proposed as well. The model and calculation procedures considered both the "vertical stress dispersion effect" and "membrane effect" of geosynthetic reinforcement. By treating the geosynthetic reinforced cushion as a foundation beam, the force and deformation analysis of the reinforcement in matrix form was proposed based on the study of the elastic foundation beam theory. And then the bearing capacity and deformation solutions were extended to calculating the bearing capacity and deformation of the bidirectional reinforced composite foundation was consideration of the vertical pile effect.
     Thirdly, based on the Winkler foundation model and with consideration of the effect of the shear resistances at the top and bottom sides of the geosynthetic-reinforced cushion, a deformation control differential equation for the bidirectional reinforced composite foundation under the vertical symmetric loads was developed. The corresponding power-series semi analytic solutions for the bending deformation and internal forces of the geosynthetic reinforcement were presented as well. In the method, geosynthetic-reinforced cushion was idealized as an elastic foundation beam, and vertical piles and subgrade soils were idealized as elastic springs with different stiffness. By taking the beam-soil interface resistance, and the longitudinal and transversal coupling-deformation characteristic and the geometric nonlinearity of the beam into account, a deformation control differential equation of geosynthetic reinforcement which idealized as a finite foundation beam was established based on the Winkler elastic foundation model. Corresponding analytical solutions for the deformation, rotation angle, shear force and moment of the finite-length beam under symmetric loads was presented using Galerkin method. Based on the Euler-Bernoulli beam theory, fourth order difference equations dealing with the deflection of geosynthetic reinforcement which idealized as a beam under three different soil support conditions and their solutions were presented for a beam resting on a nonlinear tensionless foundation. The nonlinearity of the foundation soil was simplified by elastic-perfectly plastic model.
     Fourthly, according to the similarity theory, a group of indoor model tests including the untreated soft soil, geocell reinforced subgrade, composite foundation reinforced with stone columns, and composite foundation reinforced with geocell and stone columns were conducted. The test datum including the load test, vertical settlements at different positions, tensional strain of the geocell material, bulging deformation of the stone column and lateral soil pressure around the column were analyzed. Moreover, the bearing and deformation calculated solutions proposed in this paper were also used to analyze the test datum. A new measuring instrument was developed by national seminar to measure the bulging deformation of stone column under vertical loads. A new measuring and testing technique for determining the modulus of the geocell reinforced cushion was developed as well in the model test. Appropriate values of the elastic modulus of the reinforced cushion were suggested for the bidirectional reinforced composite foundation.
     Finally, according to the purpose and characteristic of the foundation treatment technique with bidirectional composite foundations in the deep soft soil, the design philosophy according deformation control was developed. The proposed semi-analytical deformation solutions were also proposed to quantify the effects of various factors, such as the elastic modulus of the reinforced cushion, cushion height, pile stiffness, pile spacing and embankment height on the behavior of the bidirectional composite foundation. The relation between the load and settlement was set up accordingly. The reference values of the control index were obtained according to the relative criterion and engineering practice. The detailed design procedure and design flow were also presented in this thesis.
引文
[1]龚晓南.复合地基理论及工程应用.第2版.北京:中国建筑工业出版社,2007,1-8,86-104,155-159
    [2]中华人民共和国水利部.土工合成材料应用技术规范(GB 50290-98).北京:中国计划出版社,1998,6
    [3]土工合成材料工程应用手册编写委员会.土工合成材料工程应用手册.北京:中国建筑工业出版社,2000,18-77
    [4]龚晓南.复合地基设计与施工指南.北京:人民交通出版社,2003,296-309
    [5]龚晓南,邓超.长短桩复合地基在高层建筑中的应用.建筑施工,2003,25(1):18-20
    [6]陈龙珠,梁发云,黄大治,等.高层建筑应用长-短桩复合地基的现场试验研究.岩土工程学报,2004,26(2):167-171
    [7]赵明华,张玲,杨明辉.基于剪切位移法的长短桩复合地基沉降计算.岩土工程学报,2005,27(9):994-998
    [8]杨庆光,刘杰,张可能,等.深厚软土中水泥土长短桩复合地基承载特性试验.中国公路学报,2008,21(3):19-23
    [9]朱小友,尹华濂.二元组合桩基及其在高层建筑中的应用.建筑结构,1999,29(12):4647,52
    [10]郑俊杰,郭嘉,刘勇.多元复合地基承载力可靠度计算.华中科技大学学报(自然科学版),2007,35(10):119-121,128
    [11]周德泉,张可能,刘宏利.组合桩型复合地基计算与应用分析.岩土力学,2004,25(9):1432-1436
    [12]王士杰,何满潮,朱常志,等.GC与CFG桩组合桩型复合地基承载特性研究.岩土力学,2008,29(10):2632-2636
    [13]刘奋勇,杨晓斌,刘学.混合桩型复合地基试验研究.岩土工程学报,2003,25(1):71-75
    [14]梁发云,陈龙珠,李镜培.混合桩型复合地基工程性状的近似解法.岩土工程学报,2005,27(4):459-463
    [15]《地基处理手册》编写委员会.地基处理手册.第2版.北京:中国建筑工业出版社.2000,4-9
    [16]龚晓南.高等级公路地基处理设计指南.北京:人民交通出版社,2005,
    [17]中交第二公路勘察设计研究院.公路路基设计规范(JTG D30-2004).北京:人民交通出版社,2004,146-152
    [18]饶为国.桩-网复合地基沉降机理及设计方法研究:[北京交通大学博士学位论文].北京:北京交通大学,2002,3-4,51-79
    [19]Han J. Akins K. Use of geogrid-reinforced and pile-supported earth structures. In:Proceeding of International Deep Foundation Congress. Fernando:ASCE publications,2002,668-679
    [20]Reinaldo V M, Shao Y. Geogrid-reinforced and pile-supported roadway embankment. In:Proceedings of Contemporary Issues in Foundation Engineering. New York:ASCE publications,2005,26-28
    [21]郑忠勤,谭祖保,胡汉忠.用粉喷桩土工格网加固永丰营车站深层软土路基的施工技术.路基工程,2000,(3):58-61
    [22]戴耀中,黎军.格栅(网)碎石桩综合处理软基的设计与讨论.湖南交通科技,2001,27(3):12-14
    [23]杜璇,王军民,容浩萍.土工格栅结合振冲碎石桩加固液化地基的效果分析.铁道标准设计,2001,21(10):51-52
    [24]周德泉,刘宏利,张可能,等.粉喷桩处理软弱路基的设计与沉降分析.地质与勘探,2001,37(2):80-83
    [25]张元进,陈建华.粉喷桩与土工材料加筋垫层联合处理软土地基.东北水利水电,2002,20(6):34-36,56
    [26]陈宏友,李彬.桩承土工合成材料复合地基在潭邵高速公路软基处理中的应用.中南公路工程,2002,27(1):40-41
    [27]陈艳平.土工格室碎石垫层+碎石桩复合地基模型试验研究:[湖南大学硕士论文].长沙:湖南大学,2003,21-45
    [28]杨明辉,赵明华,吴亚中,等.土工格室垫层+碎石桩复合地基承载机理及设计方法研究.见:第八届全国地基处理学术讨论会论文集.合肥:合肥工业大学出版社,2004,242-247
    [29]赵明华,张玲,蒋德松.土工格室+碎石桩处治软土路基设计计算方法.公路交通科,技2008,25(4):47-51
    [30]曹新文,卿三惠,周立新.桩网复合地基土工格栅加筋效应的试验研究.岩石力学与工程学报,2006,25(增刊1):3162-3167
    [31]孙亚婷.红层松软土粉喷桩复合地基现场测试与数值分析:[西南交通大学硕士学位论文].四川:西南交通大学,2007,11-45
    [32]李昌宁,王炳龙,周顺华.CFG桩-网复合结构软基加固技术及其实际应用.铁道工程学报,2006,23(1):27-31
    [33]杨瑞,闫澍旺,崔澂.碎石桩与土工格栅联合加固高原湿地软路基机理研究.公路交通科技,2006,23(6):36-39
    [34]崔澂,张志耕,闫澍旺.碎石桩联合土工格栅复合地基处理湿地软基的机制研究.岩土力学,2009,30(6):1764-1768
    [35]Reid W M, Buchanan N W. Bridge approach support piling. In Piling and Ground Treatment, Thomas Telford Ltd., London,1984,267-274
    [36]谢前军,刘曌.水泥粉喷桩在桥台后过渡段软基处理中的应用.路基工程,2002,25(4):40-43
    [37]赵德海,杜强.水泥粉喷桩在桥台后过渡段软基处理中的应用.建筑技术,2003,5(7):61-62
    [38]郑俊杰,张军,马强,等.路桥过渡段桩承式加筋路堤现场试验研究.岩土工程学报,2012,4(2):355-361
    [39]Jones C J F P, Lawson C R, Ayres D J(祁思明,魏新江译).土工织物加筋的桩承堤.地基处理,1991,2(5):52-58
    [40]方永凯,周芝英,周荣官.双向复合地基加固码头堆场的现场试验.水利水运工程学报,1994,(4):359-366
    [41]饶为国.桩-网复合地基原理及实践.北京:中国水利水电出版社,2004,31-119
    [42]Han J, Akins K. Case studies of geogrid-reinforced and pile-supported earth structures on weak foundation soils. In:Proceedings of International Deep Foundation Congress. Orlando:ASCE Geotechnical Special Publications, 2002,668-679
    [43]张建勋,陈福全,简洪钰.桩承土工织物加筋地基的研究与工程应用综述.福建工程学院学报,2003,1(3):10-15
    [44]Vermon R Schaefer, Lee W Abramson, Joe C Drumheller, et al. Ground improvement ground reinforcement and ground treatment:developments 1987-1997. Utah:ASCE Geotechnical Special Publications,1997
    [45]詹金林,梁永辉,水伟厚.大直径刚性桩桩网复合地基在储罐基础中的应用.岩土工程学报,2011,33(增刊1):122-124
    [46]Wachman G S, Biolzi L, Labuz J F. Structural Behavior of a Pile-Supported Embankment. Journal of Geotechnical and Geoenvironmental Engineering, 2010,136(1):26-34
    [47]徐林荣,牛建东,吕大伟,等.软基路堤桩-网复合地基试验研究.岩土力学,2007,28(10):2149-2160
    [48]Liu H L, Ng Charles W W, Fei K. Performance of a Geogrid-Reinforced and Pile-Supported Highway Embankment over Soft Clay:Case Study. Journal of Geotechnical and Geoenvironmental Engineering,2007,133(12):1483-1493
    [49]费康,刘汉龙.桩承式加筋路堤的现场试验及数值分析.岩土力学,2009,30(4):1004-1012
    [50]蔡德钩,叶阳升,张千里,等.桩网支承路基受力及加筋网垫变形现场试验研究.中国铁道科学,2009,30(5):1-8
    [51]马建林,刘俊飞,朱明,李宝林.高速铁路CFG桩网复合地基桩土承载特性试验研究.铁道建筑,2009,(7):56-58
    [52]夏唐代,王梅,寿旋,等.筒桩桩承式加筋路堤现场试验研究.岩石力学与工程学报,2010,29(9):1929-1936
    [53]张良,罗强,陈亚美,等.桩网结构路基承载特性的现场试验研究.岩土力学,2010,31(12):3793-3800
    [54]Low B K, Tang S K, Choa V. Arcbing in piled embankment. Journal of Geotechnical Engineering,1994,120(11):1917-1938
    [55]曹卫平,陈仁朋,陈云敏.桩承式加筋路堤土拱效应试验研究.岩土工程学报,2007,29(3):436-441
    [56]连峰,龚晓南,崔诗才,等.桩-网复合地基承载性状现场试验研究.岩土力学,2009,30(4):1057-1062
    [57]蔡德钩,闫宏业,叶阳升,等.桩网支承路基结构中土拱效应及网垫受力的模型试验研究.铁道学报,2011,33(11):85-92
    [58]费康,王军军,陈毅.桩承式路堤土拱效应的试验和数值研究.岩土力学,2011,32(7):1975-1983
    [59]王长丹,王炳龙,王旭,等.湿陷性黄土桩网复合地基沉降控制离心模型试验.铁道学报,2011,33(4):84-92
    [60]肖宏,蒋关鲁,魏永幸,等.客运专线无砟轨道桩网结构模型试验研究铁道学报,2007,29(2):126-131
    [61]肖宏,蒋关鲁,魏永幸.遂渝线无砟轨道桩网结构路基现场动车试验测试分析.铁道学报,2010,32(1):79-84
    [62]陈艳平,赵明华,陈昌富,等.土工格室碎石垫层+碎石桩复合地基相似模型试验.中国公路学报,2006,19(1):17-22
    [63]孙建兵.散体材料桩+水平加筋复合地基沉降分析:[湖南大学硕士论文].长沙:湖南大学,2009,40-55
    [64]何腊平.刚性桩复合地基沉降计算与模型试验研究:[湖南大学硕士论文].长沙:湖南大学,2009,9-28
    [65]Han J, Gabr M A. Numerical analysis of geosynthetic-reinforced and pile-supported earth platforms over soft soil. Journal of Geotechnical and Geoenvironmental Engineering,2002,128(1):44-53
    [66]Han J, Huang J, Porbaha A.2D numerical modeling of a constructed geosynthetic-reinforced embankment over deep mixed columns. In: proceedings of Contemporary Issues in Foundation Engineering. New York: ASCE publications,2005,52-62
    [67]Huang Jie, Han Jie.3D coupled mechanical and hydraulic modeling of a geosynthetic-reinforced deep mixed column-supported embankment. Geotextiles and Geomembranes,2009,27(4):272-280
    [68]Huang Jie, Han Jie, Oztoprak Sadik. Coupled mechanical and hydraulic modeling of geosynthetic-reinforced column-supported embankments. Journal of Geotechnical and Geoenvironmental Engineering,2009,135(8):1011-1021
    [69]Bhandari Anil, Han Jie, Wang Fei. Micromechanical analysis of soil arching in geosynthetic-reinforced pilesupported Embankments. In:Proceeding of the 2009 GeoHunan International Conference. Geotechnical Special Publication (No.189),2009,47-52
    [70]Huang Jie, Han Jie. Two-dimensional parametric study of geosynthetic-reinforced column-supported embankments by coupled hydraulic and mechanical modeling. Computers and Geotechnics,2010,37(5):638-648
    [71]Stewart Miriam E, Filz George M. Influence of clay compressibility on geosynthetic loads in bridging layers for column-supported embankments. GSP 131 Contemporary Issues in Foundation Engineering, 2005,1-14
    [72]Hello B Le, Villard P. Embankments reinforced by piles and geosynthetics-Numerical and experimental studies dealing with the transfer of load on the soil embankment. Engineering Geology,2009,106(1-2):78-91
    [73]Jones B M, Plaut R H, Filz G M. Analysis of geosynthetic reinforcement in pile supported embankments, Part Ⅰ:3D plate model. Geosynthetics International,2010,17(2):59-67
    [74]Borges Jose Leitao, Marques Daniela Oliveira. Geosynthetic-reinforced and jet grout column-supported embankments on soft soils:Numerical analysis and parametric study. Computers and Geotechnics,2011,38(7):883-896
    [75]Jennings Keith, Naughton Patrick J. Similitude conditions modeling geosynthetic reinforced piled embankments using FEM and FDM techniques. Advances in Civil Engineering,2011,1-15
    [76]Chevalier B, Villard P, Combe G. Investigation of load-transfer mechanisms in geotechnical earth structures with thin fill platforms reinforced by rigid inclusions. International Journal of Geomechanics,2011,11(3):239-250
    [77]Bhasi Anjana, Rajagopal K. Numerical modeling and analysis of geosynthetic reinforced pile supported embankments. Recent Researches in Engineering Mechanics, Urban & Naval Transportation and Tourism,2012,158-162
    [78]姜燕玲.粉喷桩与土工格栅联合加固技术理论研究与计算:[山东大学硕士学位论文].济南:山东大学,2003,33-42
    [79]孙献国.粉喷桩与土工格栅联合加固技术的数值模拟分析研究.公路交通科技,2004,21(5):47-49
    [80]晏莉.桩承土工合成材料加筋垫层复合地基作用机理数值分析:[长沙理工大学硕士学位论文].长沙:长沙理工大学,2004,25-47
    [81]Yan L, Yang J S, Han J. Parametric study on geosynthetic-reinforced pile-supported embankments. Advances in Earth Structures:Research to Practice (GSP 151),2006,255-261
    [82]Zhang Gefen, Yan Li. Numerical modeling of geosynthetic-reinforced pile-supported embankment systems. In:Proceedings of the 2011 GeoHunan International Conference. Changsha:ASCE Geotechnical Special Publication No.220,2011,197-202
    [83]芮瑞,夏元友.桩-网复合地基与桩承式路堤的对比数值模拟.岩土工程学报,2007,29(5):769-772
    [84]刘飞禹,张乐,余炜,等.交通荷载作用下桩承式加筋路堤性能分析.土木工程学报,2011,44(增刊):50-54
    [85]陈泽松,夏元友,冯仲仁.管桩加固软土路基的工作性状研究.岩石力学与工程学报,2005,24(增2):5822-5826
    [86]闫澍旺,周宏杰,崔澂,等.水泥土桩与土工格栅联合加固沟谷软基机理研究.岩土力学,2005,26(4):633-637
    [87]陈仁朋,贾宁,陈云敏.桩承式加筋路堤受力机理及沉降分析.岩石力学与工程学报,2005,24(23):4358-4367
    [88]陈福全,吕艳平,侯永峰.桩承加筋式路堤的承载机理研究.铁道学报,2007,29(4):74-79
    [89]Qian Jinsong, Ling Jianming.3D finite element analysis of geosynthetic-reinforced and pile-supported widening of embankment over soft soil. In: Proceedings of the 2009 GeoHunan International Conference. Changsha: Geotechnical Special Publication No.191,2009,124-132
    [90]李西斌,吴金耀.高速列车荷载下桩承加筋路堤变形机制数值分析.岩上工程学报,2011,33(增刊2):232-237
    [91]李西斌,吴金耀,齐锋.高速列车荷载下桩承加筋路堤荷载传递机制数值分析.土木工程学报,2011,44(增刊):55-59
    192]陈昌富.组合型复合地基加固机理及仿生智能优化分析计算方法研究:[浙江大学博士后研究报告].杭州:浙江大学,2005,1-154
    [93]刘敦平.双向增强体复合地基承载特性及其数值模拟:[湖南大学博士论文].长沙:湖南大学,2008,54-82
    [94]连峰,龚晓南,李阳.双向复合地基研究现状及若干实例分析.地基处理,2006,17(2):3-9
    [95]Terzaghi K. Theoretical soil mechanics. New York:John Wiley & Son,1943
    [96]Guido V A, Biesiadecki G L, Sullivan M J. Bearing capacity of geotextile reinforced foundation, In:Proceeding of the 1 lth International Conference on Soil Mechanics and Foundation Engineering, San Francisco,1985,1777-1780
    [97]British Standards Institution. Code of Practice for Strengthened Reinforced Soil (BS 8006).1995
    [98]Hewlett W J. The analysis and design of bridge approach support piling (Part 1:Project report):[Cambridge University PhD thesis]. Cambridge:Cambridge University Engineering Department,1984
    [99]Hewlett W J, Randolph M F. Analysis of piled embankment. Ground Engineering,1988,21(3):12-18
    [100]Russell D, Pierpoint N. An assessment of design methods for piled embankments. Ground Engineering,1997,30(10):39-44
    [101]陈云敏,贾宁,陈仁朋.桩承式路堤土拱效应分析.中国公路学报,2004,17(4):1-6
    [102]Chen Yun-min, Cao Wei-ping, Chen Ren-peng. An experimental investigation of soil arching within basal reinforced and unreinforced piled embankments. Geotextiles and Geomembranes,2008,26(2):164-174
    [103]陈福全,李阿池,吕艳平.桩承式路堤中土拱效应的改进Hewlett算法.岩石力学与工程学报,2007,26(6):1278-1283
    [104]刘俊飞,赵国堂,马建林.桩网复合地基桩顶土拱形态分析.铁道学报,2011,33(6):81-87
    [105]Jones C J, Lawson C R, Ayres D J. Geotextile reinforced piled embankment. Geotextile, Gemembranes and Related Products. Rotterdam: Balkema,1990,155-159
    [106]Carlsson B. Reinforced soil, principles for calculation. Linoping:Terratema AB,1987
    [107]Svan(?) G, Ilstad T, Eiksund G, Want A. Alternative calculation principle for design of piled embankments with base reinforcement. In:Proceedings of 4th International Conference on Ground Improvement Geosynthetics. Helsinki, 2000
    [108]Card G B, Carter G R. Case history of a piled embankment in London's dockiands. Engineering Geology of Construction, Geological Society Engineering Geology Special Publication No.10,1995,79-84
    [109]Collin J G. Column supported embankment design considerations. In: Proceedings of the 52th Annual Geotechnical Engineering Conference. Minnesota:University of Minnesota,2004,51-78
    [110]饶为国,赵成刚.桩-网复合地基应力比分析与计算.土木工程学报,2002,35(2):74-80
    [111]杨宇,陈昌富,赵明华.桩承式水平加筋复合地基承载性能及影响因素研究.中南公路工程,2007,32(2):73-76,90
    [112]陈福全,李阿池.桩承式加筋路堤的改进设计方法研究.岩土工程学报,2007,29(12):1804-1808
    [113]赵明华,龙军,张玲.桩承加筋垫层复合地基桩土应力比分析.公路交通科技,2010,27(10):29-34
    [114]郑俊杰,陈保国,Sari W Abusharar,等.双向增强体复合地基桩土应力比分析.华中科技大学学报(自然科学版),2007,35(7):110-113
    [115]Sari W Abusharar, Zheng Jun Jie, Chen Bao Guo, et al. A simplified method for analysis of a piled embankment reinforced with geosynthetics. Geotextiles and Geomembranes,2009,27(1):39-52
    [116]郑俊杰,张军,马强,蒲诃夫.双向增强体复合地基桩土应力比三维分析.华中科技大学学报(自然科学版),2010,38(2):83-86
    [117]张军,郑俊杰,马强.路堤荷载下双向增强体复合地基受力机理分析.岩土工程学报,20 10,32(9):1392-1398
    [118]张军,郑俊杰,马强.桩承式加筋路堤荷载分担比计算方法.浙江大学学报(工学版),2010,44(10):1950-1954
    [119]马强,郑俊杰,张军.考虑桩间土支撑的桩承式加筋路堤理论分析.华中科技大学学报(自然科学版),2011,39(3):30-33
    [120]曹卫平,陈仁朋,陈云敏.桩承式加筋路堤桩体荷载分担比计算.中国公路学报,2006,19(6):l-6
    [121]俞缙,周亦涛,鲍胜,等.柔性桩承式加筋路堤桩土应力比分析.岩土工程学报,2011,33(5):705-712
    [122]许峰,陈仁朋,陈云敏,等.桩承式路堤的工作性状分析.浙江大学学报(工学版),2005,39(9):1394-1399
    [123]张浩,石名磊,张瑞坤.桩承式灰土路堤基底荷载效应分析.公路交通科技,2011,28(6):25-31
    [124]杨宇,陈昌富,赵明华.水平加筋与散体材料桩组合型复合地基承载力计算.公路交通科技,2008,25(6):35-39,49
    [125]施有志.桩承土工合成材料加筋垫层复合地基承载力的计算方法.工程勘察,2006,(7):9-12,75
    [126]Plaut R H, Filz G M. Analysis of geosynthetic reinforcement in pile-supported embankments, Part III:Axisymmetric model. Geosynthetics International, 2010,17(2):77-85
    [127]饶为国,江辉煌,侯庆华.桩-网复合地基工后沉降的薄板理论解.水利学报,2002,51(4):23-27
    [128]谭慧明,刘汉龙.桩承加筋路堤中路堤与褥垫层共同作用理论分析.岩土力学,2008,29(8):2271-2276
    [129]Deb Kousik, Basudhar P K, Chandra Sarvesh. Generalized model for geosynthetic-reinforced granular fill-soft soil with stone columns. International Journal of Geomechanics,2007,7(4):266-276
    [130]Deb K, Chandra S, Basudhar PK. Response of multilayer geosynthetic reinforced bed resting on soft soil with stone columns. Geotextiles and Geomembranes,2007,25(4-5):204-220
    [131]饶为国,杜文锋,罗卫东,等.三点法推算桩-网复合路基工后沉降量.公路,2001,(8):92-95
    [132]赵明华,刘敦平,张玲.双向增强体复合地基桩土应力比计算.工程力学,2009,26(2):176-181
    [133]赵明华,孙建兵,张永杰.基于Winkler模型的双向增强体复合地基沉降计算.岩土力学,2010,31(11):3459-3463,3474
    [134]赵明华,龙军,张玲.双向增强复合地基的有限差分法分析.湖南大学学报(自然科学版),2009,36(6):1-6
    [135]陈昌富,周志军.桩承式多层水平加筋复合地基受力与变形分析.公路交通科技,2009,26(6):29-34
    [136]赵明华,陈艳平,陈昌富,等.土工格室+碎石垫层结构体的稳定性分析.湖南大学学报(自然科学版),2003,30(2):68-72
    [137]Han J, Huang J, Porbaha A.2D numerical modeling of a constructed geosynthetic-reinforced embankment over deep mixed columns. GSP 131 Contemporary Issues in Foundation Engineering,2005,511-521
    [138]孙文怀,董金玉,杨传喜,等.桩承土工合成材料复合地基的研究.工程勘察,2004,(6):7-9
    [139]赵明华,张玲,邹新军,等.土工格室-碎石桩双向增强复合地基研究进展.中国公路学学报,2009,22(1):1-10
    [140]孟广训,沈定贤.模型碎石桩应力的测定及其分析.水利水运工程学报,1987,6(2):69-80
    [141]Hughes J M O, Withers N J. Reinforcing of soft cohesive soils with stone columns. Ground Engineering,1974,7(3):42-49
    [142]刘燕燕,凌天清,黄中文.土工格栅加筋碎石桩-砂砾垫层加固系统应用.路基工程,2006,24(4):96-97
    [143]王瑞芳,皮菊华.土工格栅与碎石桩联合处理软土路基的对比.武汉大学学报(工学版)2011,44(1):86-89,93
    [144]蔡飞,李广信.土工格栅加筋碎石桩的试验研究.全国第三届土工合成材料学术会议论文选集.天津大学出版社,1992
    [145]杨有海.加筋碎石桩的承载力分析.岩土工程学报,1993,15(5):107-111
    [146]李广信,陈轮,蔡飞.加筋土体应力变形计算的新途径.岩士工程学报,1994,16(3):46-53
    [147]Wu Cho-Sen, Hong Yung-Shan. The behavior of a laminated reinforced granular column. Geotextiles and Geomembranes,2008,26(4):302-316
    [148]Sharma Radhey S, Phani Kumar B R, Nagendra G. Compressive load response of granular piles reinforced with geogrids. Canadian Geotechnical Journal, 2004,41(1):187-192
    [149]Impe Van W F. Soil improvement techniques and their evolution. Rotterdam: Balkema.1989
    [150]金亮星,孔怀胜.土工格栅钢筋笼碎石桩软基加固机理研究及应用实例分析.延安大学学报(自然科学版),2001,20(3):1921
    [151]刘燕燕,凌天清,黄中文.土工格栅加筋碎石桩-砂砾垫层加固系统应用.路基工程,2006,(4):96-97
    [152]高明军,刘汉龙,左威龙.格栅碎石桩技术及现场试验研究.西部探矿工程,2008,(12):11-14
    [153]高明军.管式格栅加筋碎石桩的承载特性试验研究:[河海大学硕士论文].南京:河海大学,2008,18-31
    [154]Murugesan S, Rajagopal K. Geosynthetic-encased stone columns:Numerical evaluation. Geotextiles and Geomembranes,2006,24(6):349-358
    [155]Lo S R, Zhang R, Mak J. Geosynthetic-encased stone columns in soft clay: A numerical study. Geotextiles and Geomembranes,2010,28(3):292-302
    [156]Yoo Chungsik. Performance of geosynthetic-encased stone columns in embankment construction:numerical investigation. Journal of Geotechnical and Geoenvironmental Engineering,2010,136(8):1148-1160
    [157]Khabbazian Majid, Kaliakin Victor N, Meehan Christopher L.3D analyses of geosynthetic encased stone columns. In:Proceeding of International Foundations Congress and Equipment Expo 09 (IFCEE09), Contemporary Topics in Ground Modification, Problem Soils and Geo-Support. Orlando: ASCE Geotechnical Special Publication No.187,2009,201-208
    [158]Khabbazian Majid, Meehan Christopher L, Kaliakin Victor N. Numerical study of effect of encasement on stone column performance. In:Proceedings of the GeoFlorida 2010 Conference GeoFlorida. Florida:ASCE Special Publications,2010,184-193
    [159]杨有海.加筋碎石桩的承载力分析.岩土工程学报,1993,15(5):107-111
    [160]黄学良,杨天闻.加筋碎石桩极限承载力的计算图式研究.交通科技,2006,(2):40-42
    [161]周志刚,张起森.土工格栅碎石桩的承载力分析.岩土工程学报,1997,19(1):58-62
    [162]乔丽平.加筋碎石桩单桩极限承载力.土工基础,2006,20(6):38-40
    [163]赵明华,陈庆,张玲,等.加筋碎石桩承载力计算.公路交通科技,2011,28(8):7-12
    [164]陈昌富,李其泽.基于圆孔扩张理论顶部加箍碎石桩承载力计算.湖南大学学报(自然科学版),2011,38(10):7-12
    [165]刘润,冯守中,魏秋晨,闫澍旺.格栅碎石桩加固软基的机理及计算方法.天津大学学报,2009,42(9):784-789
    [166]叶书麟,叶观宝.地基处理与托换技术.北京:中国建筑工业出版社,1994,517519
    [167]强小俊,陈合爱,江辉煌.素混凝土桩复合地基在公路软基处理中的应用.高速公路地基处理理论与实践.北京:人民交通出版社,2005
    [168]赵明华,刘琴,邹新军.水泥粉煤灰碎石(CFG)桩复合地基固结分析.湖南大学学报(自然科学版),2007,34(9):1-5
    [169]张土乔,龚晓南,曾国熙.水泥土桩复合地基固结分析.水利学报,1991, (10):32-37
    [170]闰明礼,杨军.CFG桩复合地基的褥垫层技术.地基处理,1996,7(3):72-76
    [171]龚晓南.广义复合地基理论及工程应用.岩土工程学报,2007,29(1):1-13
    [172]吴慧明.不同刚度基础下复合地基性状研究:[浙江大学博士论文].杭州:浙江大学,2000,43-84
    [173]孙训海,许力和,李艳霞,等.基础刚度对刚性桩复合地基桩土荷载分担比的影响.岩土工程学报,2010,32(6):850-855
    [174]郑刚,刘双菊,伍止超,等.刚性桩复合地基在水平荷作用下工作性状的模型试验.岩土工程学报,2005,27(8):865-868
    [175]Lee D, Yoo C, Park S. Model tests for analysis of load carrying capacity of geogrid encased stone column. In:Proceeding of the 17th International Offshore and Polar Engineering Conference, Lisbon,2007,1632-1635
    [176]Sivakumar V, Glynn D, Black J, et al. A laboratory model study of the performance of vibrated stone columns in soft clay. In:Proceeding of the 17th European Conference on Soil Mechanics and Geotechnical Engineering. Madrid,2007
    [177]Shivashankar R, Dheerendra Babu M R, Nayak S, Manjunath R. Stone columns with vertical circumferential nails:laboratory model study. Geotechnical and Geological Engineering,2010,28(5):695-706
    [178]王协群.土工合成材料加筋地基的极限平衡设计与加筋材料的研究:[武汉理工大学博士论文].武汉:武汉理工大学,2003,101-102
    [179]徐少曼.关于土工织物加筋堤坝软基问题.福州大学学报(自然科学版),1999,27(2):76-80
    [180]吴景海,王德群,王玲娟,等.土工合成材料加筋的试验研究.土木工程学报,2002,35(6):93-99
    [181]吴景海,王德群,陈环.土工合成材料加筋砂土三轴试验研究.岩土工程学报,2000,22(2):199-204
    [182]保华富,周亦唐,赵川,等.聚合物土工格栅加筋碎石土试验研究.岩土工程学报,1999,21(2):217-221
    [183]黄仙枝,岂连生,白晓红.软土地基土工带加筋碎石垫层的应力扩散研究.岩石力学与工程学报,2004,23(17):29922997
    [184]张苇.土工带加筋碎石垫层的试验研究与有限元分析:[太原理工大学硕士论文].太原:太原理工大学,2003,21-85
    [185]Deb Kousik, Samadhiya Narendra Kumar, Namdeo Jagtap Babasaheb. Laboratory model studies on unreinforced and geogrid-reinforced sand bed over stone column-improved soft clay. Geotextiles and Geomembranes,2011, 29(2):190-196
    [186]赵明华.土力学与基础工程.第3版.武汉:武汉工业大学出版社,2009,52-62
    [187]邓修甫,刘新华,张琳.碎石桩复合地基沉降计算方法田.湘潭矿业学院学报,2003,18(4):55-57
    [188]孙林娜,龚晓南.散体材料桩复合地基沉降计算方法的研究.岩土力学,2008,29(3):846-848
    [189]B.A.弗洛林.土力学原理(第一卷).徐志英,译.北京:中国建筑工业出版社,1973,77-92
    [190]盛崇文.碎石桩复合地基的沉降计算.土木工程学报,1986,19(1):72-80
    [191]池跃君,宋二祥,陈肇元.刚性桩复合地基沉降计算方法的探讨及应用.土木工程学报,2003,36(11):19-23
    [192]徐洋,谢康和,胡茂刚.考虑变形协调的刚性基础复合地基沉降计算.浙江大学学报,2003,37(5):551-555
    [193]朱百里,沈珠江.计算土力学.上海:上海科学技术出版社,1990,240-251,235-238
    [194]张建辉,邓安福.桩筏基础的新型分析方法.土木工程学报,2002,35(4):103-108
    [195]Cooke R W, Price G, Tarr K. Jacked piles in London clay:Interaction and group behavior under working conditions. Geotechnique,1980,30(2):97-136
    [196]Mylonakis G, Gazetas G. Settlement and additional internal forces of grouped piles in layered soil. Geotechinque,1998,48(1):55-72
    [197]Binquet J, Lee KL. Bearing capacity tests on reinforced earth slabs. Journal Geotechnical Engineering Division,1975,101(12):1241-1255
    [198]Binquet J, Lee KL. Bearing capacity analysis of reinforced earth slabs. Journal Geotechnical Engineering Division,1975,101(12):1257-1276
    [199]Yamanouch T, Gotoh K. A proposed practical formula of bearing capacity for earthwork method on soft clay ground using a resinous mesh. Technology Report of Kyushu University.1979,52(3):201-207
    [200]张苇,岂连生,白晓红,等.加筋碎石土的试验研究.地基基础理论与实践新进展.北京:中国环境科学出版社.2002,176-179
    [201]刘毓氚,左广洲,陈福全.加筋垫层应力扩散特性试验研究.岩土力学,2007,28(5):903-908
    [202]王钊,王协群.加筋地基设计方法的探讨.见:全国第五届土工合成材料学术会议论文集.北京:现代知识出版社,2000
    [203]Zhang L, Zhao M H, Shi C J, et al. Bearing Capacity of Geocell Reinforcement in Embankment Engineering. Geotextiles and Geomembranes,2010,28(5): 475-482
    [204]Koerner R M. Designing with geosynthetics.6th Edition. Bloomington:Xlibris Corporation.2012
    [205]龙驭球.弹性地基梁的计算.北京:人民教育出版社,1981,6-67
    [206]赵明华,刘恩,张玲.基于Newmark法的复合地基沉降计算方法研究.勘察科学技术,2007,30(2):3-6
    [207]张玲,赵明华.散体材料桩复合地基承载力计算.湖南大学学报(自然科学版),2007,34(6):10-14
    [208]王瑞春,谢康和.双层散体材料桩复合地基固结解析理论.岩土工程学报,2001,23(4):418-422
    [209]邢皓枫,龚晓南,杨晓军.碎石桩复合地基固结简化分析.岩土工程学报,2005,27(5):521-524
    [210]张玉国,海然,谢康和.变荷载下散体材料桩复合地基固结研究.岩土工程学报,2009,31(6):939-945
    [211]卢萌盟,谢康和,李传勋,童磊.考虑桩土侧向变形的复合地基固结解.岩土工程学报,2011,33(2):181-187
    [212]湖南大学岩土工程研究所.高速公路软土路基处理研究及应用.长沙:湖南大学岩土工程研究所,2003
    [213]谈至明.具有水平摩阻力的弹性地基上梁的解.力学与实践,1997,19(3):33-35
    [214]杨敏,廖凯霞.考虑摩擦效应时文克尔弹性地基上的杆系有限单元法.上海地质,2001,22(2):34-37
    [215]马飞,艾智勇.考虑接触摩擦效应时的弹性地基杆系有限元法.岩土力学,2002,23(1):93-96
    [216]周继凯,杜钦庆.考虑水平力作用的改进型文克勒地基模型.河海大学学报,2004,32(6):669-673
    [217]Yin Jianhua. Comparative modeling study of reinforced beam on elastic foundation. Journal of Geothechnical and Geoenviromental Engineering, 2000,126(3):265-271
    [218]Yin Jianhua. Closed-form solution for reinforced Timoshenko beam on elastic foundation. Journal of Engineering Mechanics,2000,126(8):868-874
    [219]Bowles J E. Foundation analysis and design.5th ed..New York:Me Graw-Hill Book Company,1996,8-68
    [220]刘俊新,谢强,文江泉,等.粉喷桩-上王格栅复合地基应力现场测试研究.岩土力学,2007,28(2):376-380
    [221]张超.桩承加筋土复合地基的模型试验研究:[浙江大学硕士论文].杭州:浙江大学,2007,34-65
    [222]Helloa B Le, Villard P. Embankments reinforced by piles and geosynthetics-Numerical and experimental studies dealing with the transfer of load on the soil embankment. Engineering Geology,2009,106(1-2):78-91
    [223]邓岳保.格室垫层刚度测试技术及其计算理论研究:[湖南大学硕士论文].长沙:湖南大学,2009,41-62
    [224]黄绍铭,高大钊.软土地基与地下工程.第2版.北京:中国建筑工业出版社,2005,79-85
    [225]Zeevaert L. Compensated friction pile foundation to reduce settlement of buildings on the highly compressible volcanic clay of Mexico city. In: Proceeding of 5th ICOSOMF. London,1957
    [226]Hooper J A. Observations on the behavior of a piled raft foundation on London clay. ICE Proceeding,1973,55(4):855-877
    [227]Kakurai M, Yamashita K, Tomono M. Settlement behavior of piled raft foundation on soft ground. In:Processing of 8th Asian Regional Conference on Soil Mechanics and Foundation Engineering,1987,373-376
    [228]Tomono M, Kakurai M, Yamashita K. Analysis of settlement behavior of piled raft foundations. Takenaka Technical Research Report.1987,115-124
    [229]Burland J B, Broms B B, Mello De V F B. Behavior of foundations and structures. In:Proceeding 9th International Conference on Soil Mechanics and Foundation Engineering. Tokyo,1977,495-546
    [230]Hooper J A, Levy J F. Behavior of flexible piled foundation. In:Proceeding 10th International Conference on Soil Mechanics and Foundation Engineering. Stockholm,1979,735-740
    [231]Cooke R W. Piled raft foundation on stiff clays-a contribution to design philosophy. Geotechnique,1986,36(2):169-203
    [232]童翊湘.上海桩基础的使用经验和设计方法.上海:华东电力设计院,1979
    [233]黄绍铭,裴捷,贾宗元,等.软土中桩基沉降估算.见:中国土木工程学会第四届土力学及基础工程学术会议论文选集.北京:中国建筑工业出版社,1983,237243
    [234]黄绍铭,王迪民,裴捷,等.按沉降量控制的复合桩基设计方法(上篇).工业建筑,1992(7):35-36
    [235]黄绍铭,王迪民,裴捷,等.按沉降量控制的复合桩基设计方法(下篇).工业建筑,1992(8):41-44
    [236]赵锡宏.上海高层建筑桩筏与桩箱基础设计理论.上海:同济大学出版社,1989
    [237]董建国,赵锡宏.高层建筑地基基础共同作用理论与实践.上海:同济大学出版社,1997,344-345
    [238]赵锡宏,董建国,袁聚云.桩基减少桩数与沉降问题的研究.土木工程学报,2000,33(3):71-74
    [239]杨敏,丁万太.上海地区桩箱基础的沉降与整体倾斜分析.工程勘察,1988,(4):16-20
    [240]杨敏,艾智勇.以沉降控制为基础的桩基础设计理论与工程实践.见:中国土木工程学会第八届年会论文集.1998,432-437
    [241]杨敏,王树娟.桩筏基础相互作用下土中应力场的变化规律.岩土工程学报,1999,21(1):26-30
    [242]宰金珉.复合桩基设计的新方法.复合桩基设计的新方法.见:第七届全国土力学及基础工程学术会议论文集.北京:中国建筑工业出版社,1994,611-615
    [243]管自立.疏桩基础设计实例分析与探讨(一).建筑结构,1993,23(10):26-31
    [244]管自立.疏桩基础设计实例分析与探讨(二).建筑结构,1993,23(11):42-46
    [245]管自立.疏桩基础实用设计方法疏桩基础设计实例分析与探讨(三).软土地基变形控制设计理论和工程实践.上海:同济大学出版社,1996,237-243
    [246]资建民.路基路面工程.广州:华南理工大学出版社,2002,27-30
    [247]周光龙.桩的差异对基础梁内力的影响及其算法.湖南大学学报,1985,12(3):37-51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700