超大跨径CFRP缆索悬索桥力学性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在新世纪,超大跨径悬索桥的研究越来越受到桥梁设计者的重视,尤其是新材料在超大跨悬索桥中的应用研究。由于超大跨径悬索桥结构柔性大、几何非线性效应突出,使成桥状态的力学性能与抗风稳定性问题变得复杂,因此,开展有关这一领域的研究十分必要。本文就CFRP缆索悬索桥与钢缆索悬索桥的力学性能及抗风稳定性做基本的研究分析。
     首先,系统地阐述了悬索桥的计算理论,包括弹性理论和挠度理论,以及现阶段采用的有限位移理论和解析计算理论,并对比分析了后两个理论的优缺点,为悬索桥的力学性能分析提供了理论基础。
     其次,采用有限元法对比分析了主跨2000m、3000m级CFRP缆索悬索桥与钢缆索悬索桥及5000m级CFRP缆索悬索桥的静力性能,包括恒荷载、车辆荷载、温度荷载作用下的静力性能。CFRP缆索悬索桥在恒荷载作用下主缆张力、吊索索力均小于钢缆索悬索桥,但加劲梁弯矩略大;在汽车荷载作用下竖向位移和扭转角均大于钢缆索悬索桥,但变形量都不大,满足实际使用需求;温度作用对钢缆索悬索桥影响较大,对CFRP缆索悬索桥影响甚小,这是由两种材料线膨胀系数不同产生的结果。
     再次,采用有限元法对比分析了主跨2000m、3000m级CFRP缆索悬索桥与钢缆索悬索桥及5000m级CFRP缆索悬索桥的动力性能,包括结构的自振特性与自振频率。CFRP缆索悬索桥与钢缆索悬索桥的各阶振型形状相似,CFRP缆索悬索桥侧向振动基频略小于钢缆索悬索桥,竖向振动基频略大,扭转基频有明显提高,扭弯频率比明显占优,抗风稳定性较好。
     最后,本文还对提高超大跨径CFRP缆索悬索桥抗风稳定性的结构措施进行了初步研究,为进一步的风致振动、抗震等研究提供分析依据。通过建立不同缆索形式的结构模型,包括交叉吊索模型、空间主缆模型和索桁桥模型,对比分析了几种主要方案的抗风稳定性,得出一些具有一定参考价值的结论。
In the new century, the study of super-span suspension bridge, in particular, the application of new materials in super-span suspension bridge, is attached the growing importance to designer. As super-span brige structure is flexible, its effects of geometric noulinear are become more obvious. The mechanics performance and wind stability are become more complex in the form of bridge, therefore it becomes essential to carry out the research in this field.
     The calculation theories of suspension bridges, including elastic theory and deflection theory, finite displacement theory and analytic calculation theory used presently are introduced systematically. Moreover, the merits and faults of the latter two methods are compared and analyzed, which provides theoretical basis for the analysis of static and dynamic characteristic of suspension bridges.
     The static performances of the 2000m-span,3000m-span suspension bridges with CFRP cables and steel cables and 5000m-span suspension bridge with CFRP cables are analyzed making use of the finite-element method, including under the action of dead load, vehicle load and temperature. The main cable tension and suspender force of CFRP cable suspension bridges are less than those of the steel cable suspension bridges, but the stiffening girder moment of the former is slightly larger than that of the later, when they are under the action of dead load. In the vertical load effect, the vertical displacement and torsion angle are greater than those of the steel cable suspension bridge, but the deformations are small, which can meet the actual demand. Temperature effect on steel cable suspension bridge is great, but it is very small on the CFRP cable suspension bridge, which is because that the linear expansion coefficients of two materials are different.
     The dynamic performances, including the natural vibration frequency and vibration modes of the 2000m-span,3000m-span suspension bridges with CFRP cables and steel cables and 5000m-span suspension bridge with CFRP cables are analyzed making use of the finite-element method. The fundamental vibration mode shapes of CFRP cable suspension bridges are similar to those of the steel cable suspension bridges. The lateral vibration frequencies of CFRP cable suspension bridges are slightly less than those of steel cable suspension bridges, but the vertical vibration fundamental frequencies of the former are slightly larger than those of the later. The torsional vibration fundamental frequencies of the former are significantly higher than those of the later, so the wind stability of the former is better.
     The preliminary study on structural measures of improving wind stability of super-span CFRP cable suspension bridge is carried out, which provides basis for further research such as wind-induced vibrations and seismic analysis. Different forms of structural models, including cross-cable model, spatial main cable model and cable truss bridge model are established. The wind stabilities of several major programs are compared and some conclusions which has a certain reference value are coincided.
引文
[1][日]伊藤学,川田忠树著,刘建新,和丕壮译.超长大桥梁建设的序幕——技术者的新挑战[M].北京:人民交通出版社,2002.
    [2]陈德荣,娄有原.悬索桥综述(一)[J].东北公路.1992(1):78-89.
    [3]严国敏,周世忠.现代悬索桥[M].北京:人民交通出版社,2002.
    [4]周世忠.中国悬索桥的发展[J].桥梁建设.2003.5.
    [5]雷俊卿,郑明珠,徐恭义.悬索桥设计[M].北京:人民交通出版社,2002
    [6]周孟波,刘自明,王邦楣.悬索桥手册[M].北京:人民交通出版社,2003
    [7]项海帆.高等桥梁结构理论[M].北京:人民交通出版社,2001
    [8]项海帆,葛耀君.悬索桥跨径的空气动力极限[J].土木工程学报,2005,38(1):60-70
    [9]唐寰澄.世界著名海峡交通工程[M].北京:中国铁道出版社,2004
    [10]楼庄鸿.近年来悬索桥发展的若干趋势[J].土木工程学报,1999,16(3):35-39
    [11]向中富.桥梁施工控制技术[M].北京:人民交通出版社,2001
    [12]吕志涛.新世纪混凝土结构对新材料的挑战[C].中国首届纤维增强塑(FRP)混凝土结构学术交流会论文集,2000.6,北京
    [13]张元凯,消汝诚.FRP材料在大跨度桥梁结构中的应用展望[J].公路交通科技,2004,21(4):59-62
    [14]郑宏宇.CFRP缆索悬索桥基本性能及若干关键技术研究[D].南京:东南大学,2007
    [15]吴海军,陆萍,周志详.CFRP在新建桥梁中的应用与展望[J].重庆交通学院学报,2004,(23):1-5
    [16]JSCE "Recommendation for Design and Construction of Concrete Structures Using Continuous Fiber Reinforced Materials" Published by Research Committee on Continuous Fiber Reinforcing Materials. JSCE. Japan. Oct,1997
    [17]梅葵花.CFRP拉索斜拉桥的研究[D].南京:东南大学,2005
    [18]郑宏宇,梅葵花,吕志涛.CFRP缆索体系悬索桥的优势及可行性研究[J].桥梁建设,2006,(4):7-10
    [19]申永刚.大跨度CFRP拉索斜拉桥的模态阻尼特性研究[D].浙江:浙江大学,2008
    [20]SteimanD B. A Generalized Defection Theory for Suspension Bridge. Truns ASCE,100,1935
    [21]沈世钊,徐崇宝,赵臣等.悬索桥结构设计[M].北京:中国建筑工业出版社,2006
    [22]钱冬生,陈仁福.大跨悬索桥的设计与施工[M].成都:西南交通大学出版社,1999
    [23]潘韬.大跨度悬索桥主缆成桥线形分析[D].武汉:武汉理工大学,2006
    [24]Boynton R M, Werth A R, Geyer W F. Tagus River Suspension Bridge Analysis of Superstructure by a Linearized Deflection Theory, Symposium on Suspension Bridges, Lisbon,1966
    [25]尼尔斯.J.吉姆辛.缆索承重桥梁—构思与设计[M].姚玲森,林长川译.北京:人民交通出版社,1992
    [26]周远棣,徐君兰.钢桥[M].北京:人民交通出版社,2003
    [27]龚尧南,王寿梅.结构分析中的非线性有限元素法[M].北京:北京航空学院出版社,1986
    [28]Klaus-Jurgen B., Sald B. Large Displacement Analysis of Three-Dimensional Beam Structures. International Joural for Numerical Methods in Engineering. 1979,14
    [29]梅葵花.悬索桥主缆施工监控的研究[D].西安:长安大学,2000
    [30]黄平明,梅葵花,徐岳.大跨径悬索桥主缆系统施工控制计算[J].西安公路交通大学学报,2000,20(4)
    [31]潘家英,程庆国.大跨度悬索桥有限位移分析[J].土木工程报,1994(2):1-10
    [32]陈正清,曾庆元.空间杆系结构大挠度问题内力分析的UL列式法[J].土木工程学报,1992,25(5)
    [33]杨孟刚,陈政清.基于UL列式的两节点悬链线索元非线性有限元分析[J].土木工程学报,2003,36(8)
    [34]两节点曲线索单元精细分析的非线性有限元法[J].工程力学,2003,20(1)
    [35]杨孟刚,胡建华,陈政清.基于U.L列式的悬索桥施工过程模拟分析[J].湖南科技大学学报(自然科学版),2004,19(3)
    [36]史建三.悬索桥大缆架设计算的索长分析法[J].桥梁建设,1993,(4)
    [37]唐茂林,强士中,沈锐利.悬索桥成桥主缆线形计算的分段悬链线法[J].铁道学报,2003,25(1)
    [38]肖汝诚,贾丽君,王小同.确定大跨径悬索桥主缆成桥线形的虚拟梁法[J].计算力学学报,1999,16(1)
    [39]肖汝诚,项海帆.确定特大跨悬索桥理想状态的方法与程序系统研究[J].华东公路,1997
    [40]张志国,邹振祝,赵玉成.确定悬索桥主缆成桥线形的参数方程法[J].计算力学学报,2005,22(3)
    [41]马文刚.大跨径CFRP缆索悬索桥静动力性能分析[D].长安大学,2006
    [42]潘永仁.悬索桥结构非线性分析理论与方法[M].北京:人民交通出版社,2004
    [43]陈政清.桥梁风工程[M].北京:人民交通出版社,2005
    [44][日]小西一郎(张健峰,陈英俊译).钢桥(第十分册)[M].北京:人民铁道出版社,1982
    [45]Menn C, Billington D P. Breaking Barriers of Scale:a Concept for Extremely Long Span Bridges [J]. Structural Engin-eering International,1995, (1).
    [46]项海帆,等.现代桥梁抗风理论与实践[M].北京:人民交通出版社,2005
    [47]中交公路规划设计院.JTG/T D60-01-2004.公路桥梁抗风设计规范[M].北京:人民交通出版社,2004
    [48]张新军,应磊东,跨径悬索桥抗风措施研究[J].公路,2006,11(73)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700