几种中药抗癌活性成分的分离鉴定及其诱导肿瘤细胞凋亡的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然产物是新药开发研究的重要源泉,中草药是我国传统医药发展的重要宝藏。系统地挖掘和整理中草药中的活性物质,是我国中药现代化的必由之路。本文选择了3种使用频率较高的抗癌中药—栝楼、穿心莲及白花蛇舌草,运用体外抗肿瘤模型解析和鉴定了3种抗肿瘤活性最为突出的单体化合物。对于肿瘤的治疗,本文分别从单体化合物抑制肿瘤增殖、联合用药提升抗肿瘤疗效及对耐药性肿瘤的治疗三方面进行研究,其结果如下:
     论文首先运用抗肿瘤细胞活性跟踪实验,通过新型高通量逆流色谱和制备色谱技术分离纯化和鉴定了3种抗肿瘤效果最为显著的化合物单体—23,24-二氢葫芦素B,穿心莲内酯及熊果酸。
     其次运用多种类型人肿瘤细胞株系模型,确定23,24-二氢葫芦素B可通过时间及剂量依赖性的方式抑制Bcap37等6株肿瘤细胞的体外增殖,并能通过阻滞Bcap37细胞于G_2/M期,发生DNA片段化、caspase激酶活性升高及细胞色素c从线粒体释放至细胞质等现象,最终导致Bcap37细胞发生线粒体通路介导—caspase依赖的细胞凋亡。
     本论文从中药配伍能提高肿瘤治疗效果得到提示,结合体外抗肿瘤模型实验结果,将穿心莲内酯与5-FU进行联合用药,实验结果证明在线粒体膜电位下降的同时,复方化合物通过提高Bax,p53的表达及caspase-8的活性,大幅度提高了caspase-8依赖的线粒体途径诱导的细胞凋亡率,从而显著降低了肿瘤细胞的存活率。
     论文最后利用R-HepG2这一肝癌耐药株模型对熊果酸的耐药性及其相关的分子机制作了较为深入的研究,结果阐明熊果酸通过时间及剂量依赖性的方式抑制多药耐药株肿瘤细胞R-HepG2的体外增殖,并用实验证明该结果是通过caspase非依赖的凋亡诱导作用实现的,通过免疫荧光及siRNA实验,进一步证实了熊果酸诱导的细胞凋亡主要是通过AIF完成的,并伴有线粒体相关蛋白Bak的激活。动物实验结果表明,熊果酸能有效抑制R-HepG2肿瘤细胞在体内的增殖,并且对小鼠的机体基本无伤害,而且进一步证明该体内肿瘤抑制作用同样是通过AIF途径实现的。
In this work, three compounds were isolated from different Chinese medicine herbs. The potential effects of these compounds on anticancer were investigation-single compound therapy、combination therapy and drug resistant therapy. The results were summarized as follows:
     By bioassay-guided fractionation procedure using human tumor cell lines led to the isolation of several compounds from Chinese herb medicine which possesses clear antitumor activity were isolated. Among them, three compounds with significant anticancer activity were found. Structure elucidation of them have been identified as 23,24-dihydrocucurbitacin (DHCB), andrographolide (ANDRO), ursolic acid (UA) respectively. All of them showed clear cytotoxicity against human tumor cell lines.
     At first, we found DHCB could inhibit the proliferation of human cancer cell lines including Bcap37, HeLa, SW620, SMMC-7721, K562 and MCF-7 in a dose- and time-dependent manner, and induce G_2/M phase cell cycle arrest and apoptosis in human breast cancer cell line Bcap37 at low concentration. DHCB-induced Bcap37 apoptosis was characterized with the changes in nuclear morphology, DNA fragmentation, activation of caspase-like activities, poly(ADP-ribose) polymerase cleavage, release of cytochrome c into cytosol. Furthermore, the results suggest that DHCB-induced Bcap37 apoptosis through mitochondria-mediated caspase-dependent pathway.
     Through the experiments, we can conclude that ANDRO has been shown to suppress the growth of HCC cells and trigger apoptosis in vitro. Most important, ANDRO potentiates the cytotoxic effect of 5-FU in HCC cell line SMMC-7721 through apoptosis. The addition of ANDRO to 5-FU induces synergistic apoptosis, which could be corroborated to the increased caspase-8, p53 activity and the significant changes of Bax conformation in these cells, resulting in increased losses of mitochondrial membrane potential, increased release of cytochrome c, and activation of caspase-9 and caspase-3. The results suggest that ANDRO may be effective in combination with 5-FU for the treatment of HCC cells.
     To investigate the anti-resistant ability and its molecular mechanisms of the UA, we used multidrug resistant human hepatoma cell line (R-HepG2) as a test model. The results demonstrated that the UA could inhibit the proliferation of multidrug resistant human hepatoma R-HepG2 cells through apoptosis. Furthermore, The death of R-HepG2 cells induced by UA was mainly through the caspase-independent AIF signaling pathway with the participation of Bak. And we also showed that UA was effective against R-HepG2 cells in animal study with negligible body weight loss and damage towards the liver, heart and spleen. Most importantly, immunohistochemical staining in animal tissues also suggested that UA significantly inhibited the growth of R-HepG2 cells in nude mice was also through the AIF signaling pathway.
引文
1.Koehn FE,Carter GT.The evolving role of natural products in drug discovery.Nature Reviews Drug Discovery 2005 Mar;4(3):206-20.
    2.Newman DJ.Natural products as leads to potential drugs:An old process or the new hope for drug discovery? Journal of Medicinal Chemistry 2008 May;51(9):2589-99.
    3.Newman DJ,Cragg GM,Snader KM.Natural products as sources of new drugs over the period 1981-2002.Journal of Natural Products 2003 Jul;66(7):1022-37.
    4.Newman D J,Cragg GM.Natural products as sources of new drugs over the last 25 years.Journal of Natural Products 2007 Mar;70(3):461-77.
    5.McChesney JD,Venkataraman SK,Henri JT.Plant natural products:Back to the future or into extinction? Annual Meeting of the Phytochemical-Society-of-North-American;2007 2006;Oxford,MS;2007.p.2015-22.
    6.Mishra KP,Ganju L,Sairam M,Banerjee PK,Sawhney RC.A review of high throughput technology for the screening of natural products.Biomedicine & Pharmacotherapy 2008 Feb;62(2):94-8.
    7.Steinbeck C.Recent developments in automated structure elucidation of natural products.Natural Product Reports 2004;21(4):512-8.
    8.Paterson I,Anderson EA.The renaissance of natural products as drug candidates.Science 2005Oct;310(5747):451-3.
    9.Sticher O.Natural product isolation.Natural Product Reports 2008;25(3):517-54.
    10.Pauli GF,Pro SM,Friesen JB.Countercurrent separation of natural products.Journal of Natural Products 2008 Aug;71(8):1489-508.
    11.Tanimura T,Pisano JJ,Ito Y,Bowman RL.Droplet Countercurrent Chromatography.Science 1970;169(3940):54-&.
    12.Ito Y,Bowman RL.Countercurrent Chromatography.Liquid-Liquid Partition Chromatography without Solid Support.Science 1970;167(3916):281-&.
    13.Ito Y.Efficient preparative counter-current chromatography with a coil planet centrifuge.Journal of Chromatography A 1981;214(1):122-5.
    14.Ito Y,Sandlin J,Bowers WG.High-speed preparative counter-current chromatography with a coil planet centrifuge.Journal of Chromatography A 1982;244(2):247-58.
    15.Chen L,Zhang Q,Yang G,et al.Rapid purification and scale-up ofhonokiol and magnolol using high-capacity high-speed counter-current chromatography.Journal of Chromatography A 2007;1142(2):115-22.
    16.Wu S,Yang L,Gao Y,Liu X,Liu F.Multi-channel counter-current chromatography for high-throughput fractionation of natural products for drug discovery.Journal of Chromatography A 2008;1180(1-2):99-107.
    17.Berthod A,Friesen JB,Inui T,Pauli GE Elution-extrusion countercurrent chromatography:Theory and concepts in metabolic analysis.Analytical Chemistry 2007;79(9):3371-82.
    18.Berthod A,Ruiz-Angel MJ,Carda-Broch S.Elution-Extrusion Countercurrent Chromatography.Use of the Liquid Nature of the Stationary Phase To Extend the Hydrophobicity Window.Analytical Chemistry 2003;75(21):5886-94.
    19.Berthod A,Ruiz-Angel MJ,Carda-Broch S.Countercurrent chromatography:People and applications.5th International Conference on Countercurrent Chromatography;2008 Jul 26-29;Rio de Janeiro,BRAZIL;2008.p.4206-17.
    20.Marston A,Hostettmann K.Developments in the application of counter-current chromatography to plant analysis.Journal of Chromatography A 2006;1112(1-2):181-94.
    21.魏少荫等 孙婉李敏.以微管蛋白为靶的高通量药物筛选方法的建立与应用.中国新药杂志2006;15(21):1828-31.
    22.Schiff PB,Fant J,Horwitz SB.Promotion of Microtubule Assembly Invitro by Taxol.Nature 1979;277(5698):665-7.
    23.Jordan MA,Toso RJ,Thrower(?),W(?)son L.Meehanism of Mitotic Block and Inhibition of Cell-Proliferation by Taxol at Low Concentrations.Proceedings of the National Academy of Sciences of the United States of America 1993 Oct;90(20):9552-6.
    24.Klein LE,Freeze BS,Smith AB,Horwitz SB.The microtubule stabilizing agent discodermolide is a potent inducer of accelerated cell senescence.Cell Cycle 2005 Mar;4(3):501-7.
    25.Huang GS,Lopez-Barcons L,Freeze BS,et al.Potentiation of taxol efficacy and by discodermolide in ovarian carcinoma xenograft-bearing mice.Clinical Cancer Research 2006Jan;12(1):298-304.
    26.Wang JC.Cellular roles of DNA topoisomerases:A molecular perspective.Nature Reviews Molecular Cell Biology 2002 Jun;3(6):430-40.
    27.R K,K K,S Y.Enhancement of the effects of anticancer agents on B16 melanoma cells by combination with cepharanthine—I.Alkaloids.Gan To Kagaku Ryoho 1992;19(12):2163-7.
    28.He XQ,Zhang PY,Tian X,Li JX.Effects of 4-(4″-(2″,2″,6″,6″-Tetramethyl-1″-Piperidinyloxy)Amino)-4′-Demethy Lepipodophyllotoxin on Nucleic-Acids,Proteins,and DNA Strand of L7712 Cells-Invitro.Acta Pharmacologica Sinica 1992 May;13(3):276-9.
    29.何国平等 杨田.以重组人DNA拓扑异构酶Ⅰ为靶位从天然产物及其衍生物中筛选抗肿瘤化合物.中山大学学报(自然科学版)2004,43(3):58-61.
    30.LI Y M.ZHU H J LGQ.Shikonin inhibiting the catalytic activity of DNA topoisomerase Ⅰ and Inducing the apoptosis of K562 leukemia cells.Chin J Nat Med 2003;1(3):38-41.
    31.汤涛,蒙凌华,陈陵际等.鸦胆子油乳具有多药耐药逆转和拓扑异构酶Ⅱ抑制作用.中国药理学通报2001;17(5):534-39.
    32.EH B.Structure and function of telomere.Nature 1991 350(6319):569-73.
    33.朱雍,陆涛.抗肿瘤药物端粒酶抑制药的研究进展.海峡药学2007;19(5):4-7.
    34.Kim NW,Piatyszek MA,Prowse KR,et al.Specific association of human telomerase activity with immortal cells and cancer.1994.p.2011-5.
    35.Hiyama K,Hiyama E,Ishioka S,et al.Telomerase Activity in Small-Cell and Non-Small-Cell Lung Cancers.1995.p.895-902.
    36.钱军,秦叔逵,乐美兆等.榄香烯乳对体外培养人肺癌细胞株超微结构的影响.临床肿瘤学杂志1997;2(1):49-51.
    37.钱军等.榄香烯乳逆转人肺癌细胞的实验研究.肿瘤防治杂志1996;23(5):299.
    38.吴伟等.B-2榄香烯诱导的抗肿瘤免疫保护作用机理初探.中华肿瘤杂志1999;21(6):405.
    39.王宝成等.榄香烯乳剂与肿瘤多药耐药的基础研究.中国肿瘤临床1996;23(2):143.
    40.胡军等.B-2榄香烯逆转人乳腺癌MCF-7/ADM细胞对阿霉素耐药性的研究.中华肿瘤杂志2004;26(5):268.
    41.于广梅,郭继龙.中药及其有效成分抑制肿瘤血管生长的研究近况.山东中医杂志2003;22(11):695.
    42.潘子民,叶大风,谢幸等.人参皂苷Rg3对荷卵巢癌的严重联合免疫缺陷鼠的抗肿瘤血管生成作用的研究.中华妇产科杂志2002;37(4):38-41.
    43.高勇,王杰军,许青等.人参皂苷Rg3抑制肿瘤新生血管形成的研究.第二军医大学学报2001;22(1):40-2.
    44.陈大富,赵扬冰,白绍槐等.人参皂苷Rg3与化疗药物联合应用对裸鼠原位种植人乳腺癌的影响.中国普外基础与临床杂志2002;9(5):300-2.
    45.耿怀成,陈龙邦,王靖华等.人参皂苷Rg3抗肿瘤新生血管形成的实验研究.医学研究生学报2002;15(6):493-95.
    46.王兵,王杰军,徐钧等.人参皂苷Rg3对胃癌诱导血管内皮细胞增殖的抑制作用.肿瘤防治杂志2001;8(3):234-36.
    47.王兵,高勇,许青等.人参皂苷Rg3对肺癌诱导血管内皮细胞增殖的抑制作用.中国新药杂志2002;11(9):700-2.
    48.陈明伟,杨岚,倪磊等.Rg3对肺腺癌A549细胞及其内源性VEGF的影响.四川大学学报(医学版)2006;37(1):60-2.
    49.潘子明,叶子风,谢辛等.人参皂苷-Rg3对荷卵巢癌的严重联合免疫缺陷鼠的抗肿瘤血管生成作用的研究.中华妇产科杂志2002;37(4):202-04.
    50.Kerr JFR,Wyllie AH,Currie AR.Apoptosis -Basic Biological Phenomenon with Wide-Ranging Implications in Tissue Kinetics.British Journal of Cancer 1972;26(4):239-&.
    51.Wyllie AH.Apoptosis:an overview.British Medical Bulletin 1997;53(3):451-65.
    52.Majno G,Joris I.Apoptosis,Oncosis,and Necrosis -an Overview of Cell-Death.American Journal of Pathology 1995 Jan;146(1):3-15.
    53.Zapata JM,Pawlowski K,Haas E,Ware CF,Godzik A,Reed JC.A diverse family of proteins containing tumor necrosis factor receptor-associated factor domains.Journal of Biological Chemistry 2001Jun;276(26):24242-52.
    54.Hockenbery D,Nunez G,Milliman C,Schreiber RD,Korsmeyer SJ.Bcl-2 Is an Inner Mitochondrial-Membrane Protein That Blocks Programmed Cell-Death.Nature 1990 Nov;348(6299):334-6.
    55.Scaffidi C,Fulda S,Srinivasan A,et al.Two CD95(APO-1/Fas) signaling pathways.Embo Journal 1998 Mar;17(6):1675-87.
    56.Landowski TH,Moscinski L,Burke R,et al.CD95 antigen mutations in hematopoietic malignancies.Leukemia & Lymphoma 2001 Sep-Oct;42(5):835-+.
    57.Lamy T,Liu JH,Landowski TH,Dalton WS,Loughran TP.Dysregulation of CD95/CD95 ligand apoptotic pathway in CD3(+) large granular lymphocyte leukemia.Blood 1998 Dec;92(12):4771-7.
    58.Krammer PH.CD95's deadly mission in the immune system.Nature 2000 Oct;407(6805):789-95.
    59.Wajant H.The Fas signaling pathway:More than a paradigm.Science 2002May;296(5573):1635-6.
    60.Landowski TH,Qu N,Buyuksal I,Painter JS,Dalton WS.Mutations in the Fas antigen in patients with multiple myeloma.Blood 1997 Dec;90(11):4266-70.
    61.Pan GH,Orourke K,Chinnaiyan AM,et al.The receptor for the cytotoxic ligand TRAIL.Science 1997 Apr;276(5309):111-3.
    62.Irie S,Li Y,Kanki H,et al.Identification of two Fas-associated phosphatase-1(FAP-1) promoters in human cancer cells.DNA Sequence 2001;11(6):519-26.
    63.Krueger A,Baumann S,Krammer PH,Kirchhoff S.FLICE-inhibitory proteins:Regulators of death receptor-mediated apoptosis.Molecular and Cellular Biology 2001 Dec;21(24):8247-54.
    64.Remillard CV,Yuan JXJ.Activation of K+ channels:an essential pathway in programmed cell death.American Journal of Physiology-Lung Cellular and Molecular Physiology 2004 Jan;286(1):L49-L67.
    65.Renatus M,Stennicke HR,Scott FL,Liddington RC,Saivesen GS.Dimer formation drives the activation of the cell death protease caspase 9.Proceedings of the National Academy of Sciences of the United States of America 2001 Dec;98(25):14250-5.
    66.Borner C,Martinou I,Mattmann C,et al.The protein bcl-2 alpha does not require membrane attachment,but two conserved domains to suppress apoptosis.1994.p.1059-68.
    67.Hanada M,Aimesempe C,Sato T,Reed JC.Structure-Function Analysis of Bcl-2 Protein Identification of Conserved Domains Important for Homodimerization with Bcl-2 and Heterodimerization with Bax. Journal of Biological Chemistry 1995 May;270(20): 11962-9.
    
    68. Huang DCS, Oreilly LA, Strasser A, Cory S. The anti-apoptosis function of Bcl-2 can be genetically separated from its inhibitory effect on cell cycle entry. Embo Journal 1997 Aug;16(15):4628-38.
    
    69. Wang HG, Rapp UR, Reed JC. Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell 1996 Nov;87(4):629-38.
    
    70. Portier BP, Taglialatela G. Bcl-2 localized at the nuclear compartment induces apoptosis after transient overexpression. Journal of Biological Chemistry 2006 Dec;281(52):40493-502.
    
    71. de Moissac D, Zheng H, Kirshenbaum LA. Linkage of the BH4 domain of Bcl-2 and the nuclear factor kappa B signaling pathway for suppression of apoptosis. Journal of Biological Chemistry 1999 Oct;274(41):29505-9.
    
    72. Grimm S, Bauer MKA, Baeuerle PA, SchulzeOsthoff K. Bcl-2 down-regulates the activity of transcription factor NF-kappa B induced upon apoptosis. Journal of Cell Biology 1996 Jul;134(1): 13-23.
    
    73. Bakhshi A, Jensen JP, Goldman P, et al. Cloning the Chromosomal Breakpoint of T(14-18) Human Lymphomas - Clustering around Jh on Chromosome-14 and near a Transcriptional Unit on 18. Cell 1985;41(3):899-906.
    
    74. Cleary ML, Sklar J. Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proceedings of the National Academy of Sciences of the United States of America 1985;82(21):7439-43.
    
    75. Tsujimoto Y, Cossman J, Jaffe E, Croce CM. Involvement of the Bcl-2 Gene in Human Follicular Lymphoma. Science 1985;228(4706):1440-3.
    
    76. Vaux DL, Cory S, Adams JM. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 1988;335(6189):440-2.
    
    77. Letai A, Sorcinelli MD, Beard C, Korsmeyer SJ. Antiapoptotic BCL-2 is required for maintenance of a model leukemia. Cancer Cell 2004 Sep;6(3):241-9.
    
    78. Miquel C, Borrini F, Grandjouan S, et al. Role of bax mutations in apoptosis in colorectal cancers with microsatellite instability. American Journal of Clinical Pathology 2005 Apr;123(4):562-70.
    
    79. Arena V, Martini M, Luongo M, Capelli A, Larocca LM. Mutations of the BIK gene in human peripheral B-cell lymphomas. Genes Chromosomes & Cancer 2003 Sep;38(1):91-6.
    
    80. Lee JW, Soung YH, Kim SY, et al. Inactivating mutations of proapoptotic Bad gene in human colon cancers. Carcinogenesis 2004 Aug;25(8): 1371-6.
    
    81. Tagawa H, Karnan S, Suzuki R, et al. Genome-wide array-based CGH for mantle cell lymphoma: identification of homozygous deletions of the proapoptotic gene BIM. Oncogene 2005 Feb;24(8):1348-58.
    
    82. Nakamura M, Ishida E, Shimada K, Nakase H, Sakaki T, Konishi N. Frequent HRK inactivation associated with low apoptotic index in secondary glioblastomas. Acta Neuropathologica 2005 Oct;110(4):402-10.
    
    83. Joseph EA, Gary T. Death by Committee: Organellar Trafficking and Communication in Apoptosis. 2009. p. 1390-404.
    
    84. Lindsten T, Ross AJ, King A, et al. The combined functions of proapoptotic Bcl-2 family members Bak and Bax are essential for normal development of multiple tissues. Molecular Cell 2000 Dec;6(6): 1389-99.
    
    85. Wei MC, Zong WX, Cheng EHY, et al. Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death. Science 2001 Apr;292(5517):727-30.
    
    86. Cheng EHY, Sheiko TV, Fisher JK, Craigen WJ, Korsmeyer SJ. VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 2003 Jul;301(5632):513-7.
    
    87. Ruffolo SC, Shore GC. BCL-2 selectively interacts with the BID-induced open conformer of BAK, inhibiting BAK auto-oligomerization. Journal of Biological Chemistry 2003 Jul;278(27):25039-45.
    
    88. Tan CB, Dlugosz PJ, Peng J, et al. Auto-activation of the apoptosis protein Bax increases mitochondrial membrane permeability and is inhibited by Bcl-2. Journal of Biological Chemistry 2006 May;281(21): 14764-75.
    
    89. Antonsson B, Conti F, Ciavatta A, et al. Inhibition of Bax channel-forming activity by Bcl-2. Science 1997 Jul;277(5324):370-2.
    
    90. Dlugosz PJ, Billen LP, Annis MG, et al. Bcl-2 changes conformation to inhibit Bax oligomerization. Embo Journal 2006 Jun;25(11):2287-96.
    
    91. Peng J, Tan CB, Roberts GJ, et al. tBid elicits a conformational alteration in membrane-bound Bcl-2 such that it inhibits Bax pore formation. Journal of Biological Chemistry 2006 Nov;281(47):35802-11.
    
    92. Cheng E, Wei MC, Weiler S, et al. BCL-2, BCL-X-L sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Molecular Cell 2001 Sep;8(3):705-11.
    
    93. Li HL, Zhu H, Xu CJ, Yuan JY. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998 Aug;94(4):491-501.
    
    94. Luo X, Budihardjo I, Zou H, Slaughter C, Wang XD. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998 Aug;94(4):481-90.
    
    95. Datta SR, Katsov A, Hu L, et al. 14-3-3 proteins and survival kinases cooperate to inactivate BAD by BH3 domain phosphorylation. Molecular Cell 2000 Jul;6(1):41-51.
    
    96. Zha JP, Harada H, Yang E, Jockel j, Korsmeyer SJ. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BGL-X(L). Cell 1996 Nov;87(4):619-28.
    
    97. Huang DCS, Strasser A. BH3-Only Proteins-Essential Initiators of Apoptotic Cell Death. Cell 2000;103(6):839-42.
    
    98. Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Molecular Cell 2001 Mar;7(3):683-94.
    
    99. Oda E, Ohki R, Murasawa H, et al. Noxa, a BH3-Only Member of the Bcl-2 Family and Candidate Mediator of p53-Induced Apoptosis. 2000. p. 1053-8.
    
    100. Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B. PUMA induces the rapid apoptosis of colorectal cancer cells. Molecular Cell 2001 Mar;7(3):673-82.
    
    101. Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 2007 Feb;26(9):1324-37.
    
    102. Willis SN, Chen L, Dewson G, et al. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-x(L), but not Bcl-2, until displaced by BH3-only proteins. Genes & Development 2005 Jun; 19(11): 1294-305.
    
    103. Chen L, Willis SN, Wei A, et al. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Molecular Cell 2005 Feb;17(3):393-403.
    
    104. Uren RT, Dewson G, Chen L, et al. Mitochondrial permeabilization relies on BH3 ligands engaging multiple prosurvival Bcl-2 relatives, not Bak. Journal of Cell Biology 2007 Apr;177(2):277-87.
    
    105. Willis SN, Fletcher JI, Kaufmann T, et al. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 2007 Feb;315(5813):856-9.
    
    106. Kim H, Rafiuddin-Shah M, Tu HC, et al. Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nature Cell Biology 2006 Dec;8(12):1348-U19.
    
    107. Kuwana T, Bouchier-Hayes L, Chipuk JE, et al. BH3 domains of BH3-only proteins differentially regulate bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Molecular Cell 2005 Feb;17(4):525-35.
    
    108. Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2002 Sep;2(3):183-92.
    
    109. Walensky LD, Pitter K, Morash J, et al. A stapled BID BH3 helix directly binds and activates BAX. Molecular Cell 2006 Oct;24(2): 199-210.
    
    110. Danial NN. BCL-2 family proteins: Critical checkpoints of apoptotic cell death. Clinical Cancer Research 2007 Dec;13(24):7254-63.
    
    111. Thornberry NA, Lazebnik Y. Caspases: Enemies within. Science 1998 Aug;281(5381):1312-6.
    
    112. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998 Aug;281(5381): 1309-12.
    
    113. FraserA, Evan G. A license to kill. Cell 1996 Jun;85(6):781-4.
    
    114. Nicholson DW, Ali A, Thomberry NA, et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 1995;376(6535):37-43.
    
    115. Tewari M, Quan LT, Orourke K, et al. Yama/Cpp32-Beta, a Mammalian Homolog of Ced-3, Is a Crma-Inhibitable Protease That Cleaves the Death Substrate Poly(Adp-Ribose) Polymerase. Cell 1995 Jun;81(5):801-9.
    
    116. Kothakota S, Azuma T, Reinhard C, et al. Caspase-3-generated fragment of gelsolin: Effector of morphological change in apoptosis. Science 1997 Oct;278(5336):294-8.
    
    117. Liu XS, Zou H, Slaughter C, Wang XD. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 1997 Apr;89(2): 175-84.
    
    118. Orth K, Chinnaiyan AM, Garg M, Froelich CJ, Dixit VM. The CED-3/ICE-like protease Mch2 is activated during apoptosis and cleaves the death substrate lamin A. Journal of Biological Chemistry 1996 Jul;271(28):16443-6.
    
    119. Friedlander RM. Mechanisms of disease: Apoptosis and caspases in neurodegenerative diseases. New England Journal of Medicine 2003 Apr;348(14):1365-75.
    
    120. Borner C, Monney L. Apoptosis without caspases: an inefficient molecular guillotine? Cell Death and Differentiation 1999 Jun;6(6):497-507.
    
    121. Chautan M, Chazal G, Cecconi F, Gruss P, Golstein P. Interdigital cell death can occur through a necrotic and caspase-independent pathway. Current Biology 1999 Sep;9(17):967-70.
    
    122. Kitanaka C, Kuchino Y. Caspase-independent programmed cell death with necrotic morphology. Cell Death and Differentiation 1999 Jun;6(6):508-15.
    
    123. Miller TM, Moulder KL, Knudson CM, et al. Bax deletion further orders the cell death pathway in cerebellar granule cells and suggests a caspase-independent pathway to cell death. Journal of Cell Biology 1997 Oct; 139(1):205-17.
    
    124. Xiang J, Chao D, Korsmeyer S. BAX-induced cell death may not require interleukin 1 -converting enzyme-like proteases. 1996. p. 14559-63.
    
    125. Kawahara A, Ohsawa Y, Matsumura H, Uchiyama Y, Nagata S. Caspase-independent cell killing by Fas-associated protein with death domain. Journal of Cell Biology 1998 Nov;143(5):1353-60.
    
    126. Vercammen D, Beyaert R, Denecker G, et al. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. Journal of Experimental Medicine 1998 May;187(9): 1477-85.
    
    127. Schulzeosthoff K, Krammer PH, Droge W. Divergent Signaling Via Apo-1 Fas and the Tnf Receptor, 2 Homologous Molecules Involved in Physiological Cell-Death. Embo Journal 1994 Oct;13(19):4587-96.
    
    128. Stoka V, Turk B, Schendel SL, et al. Lysosomal protease pathways to apoptosis - Cleavage of Bid, not pro-caspases, is the most likely route. Journal of Biological Chemistry 2001 Feb;276(5):3149-57.
    
    129. Gao G, Dou QP. N-terminal cleavage of Bax by calpain generates a potent proapoptotic 18-kDa fragment that promotes Bcl-2-independent cytochrome c release and apoptotic cell death. Journal of Cellular Biochemistry 2000;80(1):53-72.
    
    130. Wolf BB, Goldstein JC, Stennicke HR, et al. Calpain functions in a caspase-independent manner to promote apoptosis-like events during platelet activation. Blood 1999 Sep;94(5): 1683-92.
    
    131. Wood DE, Thomas A, Devi LA, et al. Bax cleavage is mediated by calpain during drug-induced apoptosis. Oncogene 1998 Sep;17(9): 1069-78.
    
    132. Reddy RK, Lu J, Lee AS. The endoplasmic reticulum chaperone glycoprotein GRP94 with Ca2+-binding and antiapoptotic properties is a novel proteolytic target of calpain during etoposide-induced apoptosis. Journal of Biological Chemistry 1999 Oct;274(40):28476-83.
    
    133. Deveraux QL, Reed TC. LAP family proteins - suppressors of apoptosis. Genes & Development 1999 Feb;13(3):239-52.
    
    134. Deveraux QL, Takahashi R, Salvesen GS, Reed JC. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 1997 Jul;388(6639):300-4.
    
    135. Los M, Wesselborg S, Schulze-Osthoff K. The role of caspases in development, immunity, and apoptotic signal transduction: Lessons from knockout mice. Immunity 1999 Jun;10(6):629-39.
    
    136. Uren AG, Coulson EJ, Vaux DL. Conservation of baculovirus inhibitor of apoptosis repeat proteins (BIRPs) in viruses, nematodes, vertebrates and yeasts. Trends in Biochemical Sciences 1998 May;23(5): 159-62.
    
    137. Fesik SW. Insights into programmed cell death through structural biology. Cell 2000 Oct;103(2):273-82.
    
    138. Kasof GM, Gomes BC. Livin, a novel inhibitor of apoptosis protein family member. Journal of Biological Chemistry 2001 Feb;276(5):3238-46.
    
    139. Vucic D, Stennicke HR, Pisabarro MT, Salvesen GS, Dixit VM. ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Current Biology 2000 Nov; 10(21): 1359-66.
    
    140. Hengartner MO. The biochemistry of apoptosis. Nature 2000 Oct;407(6805):770-6.
    
    141. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997 Feb;88(3):323-31.
    
    142. Venot C, Maratrat M, Dureuil C, Conseiller E, Bracco L, Debussche L. The requirement for the p53 proline-rich functional domain for mediation of apoptosis is correlated with specific PIG3 gene transactivation and with transcriptional repression. Embo Journal 1998 Aug;17(16):4668-79.
    
    143. Walker KK, Levine AJ. Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proceedings of the National Academy of Sciences of the United States of America 1996 Dec;93(26): 15335-40.
    
    144. Zhu JH, Zhou WJ, Jiang JY, Chen XB. Identification of a novel p53 functional domain that is necessary for mediating apoptosis. Journal of Biological Chemistry 1998 May;273(21): 13030-6.
    
    145. Giaccia AJ, Kastan MB. The complexity of p53 modulation: emerging patterns from divergent signals. Genes & Development 1998 Oct;12(19):2973-83.
    
    146. Prives C. Signaling to p53: Breaking the MDM2-p53 circuit. Cell 1998 Oct;95(1):5-8.
    
    147. Fuchs SY, Adler V, Buschmann T, et al. JNK targets p53 ubiquitination and degradation in nonstressed cells. Genes & Development 1998 Sep;12(17):2658-63.
    
    148. Haupt Y, Rowan S, Shaulian E, Vousden KH, Oren M. Induction of Apoptosis in Hela-Cells by Trans-Activation-Deficient P53. Genes & Development 1995 Sep;9(17):2170-83.
    
    149. Morgenbesser SD, Williams BO, Jacks T, Depinho RA. P53-Dependent Apoptosis Produced by Rb-Deficiency in the Developing Mouse Lens. Nature 1994 Sep;371(6492):72-4.
    
    150. An B, Dou QP. Cleavage of retinoblastoma protein during apoptosis: An interleukin 1 beta-converting enzyme-like protease as candidate. Cancer Research 1996 Feb;56(3):438-42.
    
    151. Erhardt P, Tomaselli KJ, Cooper GM. Identification of the MDM2 oncoprotein as a substrate for CPP32-like apoptotic proteases. Journal of Biological Chemistry 1997 Jun;272(24):15049-52.
    
    152. Janicke RU, Walker PA, Lin XY, Porter AG Specific cleavage of the retinoblastoma protein by an ICE-like protease in apoptosis. Embo Journal 1996 Dec;15(24):6969-78.
    
    153. Oda E, Ohki R, Murasawa H, et al. Nora, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 2000 May;288(5468): 1053-8.
    
    154. Brodsky MH, Nordstrom W, Tsang G, Kwan E, Rubin GM, Abrams JM. Drosophila p53 binds a damage response element at the reaper locus. Cell 2000 Mar;101(l): 103-13.
    
    155. Muller M, Wilder S, Bannasch D, et al. p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. Journal of Experimental Medicine 1998 Dec;188(11):2033-45.
    
    156. Oda K, Arakawa H, Tanaka T, et al. p53AlPl, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 2000 Sep;102(6):849-62.
    
    157. Owenschaub LB, Zhang W, Cusack JC, et al. Wild-Type Human P53 and a Temperature-Sensitive Mutant Induce Fas/Apo-1 Expression. Molecular and Cellular Biology 1995 Jun;15(6):3032-40.
    
    158. Sheikh MS, Burns TF, Huang Y, et al. p53-dependent and -independent regulation of the death receptor KILLER/DR5 gene expression in response to genotoxic stress and tumor necrosis factor alpha. Cancer Research 1998 Apr;58(8):1593-8.
    
    159. Thomas A, Giesler T, White E. p53 mediates Bcl-2 phosphorylation and apoptosis via activation of the Cdc42/JNK1 pathway. Oncogene 2000 Nov;19(46):5259-69.
    
    160. Wu GS, Burns TF, McDonald ER, et al. Induction of the TRAIL receptor KILLER/DR5 in p53-dependent apoptosis but not growth arrest. Oncogene 1999 Nov;18(47):6411-8.
    
    161. Soengas MS, Alarcon RM, Yoshida H, et al. Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 1999 Apr;284(5411).156-9.
    
    162. Muller M, Strand S, Hug H, et al. Drug-induced apoptosis in hepatoma cells is mediated by the CD95 (APO-1/Fas) receptor/ligand system and involves activation of wild-type p53. Journal of Clinical Investigation 1997 Feb;99(3):403-13.
    
    163. Bennett M, Macdonald K, Chan S-W, Luzio JP, Simari R, Weissberg P. Cell Surface Trafficking of Fas: A Rapid Mechanism of p53-Mediated Apoptosis. 1998. p. 290-3.
    
    164. Munsch D, Watanabe-Fukunaga R, Bourdon JC, et al. Human and mouse Fas (APO-1/CD95) death receptor genes each contain a p53-responsive element that is activated by p53 mutants unable to induce apoptosis. Journal of Biological Chemistry 2000 Feb;275(6):3867-72. .
    
    165. Li PF, Dietz R, von Harsdorf R. p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2. Embo Journal 1999 Nov;18(21):6027-36.
    
    166. Newton K, Strasser A. Ionizing radiation and chemotherapeutic drugs induce apoptosis in lymphocytes in the absence of Fas or FADD/MORT1 signaling: Implications for cancer therapy. Journal of Experimental Medicine 2000 Jan; 191 (1): 195-200.
    
    167. O'Connor L, Harris AW, Strasser A. CD95 (Fas/APO-1) and p53 signal apoptosis independently in diverse cell types. Cancer Research 2000 Mar;60(5):1217-20.
    168. Johnson TM, Yu ZX, Ferrans VJ, Lowenstein RA, Finkel T. Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proceedings of the National Academy of Sciences of the United States of America 1996 Oct;93(21): 11848-52.
    
    169. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B. A model for p53-induced apoptosis. Nature 1997 Sep;389(6648):300-5.
    
    170. Ding HF, McGill G, Rowan S, Schmaltz C, Shimamura A, Fisher DE. Oncogene-dependent regulation of caspase activation by p53 protein in a cell-free system. Journal of Biological Chemistry 1998 Oct;273(43):28378-83.
    
    171. Ravi R, Bedi GC, Engstrom LW, et al. Regulation of death receptor expression and TRAIL/Apo2L-induced apoptosis by NF-kappa B. Nature Cell Biology 2001 Apr;3(4):409-16.
    
    172. Zuckerman V, Wolyniec K, Sionov RV, Haupt S, Haupt Y. Tumour suppression by p53: the importance of apoptosis and cellular senescence. Journal of Pathology 2009 Sep;219(1):3-15.
    
    173. Baeuerle PA, Baltimore D. NF-kappa B: Ten years after. Cell 1996 Oct;87(1):13-20.
    
    174. Verma IM, Stevenson JK, Schwarz EM, Vanantwerp D, Miyamoto S. Rel/Nf-Kappa-B/I-Kappa-B Family - Intimate Tales of Association and Dissociation. Genes & Development 1995 Nov;9(22):2723-35.
    
    175. Karin M. How NF-kappa B is activated: the role of the I kappa B kinase (IKK) complex. Oncogene 1999 Nov;18(49):6867-74.
    
    176. Lee HY, Arsura M, Wu M, Duyao M, Buckler AJ, Sonenshein GE. Role of Rel-Related Factors in Control of C-Myc Gene-Transcription in Receptor-Mediated Apoptosis of the Murine B-Cell Wehi-231 Line. Journal of Experimental Medicine 1995 Mar;181(3): 1169-77.
    
    177. Abbadie C, Kabrun N, Bouali F, et al. High-Levels of C-Rel Expression Are Associated with Programmed Cell-Death in the Developing Avian Embryo and in Bone-Marrow Cells in-Vitro. Cell 1993 Dec;75(5):899-912.
    
    178. C H, P E, B V, C A. C-Rel: a multifunctional transcription factor ? Cell Death Differ 1994;l(2):71-6.
    
    179. Bash J, Zong WX, Gelinas C. c-Rel arrests the proliferation of HeLa cells and affects critical regulators of the G(l)/S-phase transition. Molecular and Cellular Biology 1997 Nov;17(11):6526-36.
    
    180. Beg AA, Baltimore D. An essential role for NF-kappa B in preventing TNF-alpha-induced cell death. Science 1996 Nov;274(5288):782-4.
    
    181. Li QT, Estepa G, Memet S, Israel A, Verma IM. Complete lack of NF-kappa B activity in IKK1 and IKK2 double-deficient mice: additional defect in neurulation. Genes & Development 2000 Jul;14(14): 1729-33.
    
    182. Liu Z-g, Hsu H, Goeddel DV, Karin M. Dissection of TNF Receptor 1 Effector Functions: JNK Activation Is Not Linked to Apoptosis While NF-kappa B Activation Prevents Cell Death. 1996;87(3):565-76.
    
    183. Grossmann M, Metcalf D, Merryfull J, Beg A, Baltimore D, Gerondakis S. The combined absence of the transcription factors Rel and RelA leads to multiple hemopoietic cell defects. Proceedings of the National Academy of Sciences of the United States of America 1999 Oct;96(21): 11848-53.
    
    184. Jeremias I, Kupatt C, Baumann B, Herr I, Wirth T, Debatin KM. Inhibition of nuclear factor kappa B activation attenuates apoptosis resistance in lymphoid cells. Blood 1998 Jun;91(12):4624-31.
    
    185. Wang CY, Mayo MW, Baldwin AS. TNF- and cancer therapy-induced apoptosis: Potentiation by inhibition of NF-kappa B. Science 1996 Nov;274(5288):784-7.
    
    186. Wu M, Lee HY, Bellas RE, et al. Inhibition of NF-kappa B/Rel induces apoptosis of murine B cells. Embo Journal 1996 Sep;15(17):4682-90.
    187. Pahl HL. Activators and target genes of Rel/NF-kappa B transcription factors. Oncogene 1999 Nov;18(49):6853-66.
    
    188. Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS. NF-kappa B antiapoptosis: Induction of TRAF1 and TRAF2 and c-IAP1 and C-IAP2 to suppress caspase-8 activation. Science 1998 Sep;281(5383):1680-3.
    
    189. Grigoriadis G, Zhan YF, Grumont RJ, et al. The Rel subunit of NF-kappa B-like transcription factors is a positive and negative regulator of macrophage gene expression: Distinct roles for Rel in different macrophage populations. Embo Journal 1996 Dec;15(24):7099-107.
    
    190. Mannick JB, Miao XQ, Stamler JS. Nitric oxide inhibits Fas-induced apoptosis. Journal of Biological Chemistry 1997 Sep;272(39):24125-8.
    
    191. Kasibhatla S, Brunner T, Genestier L, Echeverri F, Mahboubi A, Green DR. DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the activation of NF-KB and AP-1. Molecular Cell 1998 Mar;l(4):543-51.
    
    192. Barkett M, Gilmore TD. Control of apoptosis by Rel/NF-kappa B transcription factors. Oncogene 1999 Nov;18(49):6910-24.
    
    193. Chan H, Bartos DP, Owen-Schaub LB. Activation-dependent transcriptional regulation of the human fas promoter requires NF-kappa B p50-p65 recruitment. Molecular and Cellular Biology 1999 Mar;19(3):2098-108.
    
    194. Kasibhatla S, Genestier L, Green DR. Regulation of Fas-ligand expression during activation-induced cell death in T lymphocytes via nuclear factor kappa B. Journal of Biological Chemistry 1999 Jan;274(2):987-92.
    
    195. Rivera-Walsh I, Cvijic ME, Xiao G, Sun SC. The NF-kappa B signaling pathway is not required for Fas ligand gene induction but mediates protection from activation-induced cell death. Journal of Biological Chemistry 2000 Aug;275(33):25222-30. .
    
    196. Schulze-Osthoff K, Stroh C. Induced proximity model attracts NF-kappa B researchers. Cell Death and Differentiation 2000 Nov;7(11): 1025-6.
    
    197. Tak PP, Firestein GS. NF-kappa B: a key role in inflammatory diseases. The Journal of Clinical Investigation 2001;107(1):7-11.
    
    198. Angel P, Karin M. The Role of Jun, Fos and the Ap-1 Complex in Cell-Proliferation and Transformation. Biochimica Et Biophysica Acta 1991 Dec;1072(2-3):129-57.
    
    199. Leppa S, Bohmann D. Diverse functions of JNK signaling and c-Jun in stress response and apoptosis. Oncogene 1999 Nov;18(45):6158-62.
    
    200. Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell 2000 Oct;103(2):239-52.
    
    201. Ip YT, Davis RJ. Signal transduction by the c-Jun N-terminal kinase (JNK) -- from inflammation to development. Current Opinion in Cell Biology 1998;10(2):205-19.
    
    202. Minden A, Karin M. Regulation and function of the JNK subgroup of MAP kinases. Biochimica Et Biophysica Acta-Reviews on Cancer 1997 Oct;1333(2):F85-F104.
    
    203. Weitzman JB. Quick guide - JNK. Current Biology 2000 Apr; 10(8):R290-R.
    
    204. Chen YR, Meyer CF, Tan TH. Persistent activation of c-Jun N-terminal kinase 1 (JNK1) in gamma radiation-induced apoptosis. Journal of Biological Chemistry 1996 Jan;271(2):631-4.
    
    205. Chen ZH, Seimiya H, Naito M, et al. ASK1 mediates apoptotic cell death induced by genotoxic stress. Oncogene 1999 Jan;18(l):173-80.
    
    206. Faris M, Latinis KM, Kempiak SJ, Koretzky GA, Nel A. Stress-induced Fas ligand expression in T cells is mediated through a MEK kinase 1 -regulated response element in the Fas ligand promoter. Molecular and Cellular Biology 1998 Sep;18(9):5414-24.
    
    207. Goillot E, Raingeaud J, Ranger A, et al. Mitogen-activated protein kinase-mediated Fas apoptotic signaling pathway. Proceedings of the National Academy of Sciences of the United States of America 1997 Apr;94(7):3302-7.
    
    208. Herr I, Wilhelm D, Meyer E, Jeremias I, Angel P, Debatin KM. JNK/SAPK activity contributes to TRAIL-induced apoptosis. Cell Death and Differentiation 1999 Feb;6(2):130-5.
    
    209. Johnson NL, Gardner AM, Diener KM, et al. Signal transduction pathways regulated by mitogen-activated extracellular response kinase kinase kinase induce cell death. Journal of Biological Chemistry 1996 Feb;271(6):3229-37.
    
    210. Minden A, Lin A, McMahon M, et al. Differential Activation of Erk and Jnk Mitogen-Activated Protein-Kinases by Raf-1 and Mekk. Science 1994 Dec;266(5191): 1719-23.
    
    211. Tournier C, Hess P, Yang DD, et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 2000 May;288(5467):870-4.
    
    212. Verheij M, Bose R, Hua Lin X, et al. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 1996;380(6569):75-9.
    
    213. Xia ZG, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing Effects of Erk and Jnk-P38 Map Kinases on Apoptosis. Science 1995 Nov;270(5240):1326-31.
    
    214. Yang DD, Kuan CY, Whitmarsh AJ, et al. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 1997 Oct;389(6653):865-70.
    
    215. Yang XL, KhosraviFar R, Chang HY, Baltimore D. Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell 1997 Jun;89(7):1067-76.
    
    216. Zanke BW, Boudreau K, Rubie E, et al. The stress-activated protein kinase pathway mediates cell death following injury induced by cis-platinum, UV irradiation or heat. Current Biology 1996 May;6(5):606-13.
    
    217. Nishina H, Fischer KD, Radvanyi L, et al. Stress-signalling kinase Sek1 protects thymocytes from apoptosis mediated by CD95 and CD3. Nature 1997 Jan;385(6614):350-3.
    
    218. Natoli G, Costanzo A, Ianni A, et al. Activation of SAPK/JNK by TNF receptor 1 through a noncytotoxic TRAF2-dependent pathway. Science 1997 Jan;275(5297):200-3.
    
    219 Kuan CY, Yang DD, Roy DRS, Davis RJ, Rakic P, Flavell RA. The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 1999 Apr;22(4):667-76.
    
    220. Sabapathy K, Jochum W, Hochedlinger K, Chang LF, Karin M, Wagner EF. Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2. Mechanisms of Development 1999 Dec;89(1-2): 115-24.
    
    221. Fuchs SY, Adler V, Pincus MR, Ronai Z. MEKK1/JNK signaling stabilizes and activates p53. Proceedings of the National Academy of Sciences of the United States of America 1998 Sep;95(18): 10541 -6.
    
    222. Schreiber M, Kolbus A, Piu F, et al. Control of cell cycle progression by c-Jun is p53 dependent. Genes & Development 1999 Mar;13(5):607-19.
    
    223. Noguchi K, Kitanaka C, Yamana H, Kokubu A, Mochizuki T, Kuchino Y. Regulation of c-Myc through phosphorylation at Ser-62 and Ser-71 by c-Jun N-terminal kinase. Journal of Biological Chemistry 1999 Nov;274(46):32580-7.
    
    224. Hatai T, Matsuzawa A, Inoshita S, et al. Execution of apoptosis signal-regulating kinase 1 (ASK1)-induced apoptosis by the mitochondria-dependent caspase activation. Journal of Biological Chemistry 2000 Aug;275(34):26576-81.
    
    225. Kharbanda S, Saxena S, Yoshida K, et al. Translocation of SAPK/JNK to mitochondria and interaction with Bcl-x(L) in response to DNA damage. Journal of Biological Chemistry 2000 Jan;275(1):322-7.
    
    226. Park J, Kim I, Oh YI,Lee KW Han PI. (?).Act(?)ation of c-Jun N-terminal kinase antagonizes an anti-apoptotic action of Bcl-2. Journal of Biological Chemistry 1997 Jul;272(27):16725-8.
    
    227. Wang XZ, Lawson B, Brewer JW, et al. Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153). Molecular and Cellular Biology 1996 Aug;16(8):4273-80.
    
    228. Reimertz C, Kogel D, Rami A, Chittenden T, Prehn JHM. Gene expression during ER stress-induced apoptosis in neurons: induction of the BH3-only protein Bbc3/PUMA and activation of the mitochondrial apoptosis pathway. Journal of Cell Biology 2003 Aug;162(4):587-97.
    
    229. Ollivier M, Jennifer LM, Simonetta C, et al. Involvement of Gadd153 in the pathogenic action of presenilin-1 mutations. 2002. p. 673-81.
    
    230. Kawane K, Fukuyama H, Yoshida H, et al. Impaired thymic development in mouse embryos deficient in apoptotic DNA degradation. Nature Immunology 2003 Feb;4(2):138-44.
    
    231. Breckenridge DG, Nguyen M, Kuppig S, Reth M, Shore GC. The procaspase-8 isoform, procaspase-8L, recruited to the BAP31 complex at the endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America 2002 Apr;99(7):4331-6.
    
    232. Wang B, Nguyen M, Breckenridge DG, et al. Uncleaved BAP31 in association with A4 protein at the endoplasmic reticulum is an inhibitor of Fas-initiated release of cytochrome c from mitochondria. Journal of Biological Chemistry 2003 Apr;278(16):14461-8.
    
    233. Reed JC, Doctor KS, Godzik A. The Domains of Apoptosis: A Genomics Perspective. 2004. p.re9-.
    
    234. Altieri DC, Marchisio C. Survivin apoptosis: An interloper between cell death and cell proliferation in cancer. Laboratory Investigation 1999 Nov;79(11):1327-33.
    
    235. Liston P, Fong WG, Korneluk RG The inhibitors of apoptosis: there is more to life than Bcl2. Oncogene;22(53):8568-80.
    
    236. Fesik SW, Shi YG. Structural biology - Controlling the caspases. Science 2001 Nov;294(5546):1477-8.
    
    237. Salvesen GS, Duckett CS. IAP proteins: Blocking the road to death's door. Nature Reviews Molecular Cell Biology 2002 Jun;3(6):401-10.
    1.Dzubak P,Hajduch M,Vydra D,et al.Pharmacological activities of natural triterpenoids and their therapeutic implications.Natural Product Reports 2006;23(3):394-411.
    2.Saleem M,Kweon MH,Yun JM,et al.A novel dietary triterpene lupeol induces fas-mediated apoptotic death of androgen-sensitive prostate cancer cells and inhibits tumor growth in a xenograft model.Cancer Research 2005 Dec;65(23):11203-13.
    3.Yim EK,Lee KH,Namkoong SE,Um SJ,Park JS.Proteomic analysis of ursolic acid-induced apoptosis in cervical carcinoma cells.Cancer Letters 2006 Apr;235(2):209-20.
    4.Rao CV,Newmark HL,Reddy BS.Chemopreventive effect of squalene on colon cancer.Carcinogenesis 1998 Feb;19(2):287-90.
    5.Chen JC,Chiu MH,Nie RL,Cordell GA,Qiu SX.Cucurbitacins and cucurbitane glycosides:structures and biological activities.Natural Product Reports 2005 Jun;22(3):386-99.
    6.Jayaprakasam B,Seeram NP,Nair MG.Anticancer and antiinflammatory activities of cucurbitacins from Cucurbita andreana.Cancer Letters 2003 Jan;189(1):11-6.
    7.Blaskovich MA,Sun JZ,Cantor A,Turkson J,Jove R,Sebti SM.Discovery of JSI-124(Cucurbitacin Ⅰ),a selective janus kinase/signal transducer and activator of transcription 3 signaling pathway inhibitor with potent antitumor activity against human and murine cancer cells in mice.Cancer Research 2003 Mar;63(6):1270-9.
    8.Sun JZ,Blaskovich MA,Jove R,Livingston SK,Coppola D,Sebti SDM.Cucurbitacin Q:a selective STAT3 activation inhibitor with potent antitumor activity.Oncogene 2005 May;24(20):3236-45.
    9.Duncan KLK,Duncan MD,Alley MC,Sausville EA.Cucurbitacin E-induced disruption of the actin and vimentin cytoskeleton in prostate carcinoma cells.Biochemical Pharmacology 1996;52(10):1553-60.
    10.Duncan MD,Duncan KLK.Cucurbitacin E targets proliferating endothelia.30th Annual Meeting of the Association-for-Academic-Surgery;1996 Nov 13-16;Chicago,Il;1996.p.55-60.
    11.Tannin-Spitz T,Grossman S,Dovrat S,Gottlieb HE,Bergman M.Growth inhibitory activity of cucurbitacin glucosides isolated from Citrullus colocynthis on human breast cancer cells.Biochemical Pharmacology 2007 Jan;73(1):56-67.
    12.Park CS,Lim H,Han J,et al.Inhibition of nitric oxide generation by 23,24-dihydrocucurbitacin D in mouse peritoneal macrophages.Journal of Pharmacology and Experimental Therapeutics 2004 May;309(2):705-10.
    13.Recio MC,Prieto M,Bonucelli M,et al.Anti-inflammatory activity of two cucurbitacins isolated from Cayaponia tayuya roots.Planta Medica 2004 May;70(5):414-20.
    14.Siqueira JM,Peters RR,Gazola AC,et al.Anti-inflammatory effects of a triterpenoid isolated from Wilbrandia ebracteata Cogn.Life Sciences 2007 Mar;80(15):1382-7.
    15.Ryu S,Lee S,Choi S,Lee C,No Z,Ahn J.Antitumor activity of Trichosanthes kirilowii.Archives of Pharmacal Research 1994;17(5):348-53.
    16.Wu PL,Lin FW,Wu TS,Kuoh CS,Lee KH,Lee SJ.Cytotoxic and anti-HIV principles from the rhizomes of Begonia nantoensis.Chemical & Pharmaceutical Bulletin 2004 Mar;52(3):345-9.
    17.S.Y.Ryu SUC,S.H.Lee,C.O.Lee,Z.No,J.W.Ahn.Cytotoxicity of cucurbitacins in vitro.ARCHIVES OF PHARMACAL RESEARCH 1995;18(60-61).
    18.Vandang G,Rode BM,Stuppner H.Quantitative Electronic Structure-Activity Relationship(Qesar) of Natural Cytotoxic Compounds -Maytansinoids,Quassinoids and Cucurbitacins.European Journal of Pharmaceutical Sciences 1994 Dec;2(5-6):331-50.
    
    19. Kupchan SM, Gray AH, Grove MD. Tumor Inhibitors .23. Cytotoxic Principles of Marah Oreganus H. Journal of Medicinal Chemistry 1967;10(3):337-&.
    
    20. Farias MR, Schenkel EP, Mayer R, Rucker G Cucurbitacins as Constituents of Wilbrandia-Ebracteata. Planta Medica 1993;59(3):272-5.
    
    21. Kongtun S, Jiratchariyakul W, Kummalue T, Tan-ariya P, Kunnachak S, Frahm AW. Cytotoxic Properties of Root Extract and Fruit Juice of Trichosanthes cucumerina. Planta Medica 2009;75(8):839-42.
    
    22. Y. Yamada KH, K. Lguchi, Y. Takahashi, S. Suzuki. Carbon-13 NMR spectral assignments of cucurbitacin aglycones. Chem Lett 1978:319-22.
    
    23. Takano K, Nakamura Y, Yoneda Y. Microglial cell death induced by a low concentration of polyamines. Neuroscience 2003;120(4):961-7.
    
    24. Vermes I, Haanen C, Steffensnakken H, Reutelingsperger C. A Novel Assay for Apoptosis - Flow Cytometric Detection of Phosphatidylserine Expression on Early Apoptotic Cells Using Fluorescein-Labeled Annexin-V. Journal of Immunological Methods 1995;184(1):39-51.
    
    25. Vanoers MHJ, Reutelingsperger CPM, Kuyten GAM, Vondemborne A, Koopman G Annexin-V for Flow Cytometric Detection of Phosphatidylserine Expression on B-Cells Undergoing Apoptosis. Blood 1994;84(10):A291-A.
    
    26. Liu XS, Kim CN, Yang J, Jemmerson R, Wang XD. Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c. Cell 1996;86(1):147-57.
    
    27. Li P, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997;91(4):479-89.
    
    28. Kerr JFR, Wyllie AH, Currie AR. Apoptosis - Basic Biological Phenomenon with Wide-Ranging Implications in Tissue Kinetics. British Journal of Cancer 1972;26(4):239-&.
    
    29. Rello S, Stockert JC, Moreno V, et al. Morphological criteria to distinguish cell death induced by apoptotic and necrotic treatments. Apoptosis 2005;10(l):201-8.
    
    30. Kerr JFR, Winterford CM, Harmon BV. Apoptosis - Its Significance in Cancer and Cancer-Therapy. Cancer 1994;73(8):2013-26.
    
    31. Hartwell LH, Weinert TA. Checkpoints - Controls That Ensure the Order of Cell-Cycle Events. Science 1989;246(4930):629-34.
    
    32. Molinari M. Cell cycle checkpoints and their inactivation in human cancer. Cell Proliferation 2000;33(5):261-74.
    
    33. Deschner EE, Ruperto J, Wong G Newmark HL. Quercetin and Rutin as Inhibitors of Azoxymethanol-Induced Colonic Neoplasia. Carcinogenesis 1991; 12(7): 1193-6.
    
    34. H.O. Sohn YGL, H.B. Lim, N.S. Kwon, GV. Aprikian, D.W. Lee. Antitumor activity of 23,24dihydrocucurbitacind D isolated from Bryonia alba L. J Toxicol Pub Health 2000(16):263-7.
    
    35. Lamartiniere CA, Moore JB, Brown NM, Thompson R, Hardin MJ, Barnes S. Genistein Suppresses Mammary-Cancer in Rats. Carcinogenesis 1995;16(11):2833-40.
    
    36. Yeh TC, Chiang PC, Li TK, et al. Genistein induces apoptosis in human hepatocellular carcinomas via interaction of endoplasmic reticulum stress and mitochondrial insult. Biochemical Pharmacology 2007;73(6):782-92.
    
    37. Kong YC, Ng KH, But PP, et al. Sources of the Anti-Implantation Alkaloid Yuehchukene in the Genus Murraya. Journal of Ethnopharmacology 1986;15(2): 195-200.
    
    38. Patel T, Gores GJ, Kaufmann SH. The role of proteases during apoptosis. Faseb Journal 1996; 10(5):587-97.
    
    39. Budihardjo I, Oliver H, Lutter M, Luo X, Wang XD. Biochemical pathways of caspase activation during apoptosis. Annual Review of Cell and Developmental Biology 1999;15:269-90.
    
    40. Salvesen GS, Dixit VM. Caspase activation: The induced-proximity model. Proceedings of the National Academy of Sciences of the United States of America 1999;96(20):10964-7.
    
    41. Nicholson DW, Ali A, Thornberry NA, et al. Identification and Inhibition of the Ice/Ced-3 Protease Necessary for Mammalian Apoptosis. Nature 1995;376(6535):37-43.
    
    42. Ashkenazi A, Dixit VM. Death receptors: Signaling and modulation. Science 1998;281(5381):1305-8.
    
    43. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998;281(5381):1309-12.
    
    44. Witkowski A, Woynarowska B, Konopa J. Inhibition of the Biosynthesis of Deoxyribonucleic-Acid, Ribonucleic-Acid and Protein in Hela S3-Cells by Cucurbitacins, Glucocorticoid-Like Cyto-Toxic Triterpenes. Biochemical Pharmacology 1984;33(7):995-1004.
    45.Konoshima T,Takasaki M,Tatsumoto T,et al.Inhibitory Effects of Cucurbitane Triterpenoids on Epstein-Barr-Virus Activation and 2-Stage Carcinogenesis of Skin Tumors.Biological & Pharmaceutical Bulletin 1994;17(5):668-71.
    46.Duncan MD,Duncan KLK.Cucurbitacin E targets proliferating endothelia.Journal of Surgical Research 1997;69(1):55-60.
    47.N.L.Baek DWL,Y.H.Lee,S.L.Kim,G.V.Aprikian,Cytotoxic constituents from the roots of Bryonia alba L.Nat Prod Sci 1995(1):43-9.
    48.Y.M.Jiang YJL.Effect of cucurbitacin B on expression of Fas and FasL in hepatocyte in rats.Zhongyao Yaoli Yu Linchang 2000(16):312-3.
    1. Carr BI. Hepatocellular carcinoma: Current management and future trends. Workshop on Hepatocellular Carcinoma; 2004 Apr 01-03; Bethesda, MD; 2004. p. S218-S24.
    
    2. Song TJ, Ip EWK, Fong YM. Hepatocellular carcinoma: Current surgical management. Workshop on Hepatocellular Carcinoma; 2004 Apr 01-03; Bethesda, MD; 2004. p. S248-S60.
    
    3. Camma C, Schepis F, Orlando A, et al. Transarterial chemoembolization for unresectable hepatocellular carcinoma: Meta-analysis of randomized controlled trials. Radiology 2002 Jul;224(1):47-54.
    
    4. Poolsup N, Suthisisang C, Prathanturarug S, Asawamekin A, Chanchareon U. Andrographis paniculata in the symptomatic treatment of uncomplicated upper respiratory tract infection: systematic review of randomized controlled trials. Journal of Clinical Pharmacy and Therapeutics 2004 Feb;29(1):37-45.
    
    5. Shen YC, Chen CF, Chiou WF. Andrographolide prevents oxygen radical production by human neutrophils: possible mechanism(s) involved in its anti-inflammatory effect. British Journal of Pharmacology 2002;135(2):399-406.
    
    6. Calabrese C, Berman SH, Babish JG, et al. A phase I trial of andrographolide in HIV positive patients and normal volunteers. Phytotherapy Research 2000 Aug;14(5):333-8.
    
    7. Trivedi NP, Rawal UM, Patel BP. Hepatoprotective effect of andrographolide against hexachlorocyclohexane-induced oxidative injury. Integrative Cancer Therapies 2007 Sep;6(3):271-80.
    
    8. Sriram R, kumar RA, Dhanvanthri SD, Chitkala S, Rajagopalan R. Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata. 2003. p. 147-58.
    
    9. Cheung H-Y, Cheung S-H, Li J, et al. Andrographolide Isolated from Andrographis paniculata Induces Cell Cycle Arrest and Mitochondrial-Mediated Apoptosis in Human Leukemic HL-60 Cells. Planta Med 2005;71(12):1106-11.
    
    10. Li J, Cheung H-Y, Zhang Z, Chan GKL, Fong W-F. Andrographolide induces cell cycle arrest at G2/M phase and cell death in HepG2 cells via alteration of reactive oxygen species. European Journal of Pharmacology 2007;568(1-3):31-44.
    
    11. Sampath D, Rao VA, Plunkett W. Mechanisms of apoptosis induction by nucleoside analogs. Oncogene 2003 Dec;22(56):9063-74.
    
    12. Park SH, Nam E, Park J, et al. Randomized phase II study of irinotecan, leucovorin and 5-fluorouracil (ILF) versus cisplatin plus ILF (PILF) combination chemotherapy for advanced gastric cancer. 2008. p. 729-33.
    
    13. Ychou M, Viret F, Kramar A, et al. Tritherapy with fluorouracil/leucovorin, irinotecan and oxaliplatin (FOLFIRINOX): a phase II study in colorectal cancer patients with non-resectable liver metastases. Cancer Chemotherapy and Pharmacology 2008;62(2): 195-201.
    
    14. Fitzgerald JB, Schoeberl B, Nielsen UB, Sorger PK. Systems biology and combination therapy in the quest for clinical efficacy. Nat Chem Biol 2006;2(9):458-66.
    
    15. Yeh P, Kishony R. Networks from drug-drug surfaces. Molecular Systems Biology 2007 Feb;3.
    
    16. Jackman AL, Kaye S, Workman P. The combination of cytotoxic and molecularly targeted therapies - can it be done? Drug Discovery Today: Therapeutic Strategies 2004;1(4):445-54.
    
    17. Johnstone RW, Ruefli AA, Lowe SW. Apoptosis: A link between cancer genetics and chemotherapy. Cell 2002 Jan;108(2):153-64.
    
    18. Reed JC. Apoptosis-regulating proteins as targets for drug discovery. Trends in Molecular Medicine 2001 Jul;7(7):314-9.
    
    19. Wang HG, Reed JC. Mechanisms of Bcl-2 protein function. Histology and Histopathology 1998 Apr;13(2):521-30.
    
    20. Wei MC, Zong WX, Cheng EHY, et al. Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death.Science 2001 Apr;292(5517):727-30.
    21.Nechushtan A,Smith CL,Lamensdorf I,Yoon SH,Youle RJ.Bax and Bak coalesce into novel mitochondria-associated clusters during apoptosis.Journal of Cell Biology 2001 Jun;153(6):1265-76.
    22.Wolter KG,Hsu YT,Smith CL,Nechushtan A,Xi XG,Youle RJ.Movement of Bax from the cytosol to mitochondria during apoptosis.Journal of Cell Biology 1997 Dec;139(5):1281-92.
    23.Yamaguchi H,Paranawithana SR,Lee MW,Huang ZW,Bhalla KN,Wang HG.Epothilone B analogue(BMS-247550)-mediated cytotoxicity through induction of bax conformational change in human breast cancer cells.Cancer Research 2002 Jan;62(2):466-71.
    24.Eskes R,Desagher S,Antonsson B,Martinou JC.Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane.Molecular and Cellular Biology 2000 Feb;20(3):929-35.
    25.Marani M,Tenev T,Hancock D,Downward J,Lemoine NR.Identification of novel isoforms of the BH3 domain protein Bim which directly activate Bax to trigger apoptosis.Molecular and Cellular Biology 2002 Jun;22(11):3577-89.
    26.Yamaguchi H,Wang HG.Bcl-XL protects BimEL-induced Bax conformational change and cytochrome c release independent of interacting with Bax or BimEL.Journal of Biological Chemistry 2002 Nov;277(44):41604-12.
    27.王国才,胡永美,张晓琦等.穿心莲的化学成分.中国药科大学学报 2005;5(36).
    28.徐立春,陈牧,孙振华等.莲必治对肿瘤细胞直接杀伤与协同作用的研究.中国实用临床医药学.成都:四川科技出版社 1999.
    29.孙振华.莲必治促进人淋巴细胞生长的实验研究.中国现代实用医药.成都:成都科技大学出版社 1999.
    30.王新杨,徐浩,吴晓明等.异穿心莲内酯衍生物的合成及其抗肿瘤活性.中国药学大学学报2005(36):504.
    31.Rajagopal S,Kumar RA,Deevi DS,Satyanarayana C,Rajagopalan R.Andrographolide,a potential cancer therapeutic agent isolated from Andrographis paniculata.J Exp Ther Oncol 2003;3(3):147-58.
    32.Kim TG,Hwi KK,Hung CS.Morphological and biochemical changes of andrographolideinduced cell death in human prostatic adenocarcinoma PC-3 cells.In Vivo 2005;19(3):551-7.
    33.MATSUDA T KM,SUGIGAMA S,et al.Cell differentiation inducing iterpones from andrographis paniculata Nees.Chem Pharm Bull 1994(42):1916.
    34.Li JL,Cheung HY,Zhang ZQ,Chan GKL,Fong WF.Andrographolide induces cell cycle arrest at G2/M phase and cell death in HepG2 cells via alteration of reactive oxygen species.European Journal of Pharmacology 2007;568(1-3):31-44.
    35.Zhou J,Zhang SY,Ong CN,Shen HM.Critical role of pro-apoptotic Bcl-2 family members in andrographolide-induced apoptosis in human cancer cells.Biochemical Pharmacology 2006;72(2):132-44.
    36.Carr BI.Hepatocellular carcinoma:Current management and future trends.Gastroenterology 2004;127(5):S218-S24.
    37.Kerr JFR,Wyllie AH,Currie AR.Apoptosis-Basic Biological Phenomenon with Wide-Ranging Implications in Tissue Kinetics.British Journal of Cancer 1972;26(4):239-(?).
    38.Rello S,Stockert JC,Moreno V,et al.Morphological criteria to distinguish cell death induced by apoptotic and necrotic treatments.Apoptosis 2005;10(1):201-8.
    39.Green DR.Apoptotic pathways:Paper wraps stone blunts scissors.Cell 2000;102(1):1-4.
    40.Hu HB,Jiang C,Schuster T,Li GX,Daniel PT,Lu JX.Inorganic selenium sensitizes prostate cancer cells to TRAIL-induced apoptosis through superoxide/p53/Bax-mediated activation of mitochondrial pathway.Molecular Cancer Therapeutics 2006;5(7):1873-82.
    41.Backus HHJ,Dukers DF,van Groeningen CJ,et al.5-Fluorouracil induced Fas upregulation associated with apoptosis in liver metastases of colorectal cancer patients.Annals of Oncology 2001;12(2):209-16.
    42.Yamamoto T,Nagano H,Sakon M,et al.Partial contribution of tumor necrosis factor-related apoptosis-inducing ligand(TRAIL)/TRAIL receptor pathway to antitumor effects of interferonalpha /5-fluorouracil against hepatocellular carcinoma.Clinical Cancer Research 2004;10(23):7884-95.
    43.Blagosklonny MV.Prospective strategies to enforce selectivety cell death in cancer cells.Oncogene 2004;23(16):2967-75.
    44.Kuwana T,Bouchier-Hayes L,Chipuk JE,et al.BH3 domains of BH3-only proteins differentially regulate bax-mediated mitochondrial membrane permeabilization both directly and indirectly.Molecular Cell 2005;17(4):525-35.
    45.Chipuk JE,Kuwana T,Bouchier-Hayes L,et al.Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis.Science 2004;303(5660):1010-4.
    46.Hockenbery DM,Giedt CD,O'Neill JW,Manion MK,Banker DE.Mitochondria and apoptosis:New therapeutic targets.Advances in Cancer Research,Vol 85 2002;85:203-42.
    47.Ehrhardt H,Hacker S,Wittmann S,et al.Cytotoxic drug-induced,p53-mediated upregulation of caspase-8 in tumor cells.Oncogene 2008;27(6):783-93.
    48.Carmody RJ,Cotter TG.Signalling apoptosis:a radical approach.Redox Report 2001;6(2):77-90.
    49.Sauer H,Wartenberg M,Hescheler J.Reactive oxygen species as intracellular messengers during cell growth and differentiation.Cellular Physiology and Biochemistry 2001;11(4):173-86.
    50.Johnson TM,Yu ZX,Ferrans VJ,Lowenstein RA,Finkel T.Reactive oxygen species are downstream mediators of p53-dependent apoptosis.Proceedings of the National Academy of Sciences of the United States of America 1996;93(21):11848-52.
    1.Bosch FX,Ribes J,Diaz M,Cleries R.Primary liver cancer:Worldwide incidence and trends.Workshop on Hepatocellular Carcinoma:2004 Apr 01-03;Bethesda,MD;2004.p.S5-S16.
    2.等巫马.白花蛇舌草的化学成分及药理作用.中华国际医药杂志2002;3(1):200-1.
    3.ZZ WP,Z W.Distribution of ursolic acid in medicinal plants.J Chin Med 2000;23:717-22.
    4.FZ CD.Analysis on the frequency of herbs used in primary hepatocellular carcinoma.Liaoning J trad Chin med 2002;29:187-9.
    5.Liu J.Pharmacology of oleanolic acid and ursotic add.Journal of Ethnopharmacology 1995Dec;49(2):57-68.
    6.Andersson D,Liu JJ,Nilsson A,Duan RD.Ursolic acid inhibits proliferation and stimulates apoptosis in HT29 cells following activation of alkaline sphingomyelinase.Anticancer Research 2003Jut-Aug;23(4):3317-22.
    7.Liu XS,Jiang JK.Induction of apoptosis and regulation of the MAPK pathway by ursolic acid in human leukemia K562 cells.Planta Medica 2007 Sep;73(11):1192-4.
    8.Choi BM,Park R,Pae HO,et at.Cyclic adenosine monophosphate inhibits ursolic acidinduced apoptosis via activation of protein kinase A in human leukaemic HL-60 cells.Pharmacology(?)Toxicology 2000 Feb;86(2):53-8.
    9.Hsu YL,Kuo PL,Lin CC.Proliferative inhibition,cell-cycle dysregulation,and induction of apoptosis by ursotic acid in human non-small cell lung cancer A549 cells.Life Sciences 2004Sep;75(19):2303-16.
    10.Manu KA,Kuttan G.Ursolic acid induces apoptosis by activating p53 and caspase-3 gene expressions and suppressing NF-kappa B mediated activation of bct-2 in B16F-10 melanoma cells.International Immunopharmacology 2008 Jul;8(7):974-81.
    11.Achiwa Y,Hasegawa K,Komiya T,Udagawa Y.Ursolic acid induces Bax-dependent apoptosis through the caspase-3 pathway in endometrial cancer SNG-Ⅱ cells.Oncology Reports 2005Jan;13(1):51-7.
    12.Zhang DM,Tang PMK,Chan JYW,et al.Anti-proliferative effect of ursolic acid on multidrug,resistant hepatoma cells R-HepG2 by apoptosis induction.Cancer Biology(?) Therapy 2007Sep;6(9):1381-9.
    13.Essaady D,Simon A,Ollier M,Maurizis JC,Chulia AJ,Delage C.Inhibitory effect of ursolic acid on B16 proliferation through cell cycle arrest.Cancer Letters 1996 Sep;106(2):193-7.
    14.Cardenas C,Quesada AR,Medina MA.Effects of ursolic acid on different steps of the angiogenic process.Biochemical and Biophysical Research Communications 2004 Jul;320(2):402-8.
    15.Kerr JFR,Wyllie AH,Currie AR.Apoptosis-Basic Biological Phenomenon with Wide-Ranging Implications in Tissue Kinetics.British Journal of Cancer 1972;26(4):239-(?).
    16.Criollo A,Galluzzi L,Maiuri MC,Tasdemir E,Lavandero S,Kroemer G.Mitochondrial control of cell death induced by hyperosmotic stress.Apoptosis 2007 Jan;12(1):3-18.
    17.Wajant H.The Fas signaling pathway:More than a paradigm.Science 2002May;296(5573):1635-6.
    18.Zamzami N,Susin SA,Marchetti P,et al.Mitochondrial control of nuclear apoptosis.Journal of Experimental Medicine 1996 Apr;183(4):1533-44.
    19.Cregan SP,Dawson VL,Slack RS.Role of AIF in caspase-dependent and caspase-independent cell death.Oncogene 2004 Apr;23(16):2785-96.
    20.Li LY,Luo L,Wang XD.Endonuclease G is an apoptotic DNase when released from mitochondria.Nature 2001 Jul;412(6842):95-9.
    21.van Loo G,Schotte P,van Gurp M,et al.Endonuclease G:a mitochondrial protein released in apoptosis and involved in caspase-independent DNA degradation.Cell Death and Differentiation 2001Dec;8(12):1136-42.
    22.Susin SA,Lorenzo HK,Zamzami N,et al.Molecular characterization of mitochondrial apoptosis-inducing factor.Nature 1999 Feb;397(6718):441-6.
    23.冉先德.中华药源[M].哈尔滨:哈尔滨出版社1993:256-8.
    24.秦风华.白花蛇舌草对小疏免疫功能的增强作用.上海免疫学杂志1990;6(10):321-3.
    25.李玉祥,樊华,张劲松等.中草药抗癌的体外试验.中国药科大学学报1999;1(30):37-42.
    26.胡月红,胡月娟,徐军等.钱氏抗癌方的抗瘤实验研究.中成药1997;4(19):34-5.
    27.张英华,王素芬,叶文华.克癌力胶囊抗肿瘤作用的实验研究.中国实验方剂学杂志1997;2(3):32-4.
    28.徐秀之,天暄.提宗龙胆化学成分的研究.中国中药杂志2000;4(25):225-6.
    29.龚运淮.天然有机化合物13C核磁共振化学位移.昆明:云南科技出版社1986:130.
    30.Wei MC,Zong WX,Cheng EHY,et al.Proapoptotic BAX and BAK:A requisite gateway to mitochondrial dysfunction and death.Science 2001;292(5517):727-30.
    31.Nechushtan A,Smith CL,Lamensdorf I,Yoon SH,Youle RJ.Bax and Bak coalesce into novel mitochondria-associated clusters during apoptosis.Journal of Cell Biology 2001;153(6):1265-76.
    32.Wolter KG,Hsu YT,Smith CL,Nechushtan A,Xi XG,Youle RJ.Movement of Bax from the cytosol to mitochondria during apoptosis.Journal of Cell Biology 1997;139(5):1281-92.
    33.Yamaguchi H,Paranawithana SR,Lee MW,Huang ZW,Bhalla KN,Wang HG.Epothilone B analogue(BMS-247550)-mediated cytotoxicity through induction of bax conformational change in human breast cancer cells.Cancer Research 2002;62(2):466-71.
    34.Petraccia L,Onori P,Sferra R,et al.[MDR(multidrug resistance) in hepatocarcinoma clinical-therapeutic implications].Clin Ter 2003;154(5):325-35.
    35.Chan JYW,Chu ACY,Fung KP.Inhibition of P-glycoprotein expression and reversal of drug resistance of human hepatoma HepG2 cells by multidrug resistance gene(mdr1) antisense RNA.Life Sciences 2000;67(17):2117-24.
    36.Xiong XJ CW LK,Xu XQ.Study on the experiment of the poison of Ursolic Acid.J Tichun Med Column 2001(13):54-5.
    37.Rello S,Stockert JC,Moreno V,et at.Morphological criteria to distinguish cell death induced by apoptotic and necrotic treatments.Apoptosis 2005;10(1):201-8.
    38.Jaattela M,Tschopp J.Caspase-independent cell death in T lymphocytes.Nature Immunology 2003;4(5):416-23.
    
    39. SS AM. Death without caspase, caspase without death. Trends Cell Biol 2004(14): 184-93.
    
    40. Lockshin RA, Zakeri Z. Caspase-independent cell deaths. Current Opinion in Cell Biology 2002;14(6):727-33.
    
    41. Danial NN, Korsmeyer SJ. Cell death: Critical control points. Cell 2004;116(2):205-19.
    
    42. Kuwana T, Bouchier-Hayes L, Chipuk JE, et al. BH3 domains of BH3-only proteins differentially regulate bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Molecular Cell 2005;17(4):525-35.
    
    43. Martinou JC, Green DR. Breaking the mitochondrial barrier. Nature Reviews Molecular Cell Biology 2001;2(1):63-7.
    
    44. Scorrano L, Korsmeyer SJ. Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochemical and Biophysical Research Communications 2003;304(3):437-44.
    
    45. Cartron PF, Juin P, Oliver L, Martin S, Meflah K, Vallette FM. Nonredundant role of Bax and Bak in Bid-mediated apoptosis. Molecular and Cellular Biology 2003;23(13):4701-12.
    
    46. Deng YB, Lin YH, Wu XW. TRAIL-induced apoptosis requires Bax-dependent mitochondria release of Smac/DIABLO. Genes & Development 2002;16(1):33-45.
    
    47. Daugas E, Susin SA, Zamzami N, et al. Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. Faseb Journal 2000;14(5):729-39.
    
    48. Ahn HJ, Kim YS, Kim JU, Han SM, Shin JW, Yang HO. Mechanism of taxol-induced apoptosis in human SKOV3 ovarian carcinoma cells. Journal of Cellular Biochemistry 2004;91 (5): 1043-52.
    
    49. Cande C, Vahsen N, Garrido C, Kroemer G. Apoptosis-inducing factor (AIF): caspase- independent after all. Cell Death and Differentiation 2004;11(6):591-5.
    
    50. Daugas E, Nochy D, Ravagnan L, et al. Apoptosis-inducing factor (AIF): a ubiquitous mitochondrial oxidoreductase involved in apoptosis. Febs Letters 2000;476(3):118-23.
    
    51. Lipton SA, Bossy-Wetzel E. Dueling activities of AIF in cell death versus survival: DNA binding and redox activity. Cell 2002;111(2):147-50.
    
    52. Klein JA, Longo-Guess CM, Rossmann MP, et al. The harlequin mouse mutation down- regulates apoptosis-inducing factor. Nature 2002;419(6905):367-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700