脑缺氧缺血后神经细胞死亡及新生细胞形成的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新生儿缺氧缺血(hypoxia ischemia,HI)性脑损伤是严重威胁新生儿健康、导致新生儿死亡和儿童神经系统伤残的主要原因。对于HI,大脑表现为神经损伤与神经保护并存状态。HI后,大量神经细胞死亡,其机制尚未完全清楚,近来研究发现,凋亡诱导因子(apoptosis-inducing factot,AIF)触发的半胱天冬酶(caspase)非依赖凋亡途径以及过量NO所致的亚硝酰基化作用在细胞损伤中发挥重要作用,本研究采用免疫组化、免疫荧光、Western蛋白印迹、酶活性检测等生物学技术探讨AIF以及硝基酪氨酸在未成熟脑缺氧缺血诱导的神经细胞死亡中的作用,进一步明确了神经细胞死亡的发生机制。
     在大脑的多种适应性反应中,神经干细胞增生且分化产生新的神经细胞将对脑组织损伤后的修复起到重要作用,但在脑发育的不同阶段神经细胞的增生与分化及在HI后的改变尚未见详细报道。本研究通过注射新生细胞标记物Brdu(5-bromo-2—deoxyuridine,5-溴脱氧尿嘧啶核苷),并采用免疫组化、免疫荧光以及立体测量系统和激光共聚焦成像技术阐述了新生小鼠脑组织发育过程中细胞增生与分化的规律以及HI后的变化,并比较了新生儿期与青少年期不同年龄脑海马区细胞增生与分化的异同,为新生儿缺氧缺血性脑损伤的临床干细胞治疗提供了理论依据。
     对象:缺氧缺血组Wistar 7日龄新生大鼠147只,随机分为HI后0min、30min、1h、3h、8h、14h、24h、72h(每时间点n=12),BAF干预组42只,2—亚氨基生物素干预组9只;正常对照组Wistar大鼠60只,随机分为出生后第0d、3d、7d、8d、10d、14d、21d、42d、成年(7d组n=12,余每时间点n=6)。
     C57/BL6 9日龄新生雄性小鼠45只,随机分为三组,其中缺氧缺血组各10只,正常对照组各5只;21日龄雄性小鼠15只,其中缺氧缺血组10只,正常对照组5只。
     方法:1缺氧缺血脑损伤模型制作:1.5%—3.5%安氟醚吸入麻醉,结扎左侧颈总动脉,术后1h给予动物吸入湿化氮氧混合气,其浓度和吸入时间在7d大鼠、9d小鼠、21d小鼠不同,分别为7.7%,55min;10%,35min;10%,30min。2给药方法及药物剂量:BAF于HI后2h、12h脑室注射,每次剂量5μl;HI后即刻腹腔注射2—亚氨基生物素,剂量:20mg/kg(10μl/g);Brdu于不同组间HI后1d、1w、2w开始腹腔注射,每次剂量50mg/kg,每天一次,连续七天。3免疫组化染色:检测AIF,MAP-2,细胞色素C,硝基酪氨酸,活性caspase-3,发夹寡核苷酸探针(HPP)原位杂交,Brdu。4免疫荧光染色:检测AIF-HPP-Hoechst33342,AIF-TUNEL-Hoechst 33342,AIF-细胞色素C-Hoechst 33342,AIF-COX,AIF-MAP-2,硝基酪氨酸-AIF-Hoechst 33342,HPP-硝基酪氨酸-Hoechst 33342,caspase-3-硝基酪氨酸-Hoechst 33342,Brud-NeuN,Brdu-APC,Brdu-Iba1,Brdu-S100B。5 Western蛋白印迹:检测细胞色素C、细胞色素氧化酶Ⅳ(COX)、caspase-3、caspase-9、a-tubulin(a-微管蛋白)、硝基酪氨酸等蛋白表达。6Caspase活性检测:检测caspase-1、2、3、9的活性。7采用激光共聚焦成像技术鉴别新生细胞的分化类型。8细胞计数:高倍视野下在皮层、纹状体、海马、丘脑分别计数免疫组化阳性细胞,海马区Brdu阳性细胞采用立体测量学系统计数。9脑梗塞体积测定:采用Micro Image软件测量MAP-2丢失面积,依据公式计算脑梗塞体积。10统计学处理:两组间比较采用t检验,多组间比较采用ANOVA post Hoc检验,用StatView软件处理,P<0.05为有显著性差异。
     结果:缺氧缺血性脑损伤后细胞死亡机制的研究1.凋亡相关蛋白在正常脑组织发育中的变化:脑组织发育期间,AIF水平保持不变。线粒体标记物即线粒体膜结合蛋白细胞色素C氧化酶(COX)以及细胞色素C、caspase-9随脑组织发育表达增高,caspase-3随脑发育高峰期的消退而减少。2.HI后AIF、细胞色素C的释放:HI后即刻AIF跨膜核转移,HI后8h达到峰值,细胞呈凋亡形态学改变,AIF从线粒体的释放早于早于细胞色素C核转移,且AIF核转移早于DNA断裂。3.Caspase广谱抑制剂对AIF的再分布无作用,说明AIF通过caspase非依赖途径发挥作用。4.硝基酪氨酸免疫组化结果:HI后30min,在损伤侧大脑半球(皮层、纹状体、海马和丘脑)即可见到硝基酪氨酸着色明显增强,HI后3h达到峰值,而后下降。其中在皮层,部分阳性细胞在HI后72h再次出现;在室管膜下HI侧和对侧(单纯缺氧侧)均检测到强烈的硝基酪氨酸免疫反应性。5.硝基酪氨酸形成早于AIF的核转移和caspase-3的激活。6.硝基酪氨酸形成早与DNA断裂,硝基酪氨酸阳性细胞位于MAP-2的阴性区(梗塞区)。7.nNOS和iNOS联合抑制剂2—亚氨基生物素在HI后减少硝基酪氨酸形成,降低caspase-3的活性,但对AIF跨膜核转移无作用。
     正常脑组织发育过程中以及HI脑损伤后细胞增生与分化的研究1.HI对小鼠皮层和纹状体细胞增生的影响:随着脑组织发育,Brdu标记的细胞在皮层和纹状体显著下降。HI损伤显著增加未成熟脑(P9)恢复早期(HI后1w)皮层和纹状体的Brdu阳性细胞数;在青少年期组(P21),大量的新生细胞仅发现于HI损伤侧的纹状体区。2.HI对小鼠皮层和纹状体新生细胞分化的影响:在未成熟脑皮层恢复早期以及各组的纹状体区仅能检测到少部分Brdu/NeuN双染色细胞,大部分的Brdu标记细胞为神经胶质细胞,神经胶质细胞数随脑组织发育成熟快速降低,未成熟脑皮层和纹状体在HI恢复早期被激发产生大量神经胶质细胞,在青少年期脑纹状体区,HI后Iba1(小胶质细胞)和S100β(星形胶质细胞)阳性细胞分别增加50倍和8倍,但APC(少突细胞)阳性细胞数无显著改变。3.HI对脑发育期海马细胞增生的影响:P9脑组织中Brdu标记细胞数的基线显著高于P21组。HI损伤明显增加P21整个海马区Brdu标记细胞,P9脑组织DG区无变化。4.H工对脑发育期海马新生细胞分化的影响:P9脑组织中神经元细胞再生的基线显著高于P21组。HI后,与正常对照组比较,P21组神经元再生显著增高,而在P9组无明显改变。新生神经元细胞数绝对值在两年龄组间无差别。新生的小胶质细胞和少突细胞在P21组多于P9组。
     结论:1.AIF核转移是新生大鼠脑缺氧缺血后神经细胞损伤的早期指标,AIF介导的细胞死亡途径在未成熟脑神经细胞损伤中起重要作用。2.硝基酪氨酸是新生大鼠脑缺氧缺血后细胞损伤的早期指标;联合抑制nNOS和iNOS在新生脑缺氧缺血损伤中发挥神经保护作用。3小鼠脑组织细胞增生、分化以及存活与脑组织区域、发育时期以及损伤时程相关。4海马区年龄相关的神经细胞再生和胶质细胞再生的不同导致缺氧缺血损伤后组织修复的不同。
Neonatal hypoxic-ischemix brain damage is one of the most serious diseasethreatening the life and health of newborn infants and leading to disability in nervoussystem of children. The brain response to HI appears as a balance between theactivation of neurodestructive components and endogenous protective system. Themechanism of cell death after HI is still unknown. Recent study show thecaspase-independent apoptosis triggered by apoptosis-inducing factor (AIF) and theprotein nitrosylation induced by excessive nitric oxide (NO) play an important role inneuronal injury. The immunohistochemisty Staining, immunofluorescence staining,western blot, caspase activity were used as parameters to investigate the effect of AIFand nitrosylation in neonatal hypoxia ischemia brain injury.
     Among the various adaptative responses of the brain to injury, it has beenrecently reported that new neurons can be generated through the proliferation ofprogenitor cells, and thus might help to repair the brain damage. It has beendemonstrated that there is endogenetic neurogenesis in the normal brain. However,there is no report on neurogenesis in developing brain and effect of HI onneurogenesis. We use the Brdu (5-bromo-2-deoxyuriding), the marker of newgenerated cells, to label the new produced cells, combined withimmunohistochemisty staining, immunofluorescence staining, stereological systemand confocal imaging to study the cell proliferation and differentiation in developingbrain after cerebral hypoxia ischemia.
     Objects: HI group: After HI injury, 1477-day-old newborn Wistar rats were dividedrandomly into 0min, 30min, 1h, 3h, 8h, 14h, 24h, 72h (each time point n=12) groups,BAF treatment group 42 pups (HI 24h n=9, HI 72h n=33), 2-iminobiotin treatment group 9 pups. Normal control group: 60 Wistar rats were divided randomly into 0d,3d, 7d, 8d, 10d, 14d, 21d, 42, adult groups (each time point n=6, except 7d n=12).
     Forty five 9-day-old C57/BL6 male mice were divided randomly into threegroups. There were 10 mice in each HI group and 5 mice for each normal control. 1521-day-old C57/BL6 male mice were divided into HI group (n=10), normal control(n=5).
     Methods: 1. The preparation of the hypoxia-ischemia brain injury model: The Wistarrats/C57/BL6 male mice were anesthetized with 1.5%-3.5% halothane and the leftcommon carotid artery was ligated. After 1h recovery, the animals were givenhumidified oxygen (7.7%, 55min for 7-day-old Wistar rat; 10%, 35min for 9-day-oldC57/BL6 mice; 10%, 30min for 21-day-old C57/BL6). 2. Drug administration: (1)BAF was given by intracerebroventicular (ICV) injection 2h and 12h after HI,respectively. The total does of BAF was 5μl (1μl 100nM BAF, 4μl PBS, pH 7.4). (2)2-iminobiotin was given by intraperitoneal injection immediately after HI. The doesis 20mg/kg(10μl/g). (3) Brdu was given by intraperitoneal injection and started theinjection from 1d (group1), 1w(group2), 2w(group3) respectively after HI. The doeswas 50mg/kg/day for seven days. 3. immunohistochemisty staining: To detect AIF,MAP-2, Cyt c, nitrotyrosine, active caspase-3, HPP, Brdu. 4. Immunofluorescentstaining: To detect AIF-HPP-Hoechst 33342, AIF-TUNEL-Hoechst 33342, AIF-Cytc-Hoechst 33342, AIF-COX, AIF-MAP-2, nitrotyrosine-AIF-Hoechst 33342,HPP-nitrotyrosine-Hoechst 33342, caspase-3-nitrotyrosine-Hoechst 33342,Brdu-NeuN, Brdu-APC, Brdu-S100β. 5. Western blot: To detect the proteinexpression of Cyt c, COX, caspase-3, caspase-9, a-tubulin, nitrotyrosine. 6. Thedetermination of caspase activity: To detect the activity of caspase-1, 2, 3, 9. 7. Theconfocal imaging system: To identify the phenotype of the new generated cells. 8.Cell counting: Cell counting was performed in the cortex, striatum, hippocampus,thalamus and Positive cells were counted at 400×magnification. The Brdu positivecells in hippocampus were counted by stereological system. 9. Evaluation of braindamage: Using Micro Image software to measure the MAP-2 negative area. Theinfart volume was calculated by the formula. 10. Statistics: All the data wereexpressed as mean±SD. Unpaired t-test was used when compared two groups.ANOVA with Fisher's post-hoc test was used when comparing more than two groups.Statview software was used to analysis the data. Significance level was assigned at p<0.05.
     Results: To study the mechanism of cell death after HI brain damage. 1. Thechanges of apoptosis-related protein in developing brain: The total levels of AIF werevirtually unchanged duing normal brain development from postnatal day to adult. Themitochondrial marker cytochrome c oxidase (COX) displayed an increase, and so didcytochrome c and caspase-9. Caspase-3 decreased as the brain growth spurt leveledout. 2. AIF and cytochrome c translocation after HI: AIF was translocated to nucleiimmediately following HI and reached peak at 8h post-HI. The AIF positive cellsstaining grew increasingly stronger and more condensed during reperfusion,eventually outlining only pyknotic nuclei. The redistribution of AIF is earlier thanthat of cytochrome c. 3. AIF nuclei translocation precedes the DNA damage. 4. TheAIF redistribution was no changed after BAF treatment which indicated AIFmediated caspase-independent cell death passway. 5. Nitrotyrosine immunoreactivity:The time course of nitrotysine immuneoreactivity in ipsilateral hemisphere (cortex,striatum, hippocampuss and thalamus) was detected already 30min post-HI andincreased peak at 3h and decreased afterwards. In the cortex, there appeared to be asecond increase at 72h post-HI. The nitrotyrosine immuneoreactivity was particularlystrong in the subependymal layer, where stem cells and progenitors reside. 6.Nitrotyrosine formation preceded AIF translocation to nuclei and caspase-3 activation.7. Nitrotyrosine formation preceded DNA damage and the positive cells located inMAP-2 negative area (infarct area). 8. The nitrotyrosine formation and the activationof caspase-3 were decreased after 2-iminobiotin (the inhibitor of nNOS and iNOS)treatment, but the AIF nuclear translocation was not altered.
     Cell proliferation and differentiation in developing brain after cerebral HI. 1.Cell proliferation in the cortex and striatum after HI in the developing brain: Thenumber of Brdu labeled cells decreased significantly in both cortex and striatum withbrain development. HI insult increased Brdu positive cells significantly in theipsilateral cortex and striatum at early recovery of the immature brain. In the juvenile,large amount of new born cells was only seen in the ipsilateral striatum. 2. Celldifferentiation in the cortex and striatum after HI in the developing brain: A smallportion of Brdu and NeuN double labeled cells could be detected in the cortex at veryearly recovery in the immature brain and in the striatum of all the groups. Themajority of Brdu labeled cells were neuroglia. The number of the neuroglia cells decreased dramatically with brain maturation. HI insult stimulated to produce a largenumber of neuroglia cells in the ipsilateral cortex and striatum of immature brain atearly recovery after HI. In the juvenile striatum, Iba1 and S-100βpositive cellsincreased 50 and 8 folds after HI, but the number of APC positive cells was nosignificant change. 3. Compare the cell proliferation in neonatal (P9) and juvenile(P21) brain after HI insult: The basal level of Brdu labeled cells and neurogenesis wasmuch higher in the immature brain than that of juvenile. HI insult increased Brdulabeled cells dramatically in the whole juvenile hippocampus, but not in the immaturedentate gyrus (DG). 4. Compare the cell differentiation in neonatal (P9) and juvenile(P21) brain after HI insult: The neurogenesis was increased significantly in thejuvenile compared with the age matched control; however, there was no significantlyincrease in the immature brain. The absolute number of newly generated neuron wasno different between immature and juvenile. More microglia and oligodendrocytewere differentiated in the juvenile compared to immature.
     Conclusions: 1. AIF translocation is an early marker of DNA damage in neonatalcerebral HI and AIF-mediated cell death may play an important role in HI inducedneuronal loss in the immature brain. 2. Nitrotyrosine is an early marker of neuronaldamage after neonatal HI brain injury. The inhibition of nNOS and iNOS show theeffect of neuronal protection. 3. Cell proliferation, differentiation and survive wasbrain regions, developmental stages and injury time courses related. 4. Thedevelopment related differences in the neurogenesis and gliagenesis respond to HIinjury may underline the differences in tissue restoration in developing brain.
引文
1. Volpe, J.J., Perinatal brain injury: from pathogenesis to neuroprotection. Merit Retard Dev Disabil Res Rev, 2001.7(1): p. 56-64.
    2. Sidhu, R.S., U.I. Tuor, and M.R. Del Bigio, Nuclear condensation and fragmentation following cerebral hypoxia-ischemia occurs more frequently in immature than older rats. Neurosci Lett, 1997. 223(2): p. 129-32.
    3. Yue, X., et al., Apoptosis and necrosis in the newborn piglet brain following transient cerebral hypoxia-ischaemia. Neuropathol Appl Neurobiol, 1997.23(1): p. 16-25.
    4. Blomgren, K., et al., Synergistic activation of caspase-3 by m-calpain after neonatal hypoxia-ischemia: a mechanism of "pathological apoptosis"? J Biol Chem, 2001. 276(13): p. 10191-8.
    5. Ota, K., et al., Alteration of apoptotic protease-activating factor-1 (APAF-1)-dependent apoptotic pathway during development of rat brain and liven J Biochem (Tokyo), 2002. 131(1): p. 131-5.
    6. Merry, D. E., et al., bcl-2 protein expression is widespread in the developing nervous system and retained in the adult PNS. Development, 1994. 120(2): p. 301-11.
    7. Vekrellis, K., et al., Box promotes neuronal cell death and is downregulated during the development of the nervous system. Development, 1997. 124(6): p. 1239-49.
    8. Kroemer, G., B. Dallaporta, and M. Resche-Rigon, The mitochondrial death/life regulator in apoptOsis and necrosis. Annu Rev Physiol, 1998.60: p. 619-42.
    9. Chai, J., et al., Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature, 2000. 406(6798): p. 855-62.
    10. Du, C,, et al., Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell, 2000. 102(1): p. 33-42.
    11. Susin, S.A., et al., Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 1999. 397(6718): p. 441-6.
    12. Joza, N., et al., Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature, 2001. 410(6828): p. 549-54.
    13. Moncada, S., R.M. Palmer, and E.A. Higgs, Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev, 1991.43(2): p. 109-42.
    14. Szabo, C., Physiological and pathophysiological roles of nitric oxide in the central nervous system. Brain Res Bull, 1996.41(3): p. 131-41.
    15. Farinelli, S.E., D.S. Park, and L.A. Greene, Nitric oxide delays the death of trophic factor-deprived PC12 cells and sympathetic neurons by a cGMP-mediated mechanism. J Neurosci, 1996.16(7): p. 2325-34.
    16. Vannucci, R.C., Experimental biology of cerebral hypoxia-ischemia: relation to perinatal brain damage. Pediatr Res, 1990.27(4 Pt 1): p. 317-26.
    17. Hasegawa, K., et al., Lipid peroxidation in neonatal mouse brain subjected to two different types of hypoxia. Brain Dev, 1991.13(2): p. 101-3.
    18. Crow, J.P. and J.S. Beckman, The role of peroxynitrite in nitric oxide-mediated toxicity. Curr Top Microbiol Immunol, 1995. 196: p. 57-73.
    19. Coeroli, L., et al., Nitric oxide production and perivascular tyrosine nitration following focal ischemia in neonatal rat. J Neurochem, 1998.70(6): p. 2516-25.
    20. Hattori, I., et al., Hypoxia-ischemia induces thioredoxin expression and nitrotyrosine formation in new-born rat brain. Redox Rep, 2002.7(5): p. 256-9.
    21. Forstermann, U., et al., Isoforms of nitric oxide synthase. Characterization and purification from different cell types. Biochem Pharmacol, 1991.42(10): p. 1849-57.
    22. Cai, Z., J.B. Hutchins, and P.G. Rhodes, Intrauterine hypoxia-ischemia alters nitric oxide synthase expression and activity in fetal and neonatal rat brains. Brain Res Dev Brain Res, 1998. 109(2): p. 265-9.
    23. Higuchi, Y., et al., Increase in nitric oxide in the hypoxic-ischemic neonatal rat brain and suppression by 7-nitroindazole and aminoguanidine. Eur J Pharmacol, 1998.342(1): p. 47-9.
    24. Ikeno, S., et al., Immature brain injury via peroxynitrite production induced by inducible nitric oxide synthase after hypoxia-ischemia in rats. J Obstet Gynaecol Res, 2000.26(3): p. 227-34.
    25. Puka-Sundvall, M., et al., Subcellular distribution of calcium and ultrastructural changes after cerebral hypoxia-ischemia in immature rats. Brain Res Dev Brain Res, 2000. 125(1-2): p. 31-41.
    26. Hirabayashi, H., et al., N-methyl-D-aspartate receptor antagonist reduces nitrotyrosine formation in caudate-putamen in rat focal cerebral ischemia-reperfusion. Neurosci Lett, 2001. 299(1-2): p. 159-61.
    27. Peeters-Scholte, C., et al., Effects of selective nitric oxide synthase inhibition on IGF-1, caspases and cytokines in a newborn piglet model of perinatal hypoxia-ischaemia. Dev Neurosci, 2002.24(5): p. 396-404.
    28. Peeters-Scholte, C., et al., Neuroprotection by selective nitric oxide synthase inhibition at 24 hours afterperinatal hypoxia-ischemia. Stroke, 2002.33(9): p. 2304-10.
    29. Shankaran, S., et al., Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med, 2005.353(15): p. 1574-84.
    30. Kuhn, H.G., H. Dickinson-Anson, and F.H. Gage, Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci, 1996. 16(6): p. 2027-33.
    31. Gray, W.P., K. May, and L.E. Sundstrom, Seizure induced dentate neurogenesis does not diminish with age in rats. Neurosci Lett, 2002. 330(3): p. 235-8.
    32. Bondolfi, L., et al., Impact of age and caloric restriction on neurogenesis in the dentate gyrus of C57BL/6 mice. Neurobiol Aging, 2004. 25(3): p. 333-40.
    33. Jin, K., et al., Ischemia-induced neurogenesis is preserved but reduced in the aged rodent brain. Aging Cell, 2004. 3(6): p. 373-7.
    34. Sun, D., et al., Cell proliferation and neuronal differentiation in the dentate gyrus in juvenile and adult rats following traumatic brain injury. J Neurotrauma, 2005.22(1): p. 95-105.
    35. Vaccarino, F. M. and L.R. Ment, Injury and repair in developing brain. Arch Dis Child Fetal Neonatal Ed, 2004.89(3): p. F190-2.
    36. Yagita, Y., et al., Neurogenesis by progenitor cells in the ischemic adult rat hippocampus. Stroke, 2001.32(8): p. 1890-6.
    37. Seaberg, R.M. and D. van der Kooy, Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors. J Neurosci, 2002.22(5): p. 1784-93.
    38. Magavi, S.S., B.R. Leavitt, and J.D. Macklis, Induction of neurogenesis in the neocortex of adult mice. Nature, 2000. 405(6789): p. 951-5.
    39. Schmidt, W. and K.G. Reymann, Proliferating cells differentiate into neurons in the hippocampal CA1 region of gerbils after global cerebral ischemia. Neurosci Lett, 2002. 334(3): p. 153-6.
    40. van Praag, H., G. Kempermann, and EH. Gage, Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci, 1999.2(3): p. 266-70.
    41. Enwere, E., et al., Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J Neurosci, 2004. 24(38): p. 8354-65.
    42. Plane, J.M., et al., Neonatal hypoxic-ischemic injury increases forebrain subventricular zone neurogenesis in the mouse. Neurobiol Dis, 2004.16(3): p. 585-95.
    43. Komitova, M., et al., Enriched environment after focal cortical ischemia enhances the generation of astroglia and NG2 positive polydendrocytes in adult rat neocortex. Exp Neurol, 2006.
    44. Daval, J.L., et al., Neonatal hypoxia triggers transient apoptosis followed by neurogenesis in the rat CA1 hippocampus. Pediatr Res, 2004. 55(4): p. 561-7.
    45. Bartley, J., et al., BrdU-positive cells in the neonatal mouse hippocampus following hypoxic-ischemic brain injury. BMC Neurosci, 2005.6(1): p. 15.
    46. Raber, J., et al., Irradiation attenuates neurogenesis and exacerbates ischemia-induced deficits. Ann Neurol, 2004. 55(3): p. 381-9.
    47. Liu, J., et al., Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci, 1998.18(19): p. 7768-78.
    48. Kawai, T., et al., Characterization of BrdU-positive neurons induced by transient global ischemia in adult hippocampus. J Cereb Blood Flow Metab, 2004.24(5): p. 548-55.
    49. Eriksson, P.S., et al., Neurogenesis in the adult human hippocampus. Nat Med, 1998.4(11): p. 1313-7.
    50. Cameron, H.A. and R.D. McKay, Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol, 2001.435(4): p. 406-17.
    51. Zhu, C., et al., The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death Differ, 2005.12(2): p. 162-76.
    52. Zhu, C., et al., Different apoptotic mechanisms are activated in male and female brains after neonatal hypoxia-ischaemia. J Neurochem, 2006.911(4): p. 1016-27.
    53. Towfighi, J., et al., Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxia-ischemia: a light microscopic study. Brain Res Dev Brain Res, 1997. 100(2): p. 149-60.
    54. Rice, J.E., 3rd, R.C. Vannucci, and J.B. Brierley, The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol, 1981.9(2): p. 131-41.
    55. Didenko, V.V. and P.J. Homsby, Presence of double-strand breaks with single-base 3' overhangs in cells undergoing apoptosis but not necrosis. J Cell Biol, 1996. 135(5): p. 1369-76.
    56. Zhu, C., et al., Correlation between caspase-3 activation and three different markers of DNA damage in neonatal cerebral hypoxia-ischemia. J Neurochem, 2000. 75(2): p.819-29.
    57. Wang, X., et al., Caspase-3 activation after neonatal rat cerebral hypoxia-ischemia. Biol Neonate, 2001.79(3-4): p. 172-9.
    58. Shimohama, S., H. Tanino, and S. Fujimoto, Differential expression of rat brain caspase family proteins during development and aging. Biochem Biophys Res Commun, 2001. 289(5): p. 1063-6.
    59. Yakovlev, A.G., et al., Differential expression of apoptotic protease-activating factor-1 and caspase-3 genes and susceptibility to apoptosis during brain development and after traumatic brain injury. J Neurosci, 2001.21(19): p. 7439-46.
    60. Zhang, X., et al., Intranuclear localization of apoptosis-inducing factor (AIF) and large scale DNA fragmentation after traumatic brain injury in rats and in neuronal cultures exposed to peroxynitrite. J Neurochem, 2002. 82(1): p. 181-91.
    61. Daugas, E., et al., Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. Faseb J, 2000. 14(5): p. 729-39.
    62. Yu, S.W., et al., Mediation of poly(ADP-ribose) polymerase-l-dependent cell death by apoptosis-inducingfactor. Science, 2002. 297(5579): p. 259-63.
    63. Enari, M., et al., A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature, 1998. 391(6662): p. 43-50.
    64. Susin, S.A., et al., Two distinct pathways leading to nuclear apoptosis. J Exp Med, 2000. 192(4): p. 571-80.
    65. Didenko, V.V., J.R. Tunstead, and P.J. Hornsby, Biotin-labeled hairpin oligonucleotides: probes to detect double-strand breaks in DNA in apoptotic cells. Am J Pathol, 1998. 152(4): p. 897-902.
    66. Hara, H., et al., Inhibition of intetleukin 1beta converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc Natl Acad Sci U S A, 1997. 94(5): p. 2007-12.
    67. Endres, M., et al., Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of the caspasefamily. J Cereb Blood Flow Metab, 1998.18(3): p. 238-47.
    68. Gill, R., et al., Role of caspase-3 activation in cerebral ischemia-induced neurodegeneration in adult and neonatal brain. J Cereb Blood Flow Metab, 2002.22(4): p. 420-30.
    69. Martin, L. J., et al., Neuronal death in newborn striatum after hypoxia-ischemia is necrosis and evolves with oxidative stress. Neurobiol Dis, 2000.7(3): p. 169-91.
    70. Kempermann, G., H.G. Kuhn, and EH. Gage, More hippocampal neurons in adult mice living in an enriched environment. Nature, 1997.386(6624): p. 493-5.
    71. Gould, E., et al., Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci, 1999.2(3): p. 260-5.
    72. Fiskum, G., A.N. Murphy, and M.E Beal, Mitochondria in neurodegeneration: acute ischemia and chronic neurodegenerative diseases. J Cereb Blood Flow Metab, 1999. 19(4): p. 351-69.
    73. Fujimura, M., et al., Cytosolic redistribution of cytochrome c after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab, 1998.18(11): p. 1239-47.
    74. Murakami, K., et al., Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency. J Neurosci, 1998.18(1): p. 205-13.
    75. Fujimura, M., et al., Manganese superoxide dismutase mediates the early release of mitochondrial cytochrome C and subsequent DNA fragmentation after permanent focal cerebral ischemia in mice. J Neurosci, 1999. 19(9): p. 3414-22.
    76. Kim, G. W., et al., Manganese superoxide dismutase deficiency exacerbates cerebral infarction after focal cerebral ischemia/reperfusion in mice: implications for the production and role of superoxide radicals. Stroke, 2002.33(3): p. 809-15.
    77. Wink, D. A. and J. B. Mitchell, Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med, 1998.25(4-5): p. 434-56.
    78. Clancy, R. M. and S. B. Abramson, Nitric oxide: a novel mediator of inflammation. Proc Soc Exp Biol Med, 1995. 210(2): p. 93-101.
    79. Maragos, W. F. and F. S. Silverstein, Resistance to nitroprusside neurotoxicity in perinatal rat brain. Neurosci Lett, 1994. 172(1-2): p. 80-4.
    80. Ferriero, D. M., et al., Neonatal mice lacking neuronal nitric oxide synthase are less vulnerable to hypoxic-ischemic injury. Neurobiol Dis, 1996.3(1): p. 64-71.
    81. Iadecola, C., et al., Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia. Stroke, 1996.27(8): p. 1373-80.
    82. Tsuji, M., et al., Protective effect of aminoguanidine on hypoxic-ischemic brain damage and temporal profile of brain nitric oxide in neonatal rat. Pediatr Res, 2000. 47(1): p. 79-83.
    83. Eliasson, M. J., et al., Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage. J Neurosci, 1999.19(14): p. 5910-8.
    84. Huang, Z., et al., Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-L-arginine. J Cereb Blood Flow Metab, 1996. 16(5): p. 981-7.
    85. Margaill, I., et al., Dose-and time-dependence of L-NAME neuroprotection in transient focal cerebral ischaemia in rats. Br J Pharmacol, 1997. 120(1): p. 160-3.
    86. Iadecola, C., et al., Inducible nitric oxide synthase gene expression in brain following cerebral ischemia. J Cereb Blood Flow Metab, 1995.15(3): p. 378-84.
    87. van den Tweel, E. R., et al., Inhibition of nNOS and iNOS following hypoxia-ischaemia improves long-term outcome but does not influence the inflammatory response in the neonatal rat brain. Dev Neurosci, 2002. 24(5): p. 389-95.
    88. Tropepe, V., et al., Transforming growth factor-alpha null and senescent mice show decreased neural progenitor cell proliferation in the forebrain subependyma. J Neurosci, 1997. 17(20): p. 7850-9.
    89. Cameron, H. A. and R. D. McKay, Restoring production of hippocampaI neurons in old age. Nat Neurosci, 1999.2(10): p. 894-7.
    90. Jin, K., et al., Neurogenesis and aging: FGF-2 and HB-EGF restore neurogenesis in hippocampus and subventricular zone of aged mice. Aging Cell, 2003. 2(3): p. 175-83.
    91. Morshead, C. M., C. G. Craig, and D. van der Kooy, In vivo clonal analyses reveal the properties of endogenous neural stem cell proliferation in the adult mammalian forebrain. Development, 1998. 125(12): p. 2251-61.
    92. Yoshimura, S., et al., FGF-2 regulation of neurogenesis in adult hippocampus after brain injury. Proc Natl Acad Sci U S A, 2001. 98(10): p. 5874-9.
    93. Matsuoka, N., et al., Adenovirus-mediated gene transfer of fibroblast growth factor-2 increases BrdU-positive cells after forebrain ischemia in gerbils. Stroke, 2003. 34(6): p. 1519-25.
    94. Craig, C. G., et al., In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J Neurosci, 1996.16(8): p. 2649-58.
    95. Pencea, V., et al., Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci, 2001.21(17): p. 6706-17.
    96. Shingo, T., et al., Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J Neurosci, 2001.21(24): p. 9733-43.
    97. Tsai, P.T., et aI., A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. J Neurosci, 2006.26(4): p. 1269-74.
    98. Caday, C.G., et al., Fibroblast growth factor (FGF) levels in the developing rat brain. Brain Res Dev Brain Res, 1990. 52(1-2): p. 241-6.
    99. Plata-Salaman, C.R., Epidermal growth factor and the nervous system. Peptides, 1991.12(3): p. 653-63.
    100. Aarum, J., et al., Migration and differentiation of neural precursor cells can be directed by microglia. Proc Natl Acad Sci U S A, 2003. 100(26): p. 15983-8.
    101. Zaidi, A.U., et al., New oligodendrocytes are generated after neonatal hypoxic-ischemic brain injury in rodents. Glia, 2004. 46(4): p. 380-90.
    102. Jin, K., et al., Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci U S A, 2001.98(8): p. 4710-5.
    103. Zhang, R.L., et al., Proliferation and differentiation of progenitor cells in the cortex and the subventricular zone in the adult rat after focal cerebral ischemia. Neuroscience, 2001. 105(1): p. 33-41.
    104. Hayashi, T., et al., Neural precursor cells division and migration in neonatal rat brain after ischemic/hypoxic injury. Brain Res, 2005. 1038(1): p. 41-9.
    105. Gu, W., T. Brannstrom, and P. Wester, Cortical neurogenesis in adult rats after reversible photothrombotic stroke. J Cereb Blood Flow Metab, 2000.20(8): p. 1166-73.
    106. Tonchev, A.B., et al., Enhanced. proliferation of progenitor cells in the subventricular zone and limited neuronal production in the striatum and neocortex of adult macaque monkeys after global cerebral ischemia. J Neurosci Res, 2005.81(6): p. 776-88.
    107. Arvidsson, A., et al., Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med, 2002. 8(9): p. 963-70.
    108. Parent, J.M., et al., Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol, 2002. 52(6): p. 802-13.
    109. Ikeda, T., et al., Limited differentiation to neurons and astroglia from neural stem cells in the cortex and striatum after ischemia/hypoxia in the neonatal rat brain. Am J Obstet Gynecol, 2005. 193(3 Pt 1): p. 849-56.
    110. Ong, J., et al., Hypoxic-ischemic injury stimulates subventricular zone proliferation and neurogenesis in the neonatal rat. Pediatr Res, 2005.58(3): p. 600-6.
    111. Kuhn, H.G., et al., Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci, 1997. 17(15): p. 5820-9.
    112. Ivacko, J.A., R. Sun, and F.S. Silverstein, Hypoxic-ischemic brain injury induces an acute microglial reaction inperinatal rats. Pediatr Res, 1996.39(1): p. 39-47.
    113. Trendelenburg, G. and U. Dirnagl, Neuroprotective role of astrocytes in cerebral ischemia: focus on ischemic preconditioning. Glia, 2005.50(4): p. 307-20.
    114. Tonchev, A.B. and T. Yamashima, Differential neurogenic potential of progenitor cells in dentate gyrus and CA1 sector of the postischemic adult monkey hippocampus. Exp Neurol, 2006. 198(1): p. 101-113.
    115. Scheepens, A., el al., A delayed increase in hippocampal proliferation following global asphyxia in the neonatal rat. Brain Res Dev Brain Res, 2003. 142(1): p. 67-76.
    116. Darsalia, V., et al., Stroke-induced neurogenesis in aged brain. Stroke, 2005.36(8): p. 1790-5.
    117. Ekdahl, C.T., et al., Death mechanisms in status epilepticus-generated neurons and effects of additional seizures on their survival. Neurobiol Dis, 2003.14(3): p. 513-23.
    118. Gage, F.H., Mammalian neural stem cells. Science, 2000. 287(5457): p. 1433-8.
    119. Levison, S.W., el al., The migrational patterns and developmental fates of glial precursors in the rat subventricular zone are temporally regulated. Development, 1993. 119(3): p. 611-22.
    120. Pforte, C., et al., Increase in proliferation and gliogenesis but decrease of early neurogenesis in the rat forebrain shortly after transient global ischemia. Neuroscience, 2005. 136(4): p. 1133-46.
    121. Kato, H., A. Takahashi, and Y. Itoyama, Cell cycle protein expression in proliferating microglia and astrocytes following transient global cerebral ischemia in the rat. Brain Res Bull, 2003.60(3): p. 215-21.
    122. Back, S.A., et al., Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci, 2001.21(4): p. 1302-12.
    123. Liu, Y., et al., Hypoxic-ischemic oligodendroglial injury in neonatal rat brain. Pediatr Res, 2002.51(1): p. 25-33.
    124. Rezaie, P. and A. Dean, Periventricular leukomalacia, inflammation and white matter lesions within the developing nervous system. Neuropathology, 2002.22(3): p. 106-32.
    1. Friedlander, R.M. and J. Yuan, ICE, neuronal apoptosis and neurodegeneration. Cell Death Differ, 1998. 5(10): p. 823-31.
    2. Nunez, G., et al., Caspases: the proteases of the apoptotic pathway. Oncogene, 1998. 17(2.5): p. 3237-45.
    3. Earnshaw, W.C., L.M. Martins, and S.H. Kaufmann, Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem, 1999. 68: p. 383-424.
    4. Kohler, C., S. Orrenius, and B. Zhivotovsky, Evaluation of caspase activity in apoptotic cells. J Immunol Methods, 2002. 265(1-2): p. 97-110.
    5. Cohen, G.M., Caspases: the executioners ofapoptosis. Biochem J, 1997. 326 (Pt 1): p. 1-16.
    6. Blatt, N.B. and G.D. Glick, Signaling pathways and effector mechanisms pre-programmed cell death. Bioorg Med Chem, 2001.9(6): p. 1371-84.
    7. Li, P., et al., Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 1997. 91(4): p. 479-89.
    8. Liu, X., et al., Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell, 1996. 86(1): p. 147-57.
    9. Namura, S., et al., Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci, 1998.18(10): p. 3659-68.
    10. Fink, K., et al., Prolonged therapeutic window for ischemic brain damage caused by delayed caspase activation. J Cereb Blood Flow Metab, 1998. 18(10): p. 1071-6.
    11. Yakovlev, A.G., et al., Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury. J Neurosci, 1997. 17(1.9): p. 7415-24.
    12. Chen, J., et al., Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J Neurosci, 1998. 18(13): p. 4914-28.
    13. Ma, J., M. Endres, and M.A. Moskowitz, Synergistic effects of caspase inhibitors and MK-801 in brain injury after transient focal cerebral ischaemia in mice. Br J Pharmacol, 1998.124(4): p. 756-62.
    14. Cheng, Y., et al., Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. J Clin Invest, 1998.101(9): p. 1992-9.
    15. Krajewski, S., et al., Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc Natl Acad Sci U S A, 1999. 96(10): p. 5752-7.
    16. Cande, C., et al., Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria. Biochimie, 2002. 84(2-3): p. 215-22.
    17. Susin, S.A., et al., Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 1999. 397(6718): p. 441-6.
    18. Joza, N., et al., Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature, 2001.410(6828): p. 549-54.
    19. Zhu, C., et al., Involvement of apoptosis-inducing factor in neuronal death after hypoxia-ischemia in the neonatal rat brain. J Neurochem, 2003.86(2): p. 306-17.
    20. Klein, J.A., et al., The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature, 2002. 419(6905): p. 367-74.
    21. Yu, S.W., et al., Mediation of poly(ADP-ribose)polymerase-1-dependent cell death by apoptosis-inducing factor. Science, 2002. 297(5579): p. 259-63.
    22. Cregan, S.P., V.L. Dawson, and R.S. Slack, Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene, 2004. 23(16): p. 2785-96.
    23. Vahsen, N., et al., AIF deficiency compromises oxidative phosphorylation. Embo J, 2004. 23(23): p. 4679-89.
    24. Daugas, E., et al., Mitochondrio-nucIear translocation of AIF in apoptosis and necrosis. Faseb J, 2000. 14(5): p. 729-39.
    25. Susin, S.A., et al., Two distinct pathways leading to nuclear apoptosis. J Exp Med, 2000. 192(4): p. 571-80.
    26. Plesnila, N., et al., Nuclear translocation of apoptosis-inducing factor after focal cerebral ischemia. J Cereb Blood Flow Metab, 2004. 24(4): p. 458-66.
    27. Cao, G., et al., Translocation of apoptosis-inducing factor in vulnerable neurons after transient cerebral ischemia and in neuronal cultures after oxygen-glucose deprivation. J Cereb Blood Flow Metab, 2003. 23(10): p. 1137-50.
    28. Yuan, C.Q., Y.N. Li, and X.F. Zhang, Down-regulation of apoptosis-inducing factor protein by RNA interference inhibits UVA-induced cell death. Biochem Biophys Res Commun, 2004. 317(4): p. 1108-13.
    29. Zhang, X., et al., Intranuclear localization of apoptosis-inducing factor (AIF) and large scale DNA fragmentation after traumatic brain injury in rats and in neuronal cultures exposed to peroxynitrite. J Neurochem, 2002. 82(1): p. 181-91.
    30. Zhao, H., et al., Bcl-2 transfection via herpes simplex virus blocks apoptosis-inducing factor translocation after focal ischemia in the rat. J Cereb Blood Flow Metab, 2004. 24(6): p. 681-92.
    31. Cai, J., J. Yang, and D.P. Jones, Mitochondrial control of apoptosis: the role of cytochrome c. Biochim Biophys Acta, 1998. 1366(1-2): p. 139-49.
    32. Zamzami, N., et al., Bid acts on the permeability transition pore complex to induce apoptosis. Oncogene, 2000. 19(54): p. 6342-50.
    33. Kluck, R.M., et al., Cytochrome c activation of CPP32-like proteolysis plays a critical role in a Xenopus ceil-free apoptosis system. Embo J, 1997. 16(15): p.4639-49.
    34. Loeffler, M., et al., Dominant cell death induction by extramitochondrially targeted apoptosis-inducing factor. Faseb J, 2001.15(3): p. 758-67.
    35. van Loo, G., et al., The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ, 2002. 9(10): p. 1031-42.
    36. Arnoult, D., et al., Mitochondrial release of apoptosis-inducing factor occurs downstream of cytochrome c release in response to several proapoptotic stimuli. J Cell Biol, 2002. 159(6): p. 923-9.
    37. Ravagnan, L., et al., Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol, 2001.3(9): p. 839-43.
    38. Saleh, A., et al., Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol, 2000. 2(8): p. 476-83.
    39. Furchgott, R.F. and J.V. Zawadzki, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 1980. 288(5789): p. 373-6.
    40. Dawson, V.L. and T.M. Dawson, Nitric oxide in neurodegeneration. Prog Brain Res, 1998. 118: p. 215-29.
    41. Zhang, J. and S.H. Snyder, Nitric oxide in the nervous system. Annu Rev Pharmacol Toxicol, 1995.35: p. 213-33.
    42. De Vente, J., et al., Distribution of nitric oxide synthase and nitric oxide-receptive, cyclic GMP-producing structures in the rat brain. Neuroscience, 1998. 87(1): p. 207-41.
    43. Iadecola, C., et al., Inducible nitric oxide synthase gene expression in brain following cerebral ischemia. J Cereb Blood Flow Metab, 1995. 15(3): p. 378-84.
    44. Vannucci, R.C., Experimental biology of cerebral hypoxia-ischemia: relation toperinatal brain damage. Pediatr Res, 1990. 27(4 Pt 1): p. 317-26.
    45. Cheng, A., et al., p38 MAP kinase mediates nitric oxide-induced apoptosis of neuralprogenitor cells. J Biol Chem, 2001.276(46): p. 43320-7.
    46. Volbracht, C., et al., Calpain inhibitors prevent nitric oxide-triggered excitotoxic apoptosis. Neuroreport, 2001.12(17): p. 3645-8.
    47. Crow, J.P. and J.S. Beckman, The role of peroxynitrite in nitric oxide-mediated toxicity.Curr Top Microbiol Immunol, 1995. 196: p. 57-73.
    48. Malinski, T., et al., Nitric oxide measured by a porphyrinic microsensor in rat brain after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab, 1993.13(3): p. 355-8.
    49. Kader, A., et al., Nitric oxide production during focal cerebral ischemia in rats. Stroke, 1993.24(11): p. 1709-16.
    50. Zhang, F., J.G. White, and C. Iadecola, Nitric oxide donors increase blood flow and reduce brain damage in focal ischemia: evidence that nitric oxide is beneficial in the early stages of cerebral ischemia. J Cereb Blood Flow Metab, 1994. 14(2): p. 217-26.
    51. De Alba, J., et al., Down-regulation of neuronal nitric oxide synthase by nitric oxide after oxygen-glucose deprivation in rat forebrain slices. J Neurochem, 1999.72(1): p. 248-54.
    52. Chabrier, P.E., et al., BN 80933, a dual inhibitor of neuronal nitric oxide synthase and lipid peroxidation: a promising neuroprotective strategy. Proc Natl Acad Sci U S A, 1999. 96(19): p. 10824-9.
    53. O'Neill, M.J., et al., ARL 17477, a selective nitric oxide synthase inhibitor, with neuroprotective effects in animal models of global and focal cerebral ischaemia. Brain Res. 2000. 871(2): p. 234-44.
    54. Goyagi, T., et al, Neuroprotective effect of sigma(1)-receptor ligand 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP) is linked to reduced neuronal nitric oxide production. Stroke, 2001.32(7): p. 1613-20.
    55. Huang, Z., et al., Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science, 1994. 265(5180): p. 1883-5.
    56. Ferriero, D.M., et al., Neonatal mice lacking neuronal nitric oxide synthase are less vulnerable to hypoxic-ischemic injury. Neurobiol Dis, 1996. 3(1): p. 64-71.
    57. Nathan, C., Inducible nitric oxide synthase: regulation subserves function. Curr Top Microbiol Immunol, 1995.196: p. 1-4.
    58. Iadecola, C., F. Zhang, and X. Xu, Inhibition of inducible nitric oxide synthase ameliorates cerebral ischemic damage. Am J Physiol, 1995. 268(1 Pt 2): p. R286-92.
    59. Parmentier, S., et al., Selective inhibition of inducible nitric oxide synthase prevents ischaemic brain injury. Br J Pharmacol, 1999. 127(2): p. 546-52.
    60. Iadecola, C. and M.E. Ross, Molecular pathology of cerebral ischemia: delayed gene expression and strategies for neuroprotection. Ann N Y Acad Sci, 1997. 835: p. 203-17.
    61. Nagayama, M., F. Zhang, and C. Iadecola, Delayed treatment with aminoguanidine decreases focal cerebral ischemic damage and enhances neurologic recovery in rats. J Cereb Blood Flow Metab, 1998. 18(10): p. 1107-13.
    62. Iadecola, C., et al., Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J Neurosci, 1997. 17(23): p. 9157-64.
    63. Barnea, A. and F. Nottebohm, Seasonal recruitment of hippocampal neurons in adult free-ranging black-capped chickadees. Proc Natl Acad Sci U S A, 1994. 91(23): p. 11217-21.
    64. Gould, E., et al., Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci, 1999. 2(3): p. 260-5.
    65. Kempermann, G., H.G. Kuhn, and F.H. Gage, More hippocampal neurons in adult mice living in an enriched environment. Nature, 1997. 386(6624): p. 493-5.
    66. van Praag, H., et al., Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A, 1999. 96(23): p. 13427-31.
    67. van Praag, H., G. Kempermann, and F.H. Gage, Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci, 1999. 2(3): p. 266-70.
    68. Gould, E., et al., Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci U S A, 1998. 95(6): p. 3168-71.
    69. Eriksson, P.S., et al., Neurogenesis in the adult human hippocampus. Nat Med, 1998.4(11): p. 1313-7.
    70. Gage, F.H., Mammalian neural stem cells. Science, 2000. 287(5457): p. 1433-8.
    71. Morshead, C.M. and D. van der Kooy, Disguising adult neural stem cells. Curr Opin Neurobiol, 2004. 14(1): p. 125-31.
    72. Lie, D.C., et al., Neurogenesis in the adult brain: new strategies for central nervous system diseases. Annu Rev Pharmacol Toxicol, 2004. 44: p. 399-421.
    73. Palmer, T.D., A.R. Willhoite, and F.H. Gage, Vascular niche for adult hippocampal neurogenesis. J Comp Neurol, 2000. 425(4): p. 479-94.
    74. Cameron, H.A., et al., Differentiation of newly born neurons and glia in the dentate gyms of the adult rat. Neuroscience, 1993. 56(2): p. 337-44.
    75. Hastings, N.B. and E. Gould, Rapid extension of axons into the CA3 region by adult-generated granule cells. J Comp Neurol, 1999. 413(1): p. 146-54.
    76. Markakis, E.A. and F.H. Gage, Adult-generated neurons in the dentate gyrus send axonal projections to field CA3 and are surrounded by synaptic vesicles. J Comp Neurol, 1999. 406(4): p. 449-60.
    77. Jessberger, S. and G. Kempermann, Adult-born hippocampal neurons mature into activity-dependent responsiveness. Eur J Neurosci, 2003. 18(10): p. 2707-12.
    78. Schmidt-Hieber, C, P. Jonas, and J. Bischofberger, Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature, 2004. 429(6988): p. 184-7.
    79. Deisseroth, K., et al., Excitation-neurogenesis coupling in adult neural stem/progenitor cells. Neuron, 2004. 42(4): p. 535-52.
    80. Doetsch, F. and R. Hen, Young and excitable: the function of new neurons in the adult mammalian brain. Curr Opin Neurobiol, 2005.15(1): p. 121-8.
    81. Kempermann, G., L. Wiskott, and F.H. Gage, Functional significance of adult neurogenesis. Curr Opin Neurobiol, 2004.14(2): p. 186-91.
    82. Nilsson, M., et al., Enriched environment increases neurogenesis in the adult rat dentate gyrus and improves spatial memory. J Neurobiol, 1999. 39(4): p. 569-78.
    83. Risedal, A., et al., Environmental influences on functional outcome after a cortical infarct in the rat. Brain Res Bull, 2002. 58(3): p. 315-21.
    84. Bruel-Jungerman, E., S. Laroche, and C. Rampon, New neurons in the dentate gyrus are involved in the expression of enhanced long-term memory following environmental enrichment. Eur J Neurosci, 2005.21(2): p. 513-21.
    85. Shors, T.J., et al., Neurogenesis in the adult is involved in the formation of trace memories. Nature, 2001. 410(6826): p. 372-6.
    86. Reynolds, B.A. and S. Weiss, Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 1992. 255(5052): p. 1707-10.
    87. Sanai, N., et al, Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature, 2004. 427(6976): p. 740-4.
    88. Alvarez-Buylla, A. and D.A. Lim, For the long run: maintaining germinal niches in the adult brain. Neuron, 2004. 41(5): p. 683-6.
    89. Lois, C. and A. Alvarez-Buylla, Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci U S A, 1993. 90(5): p. 2074-7.
    90. Kornack, D.R. and P. Rakic, The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proc Natl Acad Sci U S A, 2001. 98(8): p. 4752-7.
    91. Winner, B., et al., Long-term survival and cell death of newly generated neurons in the adult rat olfactory bulb. Eur J Neurosci, 2002. 16(9): p. 1681-9.
    92. Petreanu, L. and A. Alvarez-Buylla, Maturation and death of adult-born olfactory bulb granule neurons: role of olfaction. J Neurosci, 2002. 22(14): p. 6106-13.
    93. Carlen, M., et al., Functional integration of adult-born neurons. Curr Biol, 2002.12(7): p. 606-8.
    94. Carleton, A., et al., Becoming a new neuron in the adult olfactory bulb. Nat Neurosci, 2003. 6(5): p. 507-18.
    95. Belluzzi, O., et al., Electrophysiological differentiation of new neurons in the olfactory bulb. J Neurosci, 2003.23(32): p. 10411-8.
    96. Rochefort, C, et al., Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J Neurosci, 2002. 22(7): p. 2679-89.
    97. Corotto, F.S., J.R. Henegar, and J.A. Maruniak, Odor deprivation leads to reduced neurogenesis and reduced neuronal survival in the olfactory bulb of the adult mouse. Neuroscience, 1994. 61(4): p. 739-44.
    98. Zaidi, A.U., et al., New oligodendrocytes are generated after neonatal hypoxic-ischemic brain injury in rodents. Glia, 2004. 46(4): p. 380-90.
    99. Aarum, J., et al., Migration and differentiation of neural precursor cells can be directed by microglia. Proc Natl Acad Sci U S A, 2003. 100(26): p. 15983-8.
    100. Kuhn, H.G., H. Dickinson-Anson, and F.H. Gage, Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci, 1996.16(6): p. 2027-33.
    101. Gray, W.P., K. May, and L.E. Sundstrom, Seizure induced dentate neurogenesis does not diminish with age in rats. Neurosci Lett, 2002. 330(3): p. 235-8.
    102. Bondolfi, L., et al., Impact of age and caloric restriction on neurogenesis in the dentate gyrus of C57BL/6 mice. Neurobiol Aging, 2004.25(3): p. 333-40.
    103. Jin, K., et al., Ischemia-induced neurogenesis is preserved but reduced in the aged rodent brain. Aging Cell, 2004.3(6): p. 373-7.
    104. Sun, D., et al., Cell proliferation and neuronal differentiation in the dentate gyrus in juvenile and adult rats following traumatic brain injury. J Neurotrauma, 2005. 22(1): p. 95-105.
    105. Hayashi, T., et al., Neural precursor cells division and migration in neonatal rat brain after ischemic/hypoxic injury. Brain Res, 2005.1038(1): p. 41-9.
    106. Plane, J.M., et al., Neonatal hypoxic-ischemic injury increases forebrain subventricular zone neurogenesis in the mouse. Neurobiol Dis, 2004.16(3): p. 585-95.
    107. Ong, J., et al., Hypoxic-ischemic injury stimulates subventricular zone proliferation and neurogenesis in the neonatal rat. Pediatr Res, 2005. 58(3): p. 600-6.
    108. Goings, G.E., B.L. Wibisono, and F.G. Szele, Cerebral cortex lesions decrease the number of bromodeoxyuridine-positive subventricular zone cells in mice. Neurosci Lett, 2002. 329(2): p. 161-4.
    109. Towfighi, J., et al., Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxia-ischemia: a light microscopic study. Brain Res Dev Brain Res, 1997.100(2): p. 149-60.
    110. Bartley, J., et al., BrdU-positive cells in the neonatal mouse hippocampus following hypoxic-ischemic brain injury. BMC Neurosci, 2005. 6(1): p. 15.
    111. Gould, E. and P. Tanapat, Lesion-induced proliferation of neuronal progenitors in the dentate gyrus of the adult rat. Neuroscience, 1997. 80(2): p. 427-36.
    112. Liu, J., et al., Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci, 1998.18(19): p. 7768-78.
    113. Dash, P.K., S.A. Mach, and A.N. Moore, Enhanced neurogenesis in the rodent hippocampus following traumatic brain injury. J Neurosci Res, 2001. 63(4): p. 313-9.
    114. Arvidsson, A., et al., Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med, 2002. 8(9): p. 963-70.
    115. Parent, J.M., et al., Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol, 2002. 52(6): p. 802-13.
    116. Ota, A., et al., Hypoxic-ischemic tolerance induced by hyperthermic pretreatment in newborn rats. J Soc Gynecol Investig, 2000. 7(2): p. 102-5.
    117. Snyder, E.Y. and K.I. Park, Limitations in brain repair. Nat Med, 2002. 8(9): p. 928-30.
    118. Kornack, D.R. and P. Rakic, Cell proliferation without neurogenesis in adult primate neocortex. Science, 2001. 294(5549): p. 2127-30.
    119. Frielingsdorf, H., et al., No evidence for new dopaminergic neurons in the adult mammalian substantia nigra. Proc Natl Acad Sci U S A, 2004.101(27): p. 10177-82.
    120. Gould, E., et al., Neurogenesis in the neocortex of adult primates. Science, 1999.286(5439): p. 548-52.
    121. Zhao, M., et al., Evidence for neurogenesis in the adult mammalian substantia nigra. Proc Natl Acad Sci U S A, 2003.100(13): p. 7925-30.
    122. Dayer, A.G., et al., New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. J Cell Biol, 2005.168(3): p. 415-27.
    123. Ikeda, T., et al., Limited differentiation to neurons and astroglia from neural stem cells in the cortex and striatum after ischemia/hypoxia in the neonatal rat brain. Am J Obstet Gynecol, 2005.193(3 Pt 1): p. 849-56.
    124. Nacher, J., et al., NMDA receptor antagonist treatment induces a long-lasting increase in the number of proliferating cells, PSA-NCAM-immunoreactive granule neurons and radial glia in the adult rat dentate gyrus. Eur J Neurosci, 2001.13(3): p. 512-20.
    125. Cameron, H.A., P. Tanapat, and E. Gould, Adrenal steroids and N-methyl-D-aspartate receptor activation regulate neurogenesis in the dentate gyrus of adult rats through a common pathway. Neuroscience, 1998. 82(2): p. 349-54.
    126. Nacher, J., et al., NMDA receptor antagonist treatment increases the production of new neurons in the aged rat hippocampus. Neurobiol Aging, 2003. 24(2): p. 273-84.
    127. Kuhn, H.G., et al., Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci, 1997. 17(15): p. 5820-9.
    128. Ganat, Y., et al., Chronic hypoxia up-regulates fibroblast growth factor ligands in the perinatal brain and induces fibroblast growth factor-responsive radial glial cells in the sub-ependymal zone. Neuroscience, 2002. 112(4): p. 977-91.
    129. Jin, K., et al., Heparin-binding epidermal growth factor-like growth factor: hypoxia-inducible expression in vitro and stimulation of neurogenesis in vitro and in vivo. J Neurosci, 2002. 22(13): p. 5365-73.
    130. Tanaka, N., et al., Heparin-binding epidermal growth factor-like growth factor mRNA expression in neonatal rat brain with hypoxic/ischemic injury. Brain Res, 1999. 827(1-2): p. 130-8.
    131. Jin, K., et al., Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci U S A, 2001.98(8): p. 4710-5.
    132. Wagner, J.P., I.B. Black, and E. DiCicco-Bloom, Stimulation of neonatal and adult brain neurogenesis by subcutaneous injection of basic fibroblast growth factor. J Neurosci, 1999. 19(14): p. 6006-16.
    133. Yoshimura, S., et al., FGF-2 regulation of neurogenesis in adult hippocampus after brain injury. Proc Natl Acad Sci U S A, 2001.98(10): p. 5874-9.
    134. Yoshirnura, S., et al., FGF-2 regulates neurogenesis and degeneration in the dentate gyrus after traumatic brain injury in mice. J Clin Invest, 2003. 112(8): p. 1202-10.
    135. Pencea, V., et al., Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci, 2001.21(17): p. 6706-17.
    136. Sun, Y., et al., VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest, 2003. 111(12): p. 1843-51.
    137. Tong, L., et al., Effects of exercise on gene-expression profile in the rat hippocampus. Neurobiol Dis, 2001.8(6): p. 1046-56.
    138. Neeper, S.A., et al., Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res, 1996. 726(1-2): p. 49-56.
    139. Gomez-Pinilla, F., L. Dao, and V. So, Physical exercise induces FGF-2 and its mRNA in the hippocampus. Brain Res, 1997. 764(1-2): p. 1-8.
    140. Tanapat, P., et al., Estrogen stimulates a transient increase in the number of new neurons in the dentate gyrus of the adult female rat. J Neurosci, 1999. 19(14): p. 5792-801.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700