TENS及COFFEE OR CAFFEINE对DCP干预机制的基础实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病是一种常见的内分泌代谢疾病,糖尿病性神经病变是糖尿病慢性并发症中发病率最高的一种,糖尿病膀胱病( diabetic cystopathy, DCP)是糖尿病外周神经病变的一种,属于神经源性膀胱尿道功能障碍(Neuropathic dysfunction of bladder,NB)。作为糖尿病引起的泌尿系统并发症,其发病率占糖尿病患者的50%左右。临床研究显示即使对于那些血糖控制稳定的患者,仍有25%的DCP发病率。
     迄今DCP的确切发病机制尚不完全清楚,现研究认为主要是:①糖尿病引起的外周和自主神经病变,②同时还存在着肌源性异常等其它因素。
     寻找有效的方法,尽早积极预防和治疗糖尿病膀胱病变,改善下尿路症状,是糖尿病患者综合治疗及提高生活质量的重要组成部分。目前糖尿病神经病变的治疗主要集中在药物治疗,药物治疗虽有一定效果,但副作用不可忽视。另外,有创治疗包括间歇清洁导尿、膀胱造瘘术、尿道膀胱颈切开等方法,可缓解大量剩余尿的问题,改善剩余尿造成的尿路感染和上尿路损伤,但治标不治本,且处理不当易招致进一步的感染。如何找到有效、安全的预防、治疗DCP病变,解除DCP逼尿肌无力、剩余尿多,一直是人们在探索的问题。早期积极预防DCP的发生和发展,是糖尿病患者综合治疗及提高生活质量的关键所在。
     使用体外电脉冲刺激(Transcutaneous Electrical Nerve Stimulation ,TENS)技术治疗DCP报道甚少,且尚无其尿动力学及机制方面的研究。另研究发现常饮咖啡可降低2型糖尿病的发病率,咖啡因对糖尿病膀胱病的作用如何?有待观察。
     本研究通过制备糖尿病膀胱的大鼠模型,采用体外脉冲电刺激(TENS)的方法,及采用coffee or caffeine对DCP大鼠给予咖啡因水溶液(10mg·kg-1·d-1)及雀巢咖啡水溶液经口灌胃干预治疗,观察对糖尿病膀胱大鼠的排尿功能的影响,进一步通过尿动力学,细胞生物学,生物化学及分子生物学研究,从神经源性和肌源性两方面探讨TENS及coffee or caffeine对于糖尿病膀胱的作用机制及疗效。对今后临床应用TENS技术(经体表)治疗糖尿病膀胱病病变的患者及通过每日饮用适量咖啡来阻止糖尿病膀胱病病变的进一步发展,减少膀胱剩余尿(BRU),提供帮助。这将是简便而经济的方法,可取得较好的经济效益和社会效益。
     第一部分DCP动物模型的建立和尿动力学及病理组织学观察
     目的:掌握建立DCP大鼠模型的方法,为下一步干预性研究打下基础。观察DCP的尿动力学及病理学改变,初步探讨发病机制及病理演绎过程,为诊治提供依据。方法:66只SD雄性大鼠随机分为2组,即正常对照组(NC组)30只,糖尿病组(DM组) 36只、对36只8周龄的SD雄性大鼠腹腔注射STZ(60 mg/Kg)的柠檬酸缓冲液48小时后,链脲佐菌素腹腔注射诱导糖尿病大鼠模型,以连续3次测空腹血糖>12mmol·L-1为糖尿病模型建立成功。饲养60天后,进行膀胱静态压、最大膀胱容量、最大膀胱收缩压等尿动力学测定。然后行膀胱湿重、膀胱壁厚度及光镜、电镜的病理学等项观察。
     结果:DM组36只SD雄性大鼠48小时后,有33只大鼠空腹测尾静脉血糖>12mmol·L-1,糖尿病模型成功率达91.67%,至实验60天糖尿病大鼠总共死亡9只,存活率达72.73%。60天后,DCP鼠膀胱静态压0.95±0.10 kpa,对照组为0.60±0.03 kpa (P<0.05);DCP鼠最大膀胱容量3.49±0.40ml,而对照组为1.82±0.12ml(P<0.01);DCP鼠最大膀胱收缩压3.09±0.10 kpa,对照组为4.91±0.30 kpa(P<0.01);DCP鼠膀胱顺应性(ml/kpa)1.39±0.11 ml/kpa,对照组为0.68±0.07 ml/kpa(P<0.01);与对照组鼠相比,DCP鼠湿重,膀胱壁厚度均增加(P<0.05);DCP鼠逼尿肌边缘有空泡样变性,肌细胞核核固缩、细胞连接纤维化,成纤维细胞变性及胶原纤维排列紊乱。
     结论:DCP大鼠60天已有膀胱的动力学及病理学改变,提示尽管一些DM患者可无明显的排尿障碍,但客观的病理组织及尿动力学已有改变,建议对DCP患者应给予干预,控制病情的进一步恶化。
     第二部分TENS与非TENS对DCP干预的对照基础实验研究
     目的:通过制作的糖尿病膀胱大鼠模型,探讨体外电刺激的方法对糖尿病膀胱大鼠的排尿功能的影响及作用机理。
     方法:将SD雄性大鼠随机分为正常对照组(NC组)14只、糖尿病对照组(DM组)和糖尿病电刺激组(DM治疗组),后二组各18只,运用腹腔内注射STZ的方法制作糖尿病膀胱大鼠模型;造模成功后第10周起,DM治疗组予体外电刺激治疗,刺激参数强度31 V,密度31 Hz(二对电极分别置于膀胱体表投影区和骶尾关节上方0.5厘米处),其它二组均不予电刺激,持续治疗3周后(造模成功后第13周起)观察比较各组间尿动力学指标改变(膀胱湿重,膀胱阈容量,排尿后剩余尿量,剩余尿比值,排尿时最大膀胱压力),逼尿肌肌条收缩功能及膀胱组织光镜及超微结构的变化,通过逆转录聚合酶链式反应(RT-PCR)半定量测定背根神经节(DRG)的降钙素基因相关肽(CGRP)的mRNA含量,运用Western-blot方法检测各组大鼠膀胱壁及DRG的CGRP蛋白的表达量的变化。
     结果:DM治疗组大鼠与DM组大鼠相比,其膀胱收缩力增强(DM组:19.49±6.51 mmHg;DMT组:30.0±3.84 mmHg)剩余尿量比(R%)有所下降(DM组:42.83±8.71;DMT组:32.82±6.72 ),膀胱排尿阈容量减少(DM组:1.4±0.40ml;DMT组:0.93±0.26 ml ),各组间其差异均有统计学意义;组织病理学显示DM组大鼠的逼尿肌肌细胞代偿性肥大,胞内线粒体肿胀,细胞间质与胶原纤维增生明显;DM治疗组大鼠的逼尿肌肌细胞肥大明显减轻,胞内线粒体无明显肿胀,细胞间质及胶原纤维增生不明显。DM治疗组大鼠膀胱壁及背根神经节(DRG)的CGRP蛋白表达含量较DM组明显增加,DM治疗组大鼠RT-PCR结果显示其DRG的CGRP的mRNA含量也较DM组明显增多。
     结论:体外电刺激治疗可以①促进糖尿病膀胱大鼠膀胱壁和DRG的CGRP蛋白的合成,并有效的运输至膀胱壁发挥作用,改善膀胱充盈感觉功能,恢复排尿功能的始动因素;②修复胞浆内线粒体等细胞器的正常结构和功能,调节胞内钙离子的浓度,从而增强逼尿肌收缩力;③促进NGF因子,或神经损伤/再生长相关基因的表达,帮助完成神经的修复过程。
     第三部分coffee or caffeine对DCP作用的基础实验研究
     目的:通过建立的糖尿病大鼠动物模型,观察糖尿病大鼠膀胱的形态、功能及组织病理学变化,探讨咖啡与咖啡因对糖尿病大鼠膀胱功能障碍的影响及可能的作用机制。
     方法:75只SD雄性大鼠随机分为4组,即正常对照组(NC组)15只,糖尿病组(DM组)、糖尿病咖啡治疗组(Coffee组)及糖尿病咖啡因治疗组(Caffeine组)每组各20只。链脲佐菌素腹腔注射诱导糖尿病大鼠模型,以连续3次测空腹血糖>12mmol·L-1为糖尿病模型建立成功。Caffeine组大鼠给予咖啡因水溶液(10mg·kg-1·d-1)经口灌胃,Coffee组大鼠给予雀巢咖啡水溶液(286mg·kg-1·d-1)经口灌胃,其余两组以等量蒸馏水每日经口灌胃,连续7周。7周后通过尿动力学检测、离体肌条的收缩实验、放免测定及组织病理学检查等技术,测定并比较各组大鼠的膀胱湿重量、膀胱阈容量、相对排尿量(V%)、排尿后的剩余尿量、膀胱环磷酸腺苷(cAMP)含量、逼尿肌肌条的收缩力、背根神经节(DRG)的CGRP蛋白表达、膀胱组织光镜及超微结构的变化。
     结果:7周后相对于NC组大鼠,DM组大鼠的膀胱湿重量、膀胱阈容量及排尿后的剩余尿量明显增加(P<0.01),而V%与膀胱cAMP含量显著减少(P<0.01)。与DM组相比,Coffee组或Caffeine组糖尿病大鼠的膀胱湿重量、膀胱阈容量及排尿后的剩余尿量显著减少(P<0.05),V%与膀胱cAMP含量明显升高(P<0.05)。肌条收缩实验显示与NC组相比,DM组大鼠早期逼尿肌肌条的收缩力已明显改变(P<0.05);在Coffee组或Caffeine组,糖尿病大鼠逼尿肌肌条的收缩性明显改善(P<0.05)。组织病理学研究显示DM组大鼠的逼尿肌肌细胞代偿性肥大,胞内肌浆网代偿性增多,线粒体肿胀,细胞间质与胶原纤维增生明显;在Coffee组或Caffeine组,糖尿病大鼠的逼尿肌肌细胞肥大明显减轻,胞内肌浆网明显减少,线粒体无肿胀,细胞间质与胶原纤维增生不明显。
     结论:咖啡与咖啡因的治疗能改善糖尿病大鼠膀胱病变,咖啡可能通过其中的咖啡因可以增加糖尿病膀胱大鼠膀胱壁和DRG的CGRP蛋白、CGRP的mRNA的表达、增加逼尿肌收缩力及膀胱的充盈感觉功能。
     其机制可能是:⑴升高膀胱cAMP的含量,调节神经递质与受体作用的信号传导通路;⑵改善膀胱充盈感觉,恢复排尿反射;⑶维护胞内肌浆网、线粒体等细胞器的超微结构,调控胞内钙离子的浓度从而增强膀胱逼尿肌的收缩性;⑷增加糖尿病膀胱大鼠膀胱壁和DRG的CGRP蛋白、CGRP的mRNA的表达、增加逼尿肌收缩力及膀胱的充盈感觉功能。
Diabetes mellitus is a common endocrine and metabolic disease. The diabetic neuropathy is one of the most common chronic complications of the diabetes. Diabetic cystopathy (DCP) is one of diabetic peripheral nerve pathological changes, belonging to neuropathic dysfunction of bladder (NB).Being one of the complications of urinary system caused by diabetes, its incidence occupies about 50% of all diabetic patients. Clinical researches illustrate that even if those whose blood glucose is controlled steadily, the incidence of DCP is still 25%.
     The definite pathogenesis of DCP is not completely known until now. Present research considers that the pathogenesis principally concludes two aspects: peripheral and autonomic nerve pathological changes, myopathic abnormal factors and so on.
     To seek effective methods, to prevent actively as early as possible, and to treat diabetic cystopathy pathological changes, to improve lower urinary tract symptom are important components for diabetic patients combined treatment and to raise quality of life. At present therapy of diabetic cystopathy is mainly drug therapy. Drug therapy has some effect, but side effect should not be ignored. Invasive treatment contains intermittent clean catheterization, cystostomy, transurethral resection bladder neck, and they can relieve much residual urine. Surgical invasive treatment can relieve urinary tract infection and upper urinary tract damage, but it cannot resolve fundamental problem. It may cause further infection if usage is incorrectness. How to find an effective and safe method to prevent and treat DCP pathological changes, to relieve detrusor lacking strength and much residual urine is a problem people have being explored. To prevent the DCP develops in early stage is the key to combined modality therapy and improve quality of life to diabetic patients.
     The reports of using Transcutaneous Electrical Nerve Stimulation(TENS) are few, and there are no researches for urodynamics and pathogenesis. Another research discovers that frequent drinking coffee can decrease the incidence of 2-diabetes.The effect of coffee for DCP is still unknown.
     This research is to investigate the effects of TENS on the urinary bladder voiding dysfunction in diabetic cystopathy rats by SD rat model of diabetic cystopathy rat was established. And using coffee or caffeine to perfuse diabetic cystopathy rat bladder with nasogastric tube caffeine aqueous solution(10mg·kg-1·d-1)and Nestle coffee aqueous solution. Through urodynamics, cytobiology, biochemistry and molecular biology, investigating pathogenesis and effect that TENS and coffee or caffeine have on DCP in neuropathic and myopathic aspects. It is an simple, convenient and economical way for diabetic patients to apply TENS technology and drink proper coffee or caffeine every day. It would have a great significance in economic benefit and social benefit.
     PartⅠⅠ:Urodynamics and pathology study in diabetic cystopathy rat Objective:To observe the abnormalities of urodynamics and histopathology in the early stage of DCP. To find a relationship between the changes in the bladder function and detrusor structure and study the onset mechanism and pathology procedure in order to provide scientific bases for early stage diagnosis and treatment.
     Materials and Method:66 Sprague-Dawley male rats were randomly divided into 2 groups:NC group (normal control, n=30), DM group (diabetes mellitus, n=36),. Diabetic rat model was induced by injection of streptozotocin(STZ)into peritoneal cavity. Diabetic rats were successfully accepted as diabetes by measuring fasting serum glucose concentration more than 12mmol·L-1 continually three times. In both group: the bladder resting pressure, the bladder maximum capacity, the maximum bladder pressure and bladder compliance were performed. The bladder weights were taken, bladder wall thicknesses were measured and the histopathologic structures of bladder walls were observed by optical and electric microscopy.
     Results: In the diabetic rats, the the maximum bladder capacity (P<0.01), compliance (P<0.05) and resting pressure (P<0.01) were increased, however the maximum bladder pressure decreased compared to the control group (P<0.01). The weight of diabetic rat bladder was increased compared to the control bladders (P<0.05). In the diabetic rats, not only the total bladder wall thickness was greater but also the muscle bundles appeared to be increased in size. In contrast to the control group, the diabetes rats showed in the detrusor cell obvious karyopyknosis, a number of compact bodies decreased and cell junction fibrosis between the detrusor cells, fibroblast degeneration and collagen fibers array disorders.
     Conclusions: In this study, the urodynamics in the diabetic bladders showed significant differences compared to the normal bladders. The detrusor microstructure showed to be abnormal in the early stage of diabetes. It is suggested that the bladder function is impaired obviously in the early stage of diabetes. The result of the study can be helpfully to fumble diabetic progress of bladder dysfunction in patient and therapeutic results.
     PartⅡ:Effects of TENS on urinary blaader voiding dysfunction in diabetic cystopathy rats
     Objective:To investigate the effects of Transcutaneous Electrical Nerve Stimulation (TENS) on the urinary bladder voiding dysfunction in diabetic cystopathy rats.
     Methods:SD rat model of diabetic cystopathy rat was established by the injection of STZ in abdominal cavity. The rats were randomized into the DM ES group(DM with electrical stimulation,n=18), DM(diabetes mellitus,n=18) group and normal control group(n=14). TENS was performed on rats in the DM ES group in the 10th week after the establishment of diabetic rats model (stimulation parameter: intensity--31V, density—31Hz;two pairs of electrode was place on the projective area on the abdomen of the bladder respectively) , but those in the control group underwent shamoperation . After the stimulation was continuing for 3 weeks, The bladder wet weight, volume threshold for micturition, post-voided residual volume, bladder residual volume/bladder capacity (R%),the max micturition pressure, the changes of the detrusor strip contractility and bladder muscle ultrastructure were detected . The expression of CGRP mRNA in each rats’DRG was measured by RT-PCR,The expression levels of CGRP of Bladder and DRG were detected by western blot.
     Results: Compared with DM group , the R% and volume threshold for micturation were significantly reduced while the contractility of the detrusor muscle strip were significantly increased in DM ES group after electrical stimulation. Histopathological studies showed that the detrusor cells expressed compensatively hypertrophy, intracellular collagen fibers increased obviously and mitochondra swelled in the bladder muscle unltrastructure of diabetic rats. Electrical stimulation could reduced markedly the compensated hypertrophic cells, intercellular collagen gibers and protect mitochondria in the bladder muscle ultrastructure of DM ES group, The content of the mRNA of CGRP in DRG of DM ES group is enhanced than that in DM group. The expression levels of CGRP of Bladder and DRG in DM ES group is increased than that in DM group.
     Conclusion: These experiment results demonstrate that the TENS can promote the voiding in the DCP(diabetic cystopathy)rats, TENS may enhance the expression levels of CGRP of DRG and bladder in DCP, Which react in the bladder through the effective conduction, improve the bladder fullness, restore the initiate factor of the micturition. Otherwise TENS also ameliorate the configuration and function of ultrastructure, regulate the intracellular Ca2+ concentration to facilitate bladder contractility. TENS maybe accelerate the restoration of the nerver through enhace. The expression levels of NGF or the injury/regeneration related gene.
     PartⅢ:Effects of coffee or caffeine on DCP rats
     Objective: To observe histomorphological abnormality and functional alterations of diabetic cystopathy in the streptozotocin-induced diabetic rat and explore the effects and mechanisms of caffeine and coffee on the diabetic bladder dysfunction Materials and Methods: 75 Sprague-Dawley male rats were randomly divided into 4 groups: NC group (normal control, n=15), DM group (diabetes mellitus, n=20), Coffee group (DM with coffee treatment, n=20) and Caffeine group (DM with caffeine treatment,n=20). Diabetic rat model was induced by injection of streptozotocin(STZ)into peritoneal cavity. Diabetic rats were successfully accepted as diabetes by measuring fasting serum glucose concentration more than 12mmol·L-1 continually three times. Caffeine dissolved in distilled water were administered orally (10mg/kg/day, p.o.) to diabetic rats of caffeine group for 7 weeks. According to this concentration, diabetic rats of coffee group received corresponding coffee treatment by the same method. The rest two groups were given orally the same volume of distilled water every day. After 7 weeks, the bladder wet weight,volume threshold for micturation,post-voided residual volume (PVR), V%(voided volume/bladder capacity),cAMP content of bladder, the changes of the detrusor strip contractility and bladder muscle ultrastructure were measured and compared among the groups by the methods of urodynamics, detrusor strip contractile studies, radioimmunoassay and histopathology.
     Results: After 7 weeks, the bladder wet weight, volume threshold for micturition and PVR were significantly higher in the diabetic rats of DM group than those in NC group(P<0.01), while V% and cAMP content of bladder were significantly lower in DM group(P<0.01). Coffee or caffeine treatment significantly reduced the bladder wet weight, bladder capacity and PVR as well as increased V% and cAMP content of bladder in the diabetic rats(P<0.05). In addition, coffee and caffeine tended to normalize the altered detrusor contractile responses to electrical field stimulation and acetylcholine in the diabetic rats. Histopathological studies showed that the detrusor cells expressed compensatively hypertrophy, intracellular sarcoplasmic reticulum and intercellular collagen fibers increased obviously and mitochondria swelled in the bladder muscle ultrastructure of diabetic rats. Coffee or caffeine treatments reduced significantly the compensated hypertrophic cells, intracellular sarcoplasmic reticulum and intercellular collagen fibers and protect mitochondria in the bladder muscle ultrastructure of diabetic rats.
     Conclusions: These results indicate that the bladder functions were impaired obviously in the early stage of diabetic rats. Caffeine and coffee may have beneficial effects on bladder dysfunction in the early stage of diabetic rats by up-regulation of cAMP content in the lower urinary tract mediating cell-signal transduction pathways, improvement of the bladder fullness sensation, recovery of the micturition reflex and protection of bladder ultrastructure regulating intracellular Ca2+ concentration to potentiate bladder contractility.
引文
[1] Mohan V, Sandeep S, Deepa R,et al. Epidemiology of type 2 diabetes: Indian scenario.Indian J Med Res,2007,125(3): 217-230
    [2]潘长玉.中国糖尿病控制现状———指南与实践的差距.国外医学内分泌学分册,2005,25 (3):174-178
    [3] Brown JS, Wessells H, Chancellor MB,et al. Urologic Complications of Diabetes. Diabetes Care, 2005,28(1):177-183
    [4] Kebapci N, Yenilmez A, Efe B, et al Bladder dysfunction in type 2 diabetic patients.Neurourol Urodyn. 2007;26(6):814-819
    [5] Ziegler D. Diagnosis and treatment of diabetic autonomic neuropathy. Curr Diab Rep. 2001,1(3):216–27.
    [6] Van balden MR, Vergunst H , Bemelmans BL. The use of electrical devices for the treatment of bladder dysfunction :a review of methods .J Urol ,2004,172 (3) :846-851
    [7] Jezernik S, Craggs M, Grill WM,,et al. Electrical stimulation for the treatment of bladder dysfunction:Current statusand and futrue possibilities. Neurological Research,2002,24(5):413-430
    [8] van Dam RM, Feskens EJ. Coffee consumption and risk of type 2 diabetes mellitus. Lancet, 2002,360:1477-8.
    [9] Tuomilehto J, Hu G, Bidel S, et al. Coffee consumption and risk of type 2 diabetes mellitus among middle-aged Finnish men and women. JAMA. 2004,291(10):1213-9.
    [10] Salazar-Martinez E, Willett WC, Ascherio A, et al. Coffee consumption and risk for type 2 diabetes mellitus. Ann Intern Med,2004,140:1-8.
    [11]陈莹,魏尔清.中枢兴奋药咖啡因的再评价.国外医学生理、病理科学与临床分册, 1997,17(4):375-378.
    [12]龚宇,熊恩庆,金锡御等.糖尿病大鼠膀胱病CGRP神经病变的研究.中华泌尿外科杂志,2000,21(10):634-635.
    [13] Fredholm BB, Battig K, Holman J, et al. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev, 1999, 51: 83-133.
    [1] Sasaki K, Yoshimura N, Chancellor MB. Implications of diabetes mellitus in urology. Urol Clin N Am, 2003, 30 (1):1-12
    [2] Zimmet P. Globalization, coca-colonization and the chronic disease epidemic: can the Doomsday scenario be averted. J Intern Med. 2000, 247(3):301-310.
    [3] Daneshgari F, Liu G, Imrey PB . Time dependent changes in diabetic cystopathy in rats include compensated and decompensated bladder function. J Urol, 2006 ,176(1):380-386
    [4] Shotton HR, Clarke S, Lincoln J, The effectiveness of treatments of diabetic autonomic neuropathy is not the same in autonomic nerves supplying different organs.Diabetes, 2003 Jan;52(1):157-64
    [5] Azodzoi KM, Saenz de Tejada I. Diabetic mellitus impairs neurogenic and endothelium-dependent relaxation of rabbit corpus cavernosum smooth muscle. J Urol.1992,148(5):1587-1591
    [6] Cohen RA, Tesfamariam B, Weisbrod R, et al. Adrenergic denervation in rabbits with diabetic mellitus. Am J Physiol . 1990. 259(1 pt 2): 55-59
    [7] Mordes JP, Rossini AA. Animal models of diabetes. Am J Med, 1981, 70:353-360
    [8] Tong YC, Cheng JT , Wan WC. Effects of Ba-Wei-Die-Huang-Wan on the cholinergic function and protein expression of M2 muscarinic receptor of the urinary bladder in diabetic rats. Neurosci Lett, 2002, 330(1):21-24
    [9] Waring JV, Wendt IR. Effects of streptozotocin-induced diabetes mellitus on intracellular calcium and contraction of longitudinal smooth muscle from rat urinary bladder. J Urol, 2000, 163(1):323-330
    [10] Bunker CB, Coldsmith PC, Leslie TA, et al. Calcitonin gene-related peptide,endothelin-1,the cutaneous microvasculature and Raynaud’s phenomenon. Br J Dermatol, 1996, 134:399-406
    [11] Rittenhouse PA, Marchand JE, Chen J, et al. Streptozotocin-induced diabetes is associated with altered expression of peptide-encoding mRNAs in rat sensory neurons. Peptides, 1996, 17:1017-1022
    [12] Ichiyanagi N, Tsujii T, Masuda H, et al. Changed responsiveness of the detrusor in rabbits with alloxan induced hyperglycemia: possible role of 5-hydroxytryptamine for diabetic bladder dysfunction. J Urol, 2002,168(1):303-307
    [13] Frimodt-Moller C. Diabetic cystopathy epidemiology and related disorders. Ann Intern Med. 1980, 92(2):318-321
    [14] Be Zuijen, Martina WF, Levendusky, Et al. Functional response of bladder strips from streplozotocon diabetic rats depends on bladder mass. J Urol, 2003, 169(6): 2397-2401
    [1] Mohan V, Sandeep S, Deepa R,et al. Epidemiology of type 2 diabetes: Indian scenario.Indian J Med Res,2007,125(3): 217-230
    [2]潘长玉.中国糖尿病控制现状———指南与实践的差距.国外医学内分泌学分册,2005,25 (3):174-178
    [3] Brown JS, Wessells H, Chancellor MB,et al. Urologic Complications of Diabetes. Diabetes Care, 2005,28(1):177-183
    [4] Kebapci N, Yenilmez A, Efe B, et al Bladder dysfunction in type 2 diabetic patients.Neurourol Urodyn. 2007;26(6):814-819
    [5] Van balden MR, Vergunst H , Bemelmans BL. The use of electrical devices for the treatment of bladder dysfunction :a review of methods .J Urol ,2004,172 (3) :846-851
    [6] Jezernik S, Craggs M, Grill WM,,et al. Electrical stimulation for the treatment of bladder dysfunction:Current statusand and futrue possibilities. Neurological Research,2002,24(5):413-430
    [7]易超然,卫中庆,邓湘蕾等.咖啡对糖尿病大鼠膀胱功能障碍的影响.东南大学学报(医学版),2005,24(5):300-303
    [8] Daneshgari F, Liu G, Imrey PB . Time dependent changes in diabetic cystopathy in rats include compensated and decompensated bladder function. J Urol, 2006 ,176(1):380-386
    [9] Sasaki K, Yoshimura N, Chancellor MB. Implications of diabetes mellitus in urology, Urol Clin Nam 2003(30):1-12
    [10] Gladh G, Mattsson S, Lindstrom S. Intravesical electrical stimulation in the treatment of micturition dysfunction in children . Neurourol Urodyn, 2003,22(3):233-242
    [11] Lin Z, Forster J, Sarosiek I, et al. Treatment of Diabetic Gastroparesis by High-Frequency Gastric Electrical Stimulation. Diabetes Care, 2004,27(5):1071-1076
    [12] Luheshi GN, Zar MA.Inhibitory effect of streptozotocin-induced diabetes on non-cholinergic motor transmission in rat detrusor and its prevention by sorbinil.Br J Pharmacol, 1990,101(2): 411-417
    [13]龚宇,熊恩庆,金锡御等.糖尿病大鼠膀胱壁CGRP神经改变的研究.中华泌尿外科杂志,2000,21(10):21-22
    [14] Ruiz G, Banos JE. The effect of endoneurial nerve growth factor on calcitonin gene-related peptide expression in primary sensory neurons. Brain Res , 2005,1042(1) : 44-52
    [15] Li XQ , Verge VM , Johnston JM , et al. CGRP peptide and regenerating sensory axons. J Neuropathol ExpNeurol , 2004, 63(10):1092-1103
    [16] McCarthy PW, Lawson SN. Cell type and conduction velocity of rat primary sensory neurons with calcitonin gene-related peptide-like immunoreactivity. Neuro science , 1990,34(3 ): 623-632
    [17] Kashiba H, Ueda Y,Senba E.Coexpression of preprotachykinin-A , alpha-calcitonin gene-related peptide , somatostatin , and neurotrophin receptor family messenger RNAs in rat dorsal root ganglion neurons.Neuroscience,1996,70(1):179-189
    [18]金锡御,宋波等.人民卫生出版社.临床尿动力学,2002:17-23
    [19]郭应禄,杨勇.尿失禁.山东科学技术出版社,2003:334
    [20] Bower.WF,Moore.KH,Adams,RD,et al.A urodynamic study of surface neuromodulation versus sham in detrusor instability and sensory urgency.J Urol,1998,160(6 Pt 1):2133-2136
    [21] Hong CH, Kim JH, Noh JY, et al. Sensory neuronal change after intravesical electrical stimulation in spinailized rat. Yonsei Med J, 2002 ,43(5):652-656
    [22] Zhang SY, Liu G, Wang DL,et al. Changes in SR Ca2+-ATPase activity, Ca2+ release and uptake kinetics of diaphragm muscle after different-frequency chronic electrical stimulation of diaphragmatic nerve. Sheng Li Xue Bao, 2001,53(3):219-223
    [23]Yi CR, Wei ZQ, Deng XL, et al. Effects of coffee and caffeine on bladder dysfunction in streptozotocin-induced diabetic rats. Acta Pharmacol Sin, 2006,27(8):1037-1043
    [24] Boudreau-Larivière C,Jasmin BJ. Calcitonin gene-related peptide decreases expression of acetylcholinesterase in mammalian myotubes.FEBS Lett, 1999, 444 (1):22-26
    [25] Geremia NM, Gordon T, Brushart TM, et al. Electrical stimulation promotes sensory neuron regeneration and growth-associated gene expression. Experimental Neurology, 2007,205 (2):347-359
    [1]张景兰,杨占清. 2型糖尿病危险因素的流行病学研究.实用医药杂志, 2003, 20:386-388.
    [2] Mumtaz FH, Thampson CS, Khan MA, et al. Alterations in the formation of cyclic nucleotides and prostaglandins in the lower urinary tract of the diabetic rabbit. Urol Res, 1999, 27:470-475.
    [3] Sasaki K, Yoshimura N, Chancellor MB. Implications of diabetes mellitus in urology. Urol Clin N Am, 2003, 30:1-12.
    [4] van Dam RM, Feskens EJ. Coffee consumption and risk of type 2 diabetes mellitus. Lancet, 2002, 360:1477-1478.
    [5] Tuomilehto J, Hu G, Bidel S, et al. Coffee consumption and risk of type 2 diabetes mellitus among middle-aged Finnish men and women. JAMA, 2004, 291(10):1213-1219.
    [6] Salazar-Martinez E, Willett WC, Ascherio A, et al. Coffee consumption and risk for type 2 diabetes mellitus. Ann Intern Med, 2004, 140:1-8.
    [7] Isogawa A, Noda M, Takahashi Y,et al. Coffee consumption and risk of type 2 diabetes mellitus. Lancet, 2003, 361(9358):703-704.
    [8] Smith PF, Smith A, Miners J, et al. Report from the expert working group on the safety aspects of dietary caffeine. Australia New Zealand Food Authority, 2000 Jun, 20-23.
    [9]陈莹,魏尔清.中枢兴奋药咖啡因的再评价.国外医学生理、病理科学与临床分册, 1997,17(4):375-378.
    [10]易超然,卫中庆.咖啡因的药理作用与应用.医学研究生学报, 2005, 18: 270-272.
    [11] Zimmet P. Globalization, coca-colonization and the chronic disease epidemic: can the Doomsday scenario be averted?. J Intern Med. 2000, 247(3):301-310.
    [12]李厚达,贾白玲主编.实验动物教程.南京:东南大学出版社, 2001, 141-143.
    [13] Mordes JP, Rossini AA. Animal models of diabetes. Am J Med, 1981, 70:353-360.
    [14] Tong YC, Cheng JT , Wan WC. Effects of Ba-Wei-Die-Huang-Wan on the cholinergic function and protein expression of M2 muscarinic receptor of the urinary bladder in diabetic rats. Neurosci Lett, 2002, 330(1):21-24.
    [15] Waring JV, Wendt IR. Effects of streptozotocin-induced diabetes mellitus on intracellular calcium and contraction of longitudinal smooth muscle from rat urinary bladder. J Urol, 2000, 163(1):323-330.
    [16] Pitre DA, Ma T, Wallace LJ, Bauer JA. Time-dependent urinary bladder remodeling in the streptozotocin-induced diabetic rat model. Acta Diabetol, 2002, 39(1):23-27.
    [17] Watanabe T, Miyagawa I. Effects of long-chain fatty alcohol on peripheral nerve conduction and bladder function in diabetic rats. Life Sci, 2002, 70(19):2215-2224.
    [18] Watanabe T, Miyagawa I. Characteristics of detrusor contractility during micturition in diabetics. Neurourol Urodynam, 1999, 18:163-171.
    [19] Tong YC, Cheng JT. Alteration of M(3) subtype muscarinic receptors in the diabetic rat urinary bladder. Pharmacology, 2002, 64(3):148-151.
    [20] Kaplan SA, Te AE, Blaivas JG. Urodynamic findings in patients with diabetic cystopathy. J Urol, 1995, 153:342.
    [21]金锡御,宋波主编.临床尿动力学.北京:人民卫生出版社, 2002, 19-20.
    [22]Zar MA, Iravani MM, Luheshi GN. Effect of nifedipine on the contractile responses of the isolated rat bladder.J Urol, 1990, 143(4):835-839.
    [23] Andersson KE, Hedlund P. Pharmacologic perspective on the physiology of the lower urinary tract. Urology, 2002, 60(supplement 5A):13-20.
    [24]吴其夏,余应年,卢建主编.新编病理生理学.北京:中国协和医科大学出版社,1999, 136-144.
    [25]陈青川,牟世芬,侯小平.食品中咖啡因、可可碱和茶碱含量的调查.中国公共卫生, 1997, 12:746.
    [26] Fredholm BB, Battig K, Holman J, et al. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev, 1999, 51: 83-133.
    [27] Ross GW, Abbott RD, Petrovitch H, et al. Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA, 2000, 283(20):2674-9.
    [28] Leitzmann MF, Stampfer MJ, Willett WC, et al. Coffee intake is associated with lower risk of symptomatic gallstone disease in women. Gastroenterology, 2002, 123(6):1823-30.
    [29]唐跃明,韩启德,王宪,等.咖啡因引起离体大鼠脊髓降钙素基因相关肽释放.北京医科大学学报, 1996, 28:405-408.
    [30]龚宇,熊恩庆,金锡御,等.糖尿病大鼠膀胱病CGRP神经病变的研究.中华泌尿外科杂志, 2000, 21(10): 634-635.
    [31]苏兴文,皮荣标,林穗珍,等.咖啡因对谷氨酸诱导神经元凋亡的保护作用.中国药理学通报, 1999, 15(6):509-512.
    [32] Wang WY, Li MT, Qiu PX, et al. Relationship between survival effect of caffeine and levels of intercellular calcium in cerebellar granule neurons. Chi J Pharmacol Toxicol, 2000, 14(2):101-107.
    [33] Zeng X, Qu A, Zhou Z, et al. Ca2+ signals induced from calcium stores in pancreatic isletβcells. Chi Sci Bull, 1999, 44:2058~2063.
    [1] Mohan V, Sandeep S, Deepa R,et al. Epidemiology of type 2 diabetes: Indian scenario.Indian J Med Res,2007,125(3): 217-230
    [2] Mumtaz FH, Thampson CS, Khan MA, et al. Alterations in the formation of cyclic nucleotides and prostaglandins in the lower urinary tract of the diabetic rabbit. Urol Res, 1999, 27:470-475
    [3]潘长玉.中国糖尿病控制现状———指南与实践的差距.国外医学内分泌学分册,2005,25 (3):174-178
    [4] Brown JS, Wessells H, Chancellor MB,et al. Urologic Complications of Diabetes.Diabetes Care, 2005,28(1):177-183
    [5] Kebapci N, Yenilmez A, Efe B, et al Bladder dysfunction in type 2 diabetic patients.Neurourol Urodyn. 2007;26(6):814-819
    [6] rimodt Moller C. Diabetic cystopathy: epidemiology and related disorders. Ann Intern Med,1980,92(2):318-321.
    [7]Sasaki K, Yoshimura N, Chancellor MB. Implications of diatetes mellitus in urology[J]. Urol Clin N Am,2003,30:1-12.
    [8] de Groat WC. Anatomy of the central neural pathways controlling the lower urinary tract, Eur Urol, 1998 , 34 Suppl (1): 2~5
    [9] ato M, shirai M. Diabetic Urinary bladder and urethral dysfunction, Nippor Rinsho, 1997,55(suppl):876-880
    [10] aplan SA. Te AE, Blaivas JG, Urodynamics findings in patients with diabetic cystopathy, J Urol, 1995, 153(2):342
    [11] umtar FH, Shukla N, Sullivam ME. Etal. Inbibition of diabertic bladder smooth muscle cell proliferation by endothelin receptor antagonists. Urol Res, 2000,28:254-259
    [12] Malmqvist ULR, Arner A, Uvelius B. Am J Physiol 1991; 260: 1085~1093
    [13] Tuttle KR. The national history of diabetic nephropathy, Semin Neph 1990, 10:184~193
    [14] Torffvit O,Agardh CD,Mattiasson A. Lack of association between cystopathy and progression of diabetic nephropathy in insulin-dependent diabetes mellitus, Scand J Urol Nephrol, 1997, 31(4): 365~369
    [15] Kaplan SA,Te AE, Blaivas JG. Urodynamic findings in patients with diabetic Cystopathy, J Urol 1995, 153(2):342~344
    [16] Menendez V, Cofan F, Talbot WR, et al. Urodynamic evaluation in simultaneous insulin-dependent diabetes mellitus and end stage renal disease, J Urol 1996, 155(6):2001~2004
    [17] Kitami K. Vesicourethral dysfunction of diabetic patients, Nippon Hinyokika Gakkai zasshi 1991, 82(7):1074~1083
    [18]宗朝晖,徐强.间歇导尿术在糖尿病神经原性膀胱中的应用.中国交通医学杂志,2005,19(6):659-660.
    [19] Kohler Ockmore J, Feneley RC. Long-term catheterization of the bladder: prevalence and morbidity, Br J Urol, 1996, 77(3): 347~351
    [20]胡惠萍,顾德良.依帕司他治疗糖尿病神经源性膀胱30例临床分析.海南医学,2006,17(4):60-60.
    [21] Hotta N, Toyota T, Matsuoka K,et al. The SNK 860 Diabetic Neuropathy Study Group. Clinical efficacy of fidarestat, a novel aldose reductase inhibitor, for diabetic peripheral neuropathy: a 52 week multicenter placebo c ontrolled double blind parallel group study. Diabetes Care,2001,24:1776-1782.
    [22]田焕云,田鲁.康络索并功能训练治疗糖尿病神经原性膀胱.中国临床康复,2003,(9):1452.
    [23]申黎艳,马晓莉,田润华,等.吡斯的明治疗神经原性膀胱尿潴留的临床观察.中国综合临床,2002,18 (6):536
    [24]常宇翔.西沙比利治疗老年糖尿病神经原性膀胱功能障碍40例分析.实用老年医学,2003.17(2):110.
    [25]马德有,刘金锋,李红蕾.莫沙比利与酚妥拉明联合治疗糖尿病神经源性膀胱的疗效观察.河南实用神经疾病杂志,2004,7(4):83-84.
    [26] Greenfield SP, Fera M. The use of intravesical oxybutynin chloride in children with neurogenic bladder, J Urol, 1991, 146: 532-534.
    [27]张志荭.健脾益肾汤治疗糖尿病性膀胱病临床观察.中国中医药信息杂志,2007,14(5):59-59.
    [28]王朋波毕建乐.开塞露治疗糖尿病神经性膀胱所致尿潴留45例.中国民间疗法,2004,12(1):32-32.
    [29] Saso Jezernik,Michael Craggs,Warren M,etal.Electrical stimulation for the treatment of bladder dysfunction:Current statusand and futrue possibi- lities. Neurological Research. 2002;24(5):413-430
    [30] Schurch B,Rodic B,,Jeanmonod D.Posterior sacral rhizotomy and intradural anterior sacral root stimulation for treatment of the spastid bladder in spinal cord injured patients.J Urol,1997,157: 610- 614.
    [31] Bower.WF, Moore.KH, Adams , RD,et al.A urodynamic study of surface neuromodulation versus sham in detrusor instability and sensory urgency.JUrol,1998,160(6 Pt 1):2133-2136
    [32] Yokozuka M, Namima T, Nakagawa H,et al. Effects and indications of sacral surface therapeutic electrical stimulation in refrac- tory urinary incontinence. Clin Rehabil, 2004,18(8):899-907
    [33]刘智,胥少汀.修复马尾神经恢复膀胱功能的实验观察.中华外科杂志,1995,33:719- 722.
    [34]吴汉妮,孙晖.高压氧治疗糖尿病足的临床疗效.中华物理医学与康复杂志,2003,25:371-373.
    [35]顾全霞,杨东辉等.高压氧辅助治疗糖尿病神经源性膀胱临床观察.中华物理医学与康复杂志,2004,26 (9):558-559.
    [36]邬存鹃,于凤泉邬忠臣.局部药物喷淋灌注治疗糖尿病膀胱临床研究.海南医学,2004,15(2);56-57.
    [37]张正超,王怀权等.穴位电疗法配合治疗糖尿病植物膀胱炎40例.中国康复,2004,19(1):25-25.
    [38]韩英.穴位注射治疗糖尿病神经原性膀胱60例.河南中医,2006,26(3):62-63.
    [39]朱红梅.壮医药线点灸治疗糖尿病神经源性膀胱48例.中国民族医药杂志,2003,9(1):6-7.
    [1]宋波,李龙坤.神经源性排尿功能障碍.中国康复2001,16(4):245
    [2] Saso Jezernik,Michael Craggs,Warren M,et al. Electrical stimulation for the treatment of bladder dysfunction:Current statusand futrue possibilities. Neurological Research. 2002; 24(5):413-430
    [3] Sauerwein D.Surgical treatment of spastic bladder paralysis in paraplegic patients. Sacral deafferentation with implantation of a sacral anterior root stimulator. Urologe A. 1990,29(4):196-203
    [4] Brindley GS. The first 500 patients with sacral anterior root stimulator implants : general description. Paraplegia.1994,32(12):795 - 805
    [5] Schmidt RA, Doggweiler R. Neurostimulation and neuromodulation: a guide to selecting the right urologic patient. Eur Urol. 1998;34(Suppl 1):23-26
    [6]卫中庆,宋涛,Van Kerrebreck.男、女尿失禁手术治疗进展.临床泌尿外科杂志.2006,21(2):154-157
    [7] Jan Groen,J.L.H.Ruud Bosch ,Ron van Mastrigt. Sacral Neuromodulation in Women with Idiopathic Detrusor Overactivity Incontinence:Decreased Overactivity but Unchanged Bladder Contraction Strength and Urethral Resistance During Voiding. J Urol.2006,175(3):1005-1009
    [8] Miriam Brazzelli, Alison Murray ,Cynthia Fraser,et al. Efficacy and Safety of Sacral Nerve Stimulation for Urinary Urge Incontinence: A Systematic Review .2006,175(3): 835-841
    [9] M. Spinelli, E. Weil, E. Ostardo,et al.New Tined Lead Electrode in Sacral Neuromodulation: Experience from a Multicentre European Study. World J Urol, 2005,23(3): 225–229
    [10] Resplande J, Gholami S, Bruschini H,et al.Urodynamic changes induced by the intravaginal electrode during pelvic floor electrical stimulation. Neurourol Urodyn. 2003;22(1):24-28
    [11] Arruda RM, Castro RA, Sartori MG,et al.Clinical and urodynamic evaluation of women with detrusor instability before and after functional pelvic floor electrostimulation. Clin Exp Obstet Gynecol. 2003;30(4):220-222
    [12] Kondo A, Otani T, Takita T. Suppression of bladder instability by penile squeeze. Br J Urol. 1982,54(4):360-362.
    [13] Dalmose AL, Rijkhoff NJ, Kirkeby HJ,et al. Conditional stimulation of the dorsal penile/clitoral nerve may increase cystometric capacity in patients with spinal cord injury. Neurourol Urodyn. 2003;22(2):130-137
    [14] Van Balken MR, Vergunst H, Bemelmans BL.The use of electrical devices for thetreatment of bladder dysfunction: a review of methods. J Urol. 2004,172(3):846-851
    [15] Gladh G, Mattsson S, Lindstrom S. Intravesical electrical stimulation in the treatment of micturition dysfunction in children. Neurourol Urodyn. 2003,22(3):233-242
    [16] Walter JS, Fitzgerald MP, Wheeler JS,et al.Bladder-wall and pelvic-plexus stimulation with model microstimulators: Preliminary observations. J Rehabil Res Dev. 2005,42(2):251-260
    [17] Okada N, Igawa Y, Ogawa A,et al. transcutaneous electrical stimulation of thigh muscles in the treatment of detrusor overactivity . Br J Urol. 1998,81(4):560-564
    [18] Andrews. BJ, Reynard .JM. Transcutaneous posterior tibial nerve stimulation for treatment of detrusor hyperreflexia in spinal cord injury.J Uro.2003,170(3):926
    [19] Michael R. Van Balken, Vera Vandoninck,et al. Posterior tibial nerve stimulations as neuromodulative treatment of lower urinary tract dysfunction.J Uro.2001,166(3): 914–918
    [20] Bower.WF, Moore.KH, Adams,RD,et al.A urodynamic study of surface neuromo dulation versus sham in detrusor instability and sensory urgency.J Urol.1998,160(6 Pt 1):2133-2136
    [21] Yokozuka M, Namima T, Nakagawa H,et al. Effects and indications of sacral surface therapeutic electrical stimulation in refractory urinary incontinence. Clin Rehabil. 2004,18(8):899-907
    [1] Mumtaz F H , Thampson C S , Khan M A , et al. Alterations in the formation of cyclic nucleotides and prostaglandins in the lower urinary t ract of the diabetic rabbit .Urol Res , 1999 , 27 : 470 - 475.
    [2] Sasaki K, Yoshimura N, Chancellor M B. Implications of diabetes mellitus in urology. Urol Clin N Am, 2003 ,30 :1 - 12.
    [3] Ichiyanagi N, Tsujii T , Masuda H , et al. Changed responsiveness of the det rusor in rabbit s with alloxan induced hyperglycemia : possible role of 5-hydroxyt ryptamine for diabetic bladder dysfunction. J Urol , 2002 ,168 :303 - 307.
    [4] Yoshida A , S2Yamashita Y, Kaibara M , et al . 5-Hydroxyt ryptamine receptors , especially the 5-HT4 receptor, in guinea pig urinary bladder. Jpn J Pharmacol ,2002 , 89 :349-355.
    [5] Kodama M , Takimoto Y. Influence of 5-hydroxyt ryptamine and the effect of a new serotonin receptor antagonist ( sarpogrelate) on det rusor muscle of streptozotocin2induced diabetes mellitus in the rat . Int J Urol , 2000 , 7 :231-235.
    [6] Takimoto Y, Kodama M , Sugimoto S , et al. The effects of 5-HT2 antagonist for urinary f requency symptom on diabetes mellitus patients. Nippon Hinyokika Gakkai Zasshi ,1999 , 90 :731-740.
    [7] Rodella L , Rezzani R , Corsetti G, et al. Nitric oxide involvement in the trigeminal hyperalgesia in diabetic rats . Brain Res , 2000 , 865 :112 - 115.
    [8] St rokov I , Manukhina E , Bakhtina L , et al. The function of endogenous protective systems in patients with insul-independent diabetes mellitus and polyneuropathy : effect of antioxidant therapy. Bull Exp Biol Med , 2000 ,130 : 986 - 990.
    [9] Umtaz FH , Sullivan ME , Thamp son CS , et al. Al-terations in the nit ric oxide synthase binding sites and non-adrenergic , non-cholinergic mediated smooth muscle relaxation in the diabetic rabbit bladder outlet : possible relevance to the pathogenesis of diabetic cystopathy. J Urol , 1999 , 162 :558 - 566.
    [10] Aiyar N. Overview of calcitonin gene2related peptide and it s receptor. Scientific World Journal , 2001 , 18 ; 1(12 suppl 1) :1 - 1.
    [11] Rittenhouse P A , Marchand J E , Chen J , et al. Streptozotocin induced diabetes is associated with altered expression of peptide encoding mRNAs in rat sensory neurons. Peptides , 1996 , 17 :1017 - 1022.
    [12]王宪,孙威,刑立愚,等.糖尿病大鼠肠系膜动脉降钙素基因相关肽释放减少以及NO的作用.生理学报,1998 ,50 :206 - 212.
    [13]龚宇,熊恩庆,金锡御,等.糖尿病大鼠膀胱病CGRP神经病变的研究.中华泌尿外科杂志,2000 ,21 :634-635.
    [14] Andersson K E , Hedlund P. Pharmacologic perspective on the physiology of the lower urinary t ract . Urology,2002 ,60 ( supplement 5A) :13 - 20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700