大鼠骨髓间充质干细胞缺氧凋亡机制探讨及Akt基因对其缺氧凋亡的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
间充质干细胞(mesenchymal stem cells,MSCs)自我复制性、非特异弱免疫原性以及可向心肌、神经元、内皮等不同胚层细胞分化的多潜能性等使其成为当今心脑血管等领域研究的热点。心肌细胞成形治疗(celularcardiomyoplasty,CCM)研究发现:MSCs尤其是骨髓MSCs可能通过分化成功能性心肌细胞、刺激梗死区血管新生、提高神经密度、增强心肌厚度和弹性、分泌细胞因子或表达细胞因子受体、抑制心肌细胞凋亡和防治心肌重构等机制而使CCM成为当今热点,不过,许多CCM报告图片显示:1.直接注入到心肌梗死区的标记MSCs仅散在分布于分化良好、结构完整的大血管壁内和成熟心肌之间而不在或偶在肉芽组织替代的梗死区(此区域内血管稀少,血液供应最差)和其毛细血管周围(原缺血区,血液供应较差)出现,更没有足够多的细胞数目替代瘢痕组织;2.标记细胞散在分布于正常组织、细胞之间而不似培养条件下以种子细胞为中心的扩展性生长;3.瘢痕组织中动脉和小动脉密度不增加,而毛细血管密度的增加并不足以改善局部区域血流;4.MSCs在梗死区域并不充分出现心肌细胞表型等;这些结果提示区域性缺氧环境不利于MSCs生存、增殖和分化等,其原因是否因为这些区域的缺氧环境不利于MSCs增殖、分化甚至导致其凋亡、死亡等国内外罕见报道。如果缺氧可导致MSCs凋亡,那么缺氧是否可致骨髓MSCs表达Bax、Bcl—2、Fas-L、Fas、Caspase-3等凋亡相关mRNA和蛋白以及它们在MSCs凋亡中所起的作用如何等迄今亦罕见研究。参予介导细胞生长、增殖的Akt蛋白既是细胞存活的信号介质又是细胞存活的必要因素,持续存在可以避免细胞损伤,那么Akt基因转染骨髓MSCs是否可减轻MSCs缺氧凋亡和提高缺氧时MSCs增殖能力(即耐缺氧能力)尚不清楚。鉴于此,本研究拟对体外培养的第三代(Passage 3,P_3)Wistar大鼠骨髓MSCs在缺氧箱(94%N_2、1%O_2和5%CO_2)中孵育,探讨下述三个方面:1.缺氧不同时间点对MSCs凋亡和增殖等的影响,明确心肌梗死后移植的MSCs能否在相对缺氧的移植区生存,为CCM成功实现提供新思维;2.MSCs在缺氧环境下凋亡相关mRNA和蛋白与凋亡的相关性,确立其是否在骨髓MSCs缺氧凋亡中发挥作用;
     3.探讨Akt基因是否提高MSCs耐缺氧能力,从而为更佳的CCM效应提供理论依据。另外,在这些研究的基础上,我们对Akt-MSCs是否可调整心脏交感神经和胆碱能神经以及促进神经纤维再生进行了初步探讨。
     论文一:缺氧对大鼠骨髓间充质干细胞凋亡、增殖和超微结构的影响
     目的
     探讨梯度离心贴壁法培养的大鼠骨髓单核细胞是否MSCs以及缺氧对其凋亡、增殖和超微结构的影响。
     方法
     1.无菌条件下取出Wistar大鼠股骨及胫骨骨髓,于Percoll(比重1.074g/mL和1.070g/mL)分离液上梯度离心(500g,20 mins)后取界面层细胞培养、传代。将P3 MSCs免疫细胞化学鉴定CD29、CD34、CD44和CD71受体,5-aza(浓度10umol/L)培养液常规孵育2周后肌钙蛋白T(troponin,Tn T)表达和H-DMEM成骨细胞诱导分化培养液(DEX 100nmol/L,β-GP 10mmol/L,AsA0.25mmol/L)常规孵育2周后ALP表达。
     2.将P3 MSCs置于94%N_2、1%O_2和5%CO_2缺氧箱中37℃孵育不同时间点(常氧、缺氧0.5 h、1h、2 h、4 h和8 h)。
     3.应用Annexin V/PI双染法进行流式细胞仪(flow cytometry,FCM)分析MSCs凋亡率(Apoptotic Rate,AR)和死亡率(dead rate,DR)、应用四唑盐比色试验(MTT比色试验)分析细胞增殖状态以及透射电镜观察MSCs缺氧时超微结构改变。
     结果
     1.骨髓单核细胞免疫细胞化学鉴定CD29、CD44和CD71免疫细胞化学染色均可见棕黄色颗粒沉积于胞膜,而CD34免疫细胞化学染色后未见棕黄色颗粒沉积于胞膜;5-aza诱导后Tn T免疫细胞化学染色可见棕黄色颗粒沉积胞质中,成骨诱导后改良Gomori法染色可见胞浆内深褐色甚或黑色颗粒呈片状沉积。
     2.MSCs不同缺氧时间点AR和DR MSCs常氧、缺氧0.5 h、1 h、2 h、4 h、和8 h时的AR均较缺氧前显著增高(P<0.01)、DR亦显著增高(P<0.05),不过,随着缺氧时间延伸,AR显著增加(P<0.05),而DR没有统计学意义(P>0.05)。
     3.MSCs不同缺氧时间点增殖状态缺氧不同时间点MTT法0D值较常氧(缺氧结束同步时间点)均显著性降低(P<0.01),并随缺氧时间延伸显著降低(P<0.05),不过,与常氧(缺氧开始时间点)相比,均显著升高(P<0.05)。
     4.缺氧对MSCs超微结构的影响常氧时,MSCs呈卵圆形或不规则多边形等,表面微绒毛较多且向细胞内凹陷,内质网和游离核糖体较丰富而线粒体小,多为单核,双核偶见,核仁大而形态不规则,可见核裂。缺氧0.5 h即见微绒毛脱落、胞浆空泡化、线粒体肿胀等,缺氧4 h可见肿胀线粒体(伴嵴消失)明显增多。
     讨论
     MSCs在骨髓中含量极低,而其鉴定必须具有骨髓来源、体外培养贴附于培养皿上且形态呈成纤维样集落形成单位(colony forming unit,CFU-F)和能够自主增殖至少分化为三种以上间质细胞系等特性逆推得知是否为MSCs。我们通过梯度离心贴壁法培养的骨髓单核细胞具有MSCs的生长特性并且5-aza诱导后形态学接近心肌细胞并表达Tn T蛋白提示向心肌样细胞分化、成骨诱导后形态学发生改变并表达ALP提示向成骨细胞分化,所有这些特征均支持我们采用梯度离心贴壁法所培养的骨髓单核细胞是骨髓MSCs。MSCs不同缺氧时间点AR、DR较缺氧前均显著性增高提示缺氧可诱导MSCs凋亡、死亡,不过,缺氧0.5 h时AR即显著、迅速增高而随着缺氧时间延伸,MSCs AR和DR却呈缓慢上升趋势的结果提示MSCs在进入缺氧环境后即刻的不适应性以及其随着缺氧时间延伸而可能适应缺氧状态,“死亡”可能是MSCs凋亡的后期表现。结果3提示MSCs于缺氧时仍可增殖但其“增殖”滞缓。总之,我们的研究显示缺氧可导致MSCs凋亡、增殖滞缓及超微结构改变,而MSCs凋亡及增殖滞缓可能是移植的MSCs难以在心肌梗死后相对缺氧的移植区生存、增殖和分化等原因之一。
     结论
     梯度离心贴壁法培养的骨髓单核细胞是骨髓MSCs;缺氧可引起MSCs凋亡、增殖滞缓及超微结构改变。
     论文二:缺氧环境下大鼠骨髓间充质干细胞凋亡相关基因和蛋白的表达
     目的
     探讨MSCs在缺氧环境下凋亡相关基因和蛋白的表达以及它们在凋亡中的潜在作用。
     方法
     1.将接种的P_3 MSCs置于94%N_2、1%O_2和5%CO_2缺氧箱中37℃孵育。
     2.分别于0.5 h、1 h、2 h、4 h、6 h、8 h和12 h取出。
     3.应用Annexin V/PI双染法FCM分析MSCs凋亡率(AR)和死亡率(DR)。
     4.免疫细胞化学、Rt-PCR和western blotting检测Bax/Bcl-2,Fas/FasL和Caspase-3 mRNA和蛋白的表达。
     5.分析AR与凋亡相关mRNA和蛋白相关性。
     结果
     1.缺氧前,免疫细胞化学法未检测到Bcl-2、Bax、Fas和Fas L蛋白表达,缺氧0.5 h后均可较强表达,各缺氧时间点Caspase-3表达率较常氧显著增加。
     2.各缺氧时间点Bcl-2、Bax、Fas、Fas L、Caspase-3 mRNA和蛋白表达较缺氧前均显著增高(P均<0.05);随缺氧时间延伸,Bcl-2 mRNA和蛋白表达不显著增加(P>0.05),而Bax、Fas、Fas L、Caspase-3 mRNA和蛋白表达均显著增加(P均<0.05),但缺氧6 h~12 h时间点之间表达均没有统计学意义(P均>0.05)。
     3.AR和Bcl-2/Bax mRNA(r_1=-0.435,P=0.040)及蛋白(r_2=-0.417,P=0.043)呈显著负相关,而和Fas(r_1=0.711,P=0.018:r_2=0.639,P=0.025)、Fas-L(r_1=0.605,P=0.037;r_2=0.581,P=0.022)、Caspase-3(r_1=0.657,P=0.026;r_2=0.704,P=0.014)mRNA及蛋白均呈显著正相关。
     讨论
     在细胞凋亡过程中,Bcl-2基因为抗凋亡基因,而Bax基因为促凋亡基因。在常氧,大鼠MSCs不表达Bcl-2、Bax mRNA和蛋白,而在本缺氧条件下,二者均表达增强,并且Bcl-2/Bax与AR显著负相关,提示Bcl-2、Bax mRNA和蛋白可能参予MSCs缺氧时的凋亡调控,并且Bax mRNA和蛋白可能促进凋亡、而Bcl-2 mRNA和蛋白抑制凋亡。Fas及其配体Fas-L共同参予调节细胞凋亡过程,在常氧,MSCs不表达Fas-L、Fas mRNA和蛋白,而在本缺氧条件下,二者均表达增强,并且Fas、Fas-L mRNA和蛋白均与AR显著正相关,提示Fas-L、Fas mRNA和蛋白参予并可能促进MSCs的缺氧凋亡调控。细胞凋亡信号途径中最关键的效应酶caspase-3在细胞凋亡过程中处于核心位置,在本缺氧条件下,caspase-3 mRNA和蛋白均与AR显著正相关,提示caspase-3 mRNA和蛋白参予MSCs缺氧凋亡的调控。总之,我们研究提示MSCs在缺氧状态下发生凋亡的过程中,线粒体途径和受体途径均参予细胞凋亡,并且可能呈caspase-3依赖性凋亡。
     结论
     在缺氧促进MSCs凋亡过程中,Bcl-2 mRNA和蛋白可能起着保护作用,而Bax、Fas-L、Fas、Caspase-3 mRNA和蛋白可能在MSCs凋亡的进程中起着促进作用。
     论文三:Akt基因转染对骨髓间充质干细胞缺氧时凋亡和增殖的影响
     目的
     探讨Akt基因是否改善MSCs耐缺氧能力。
     方法
     将转染Akt基因和未转染Akt基因的MSCs置于94%N_2、1%O_2和5%CO_2缺氧箱中37℃孵育不同时间点(常氧、缺氧0.5 h、1h、2 h、4 h和8 h)。Annexin V/PI双染法FCM分析MSCs AR和DR。应用MTT比色试验分析细胞增殖状态。免疫荧光细胞化学染色、Rt-PCR和western blot检测Akt和p-Akt表达。
     结果
     1.Akt基因显著降低MSCs缺氧时的AR和DR(P<0.01),而在各缺氧时间点没有统计学意义(P>0.05)。
     2.与未转染Akt基因的MSCs比较,Akt基因显著增高MSCs常氧培养条件下(P<0.01)和缺氧培养条件下的增殖能力(P<0.01);转染Akt基因的MSCs缺氧时的增殖能力显著低于其在常氧培养时的增殖能力(P<0.01)。
     3.转染Akt基因显著增高常氧培养条件下MSCs Akt mRNA(P<0.01)和蛋白(P<0.01)表达,而并不增高p-Akt mRNA(P>0.05)和蛋白(P>0.05)的表达;在常氧、缺氧时Akt mRNA(P>0.05)和蛋白(P>0.05)表达均没有统计学意义,而提高缺氧时p-Akt mRNA(P<0.01)和蛋白(P<0.01)表达;在缺氧前、后,免疫荧光细胞化学法均可检测到转染和未转染Akt基因MSCs表达Akt和p-Akt蛋白。
     讨论
     MSCs转染Akt基因后在常氧时可显著增高Akt mRNA和蛋白表达,而不改变p-Akt蛋白表达,一旦暴露于缺氧环境可同时显著提高Akt mRNA和蛋白及p-Akt蛋白表达等可能是由于转染Akt基因的MSCs在尚未得到缺氧刺激时不能充分“触发”Akt蛋白磷酸化或其功能已足够满足细胞生存需求而“负反馈”抑制其磷酸化,当“缺氧”刺激时即可“触发”Akt蛋白磷酸化即产生p-Akt。Akt基因可显著降低MSCs在各缺氧时间点的AR和DR提示Akt基因可提高MSCs耐缺氧能力。不过,常氧培养条件下,转染Akt基因并不影响MSCs的AR和DR提示常氧状态下Akt的作用已能够满足MSCs生存、增殖,而过多表达并不在抗细胞凋亡中发生作用;MSCs缺氧培养较常氧培养的AR和DR仍然升高提示缺氧可能通过其它机制引起MSCs凋亡,而Akt基因转染并不足够完全抑制细胞凋亡。总之,研究提示Akt基因转染MSCs可显著提高MSCs耐缺氧能力,此可能是转染Akt基因MSCs的CCM效应较单纯MSCs的CCM效应更佳化的原因之一。
     结论
     Akt基因转染可显著提高MSCs耐缺氧能力
     论文四:Akt基因转染的间充质干细胞对阿霉素诱导的慢性心力衰竭的心脏神经的保护作用
     目的
     Akt-MSCs是否可调整心脏交感神经和胆碱能神经以及促进神经纤维再生。
     方法
     阿霉素诱导慢性心力衰竭模型完成后,大鼠被随机分为Akt-MSCs组(n=11),s-MSCs(n=11)组和对照组(n=12)。各组分别经尾静脉给予Akt-MSCs、s-MSCs(2x106 cells in 100ul PBS)或等量PBS。第四周检测心脏超声、去甲肾上腺素(NE),胆碱乙酰基转移酶(ChAT)、突触素(SYN)生长相关蛋白43(GAP-43)。
     结果
     1.在Akt-MSCs组和s-MSCs组,死亡率和射血分数均显著低于对照组。
     2.Akt-MSCs和s-MSCs均可显著降低组织NE水平。
     3.在Akt-MGCs组和s-MSCs组,ChAT水平没有统计学意义,但均显著高于对照组。
     4.在Akt-MSCs组和s-MSCs组,SYN或GAP-43染色阳性的神经密度均显著高于对照组,而以Akt-MSCs组神经密度最高。
     结论
     MSCs尤其是Akt基因转染的MSCs移植可促进心脏神经纤维的再生,该作用可能被GAP-43介导。
Introduce
     The characteristics of mesenchymal stem cells(MSCs),which includes self-duplication,non-specific weak immunogenicity and multipotency for different embryonic layer such as cardiocyte,neuron,endotheliocyte and so on make MSCs have been the present spotlight.A lot of investigation in celular cardiomyoplasty (CCM) found that the reasons for CCM being nowadays hot spot included mainly MSCs particular bone marrow MSCs,differentiating functionality cardiocyte, stimulating angio-neogenesis in infarction area,elevating the density of nerves, reinforcing the thickness and the elasticity of myocardium,excreting cytokine or expressing its receptor,inhibiting cardiocyte apoptosis and preventing cardiocyte from reconstitution and so on.However,lots of pictures about CCM have shown as followed:1.MSCs marked,which was directedly injected into the area of myocardial infarction,distributed just diffusedly in the wall of great vessels and/or ripening cardiocyte,and was rarely seen in the infarction area replaced by granulation tissue and the periphery of blood capillary,let alone enough MSCs take the place of scar tissue;2.there exists rather multitude discrepancy on growth pattern;3.the density of medium-sized artery and arteriole was not increased,and the augment of capillary improved not enough the region bloodstream;4.It is difficult of MSCs in the infarction region to appear the phenotype of cardiocyte.All the above results suggest that the regionality hypoxic microenvironment have disadvantages in the survival,multiplication and differention of MSCs.Whether the hypoxic microenvironment influences MSCs on multiplication and differentiation and even results them in apoptosis and death? So far,these have rarely been reported at domestic and oversea.If hypoxia may lead to the apoptosis of MSCs, then whether hypoxia may induce MSCs expressing Bcl-2,Bax,Fas,Fas L, Caspase-3 mRNA and protein and what role they play in MSCs apoptosis have not been found nowadays.Akt protein mediating cell growth and multiplication,which is a kind of signal essential mediator keeping cell survival,may protect cell from damage,however,whether Akt gene transfection may relieve the hypoxic apoptosis and enhance the multiplication capability of MSCs have not been conformed.In view of the above,our study aimed at elucidating the following aspect by Passage 3 bone marrow MSCs of Wistar rat,which were cultured in 94%N_2,1%O_2 and 5% CO_2:1.whether cell multiplication,apoptosis,and ultramicrostructure change of bone marrow mesenchymal stem cells of Rat were influenced by hypoxia environment ex vivo;2.the expression of apoptosis related mRNA and protein, such as Bcl-2,Bax,Fas,Fas-L and Caspase-3,of bone marrow MSCs of rat under hypoxia environment ex vivo.3.Whether Akt gene improved the capacity of both anti-apoptosis and multiplication of bone marrow MSCs of Wistar rat,ie.bearing hypoxia capacity of MSCs under hypoxic environment ex vivo.In addition,on the basis of those analysis,we elucidated further whether Akt-MSCs adjust sympathetic and cholinergic nerve and whether the beneficial effects of Akt-MSCs and MSCs are mediated by their nerve fiber sprouting in vivo.
     Article 1:Apoptosis And Multiplication of Bone Marrow MSCs Once Hypoxia Ex Vivo
     Objective
     Aimed at elucidating whether bone marrow monomuclear cells are mesenchymal stem cells(MSCs),which were cultured by combining gradient centrifugation and adherence wall methods and elucidating whether cell multiplication,apoptosis,and ultramicrostructure change of bone marrow mesenchymal stem cells of Rat were influenced by hypoxia environment ex vivo.
     Materials and Methods
     1.The bone marrow,which were washed out and gathered from femoral bone and shinbone of Wistar rat in the sterilitas condition,were gradiently centrifugated (500g,20 mins) on Percoll separating medium(specific gravity:1.074 g/ml and 1.070 g/ml),and then gathered boundary layer to culture and go down to passage 3. Immunocytochemistry identified the expression of CD29,CD34,CD44,CD71 receptor and cardiac-specific troponin T(Tn T) after two weeks incubated with L-DMEM containing 5-aza(10μmol/L) and ALP Gomori reformed methods identified sclerotomal-like cell incubated with H-DMEM containing DEX (100nmol/L),β-GP(10mmol/L) and AsA(0.25mmol/L) for two weeks.
     2.Passage 3(P3) of bone marrow MSCs of wistar rat were cultured in culturing chamber with 94%N_2,1%O_2,5%CO_2 at 37℃.
     3.At different hypoxia time points ie 0,0.5,1,2,4 and 8h,apoptotic rate(AR) and dead rate(DR) were analyzed by Flow cytometry(FCM) after Annexin V/PI staining,cell multiplication by MTT methods and ultramicrostructure by transmission electron microscope(TEM).
     Results
     1.The Identification Of Bone Marrow MSCs Bone marrow P_3 mononuclear cells showed positive staining of CD29,CD44 and CD71,negative staining of CD34,expressed Tn T protein(differentiating cardiac-like myocyte) after 5-aza inducing and ALP(differentiating sclerotomal-like cell) after sclerotomal cell liquid inducing.All those suggested bone marrow mononuclearcell were MSCs.
     2.Both AR and DR at different hypoxia time points The AR(0.09±2.03%, 12.9±1.72%,13.7±2.26%,13.8±3.01%,14.1±2.78%and 14.7±4.01%at 0,0.5,1, 4 and 8h,respectively,P<0.01) and DR(0.04±1.79%,0.93±1.85%,3.11±2.14%, 4.09±2.36%,4.72±2.05%and 4.91±3.72%at 0,0.5,1,4 and 8h,respectively, P<0.05) at different hypoxia time points significantly increased than normoxia; The AR further went up with time stretching(P<0.05),however,there was not statistic significance(P>0.05) for the DR.
     3.Multiplication capability of MSCs at different hypoxia time points OD value of MTT methods at different hypoxia time points significantly decreased than normoxia(P<0.01,synchronizing the end of hypoxia) and further aggravated, however,all significantly increased than normoxia(P<0.05,synchronizing the begin of hypoxia 8h).
     4.The change of ultrastructure of MSCs at different hypoxia time points Under normal state,there are abundant microvilli on the surface of MSCs,abundant endocytoplasmic reticulum and free ribosome in MSCs,however,microvilli of MSCs fell off,mitochondria appeared swelling(along with crista lost) once hypoxia,which were aggravated with hypoxia time extending.
     Discussion
     There are a little MSCs in bone marrow,its identify need these features such as stemming from bone marrow,adherence wall growth similar to desmocyte colony forming unit and at least differentiation for three kind cells and then were concluded inversely as MSCs.The bone marrow monomuclear cells,cultured by combining gradient centrifugation and adherence wall methods,were similar to the morphology of MSCs and were capability of differentiation for cardiac-like-myocytes after 5-aza inducing and sclerotomal cell after sclerotomal cell liquid inducing,all the above suggested that these bone marrow monomuclear cells were MSCs.The result that AR and DR at different hypoxia time points significantly increased than normoxia,no doubt,suggested that hypoxia may induce apoptosis and death of MSCs,however,the result that the AR was significantly, rapidly increased at hypoxia 0.5 h and further went slowly up with time stretching suggested that MSCs showed instantly inadaptability after hypoxia and adaptability with time stretching,the death may be a kind late phase of apoptosis.The result that the multiplication of MSCs at different hypoxia time points significantly decreased than normoxia(synchronizing the end of hypoxia) and further aggravated,all significantly increased than normoxia(synchronizing the begin of hypoxia 8h) suggested that hypoxia may make MSCs be "creep".In a word,our results strongly supported that hypoxia may results in apoptosis and the creep of multiplication ex vivo,which may be one of reasons for MSCs difficult to be survival in transplanted area after CCM.
     Conclusions
     Bone marrow monomuclear cells,which were cultured by combining gradient centrifugation and adherence wall methods,were mesenchymal stem cells;Hypoxia may results in apoptosis,the creep of cell multiplication,and the change of ultramicrostructure of MSCs ex vivo.
     Article 2:The Role Of Apoptosis Related mRNA And Protein of Bone Marrow MSCs When Hypoxia In Vitro
     Objective
     To elucidate the expression of apoptosis related mRNA and protein,such as Bcl-2,Bax,Fas,Fas L and Caspase-3,of bone marrow mesenchymal stem cells(MSCs) of Rat under hypoxia environment ex vivo.
     Materials and Methods
     1.The P3 MSCs were cultured in culturing chamber with 94%N_2,1%O_2,5% CO at 37℃.
     2.MSCs were cultured different hypoxia time points ie 0,0.5,1,2,4,6,8 and 12 h,respectively.
     3.AR were analyzed by FCM after Annexin V/PI staining.4.The expression of mRNA and protein,including Bcl-2,Bax,Fas,Fas L and Caspase-3,were observed by immunocytochemistry,Rt-PCR and western blot.
     4.The correlation between AR and the above mRNA/protein was analyzed by spss software.
     Results
     1.At normoxia,the protein of Bcl-2,Bax,Fas,Fas L and Caspase-3 were not found by immunocytochemistry methods,however,all of them were found after undergoing hypoxia.
     2.At above different hypoxia time points,the expression of the above protein and mRNA were significantly increased than normoxia(P<0.05);With hypoxia time stretching,there was not statistic significance(P>0.05) in the expression of Bcl-2, the protein and mRNA of Bax,Fas,Fas L and Caspase-3 were further go up (P<0.05),however,there was not statistic significance(P>0.05) at hypoxia 6 h~12 h(P>0.05).
     3.There was a significant negative correlation between the AR and the ratio of Bcl-2/Bax(mRNA:r_1=-0.435,P=0.040;protein:r_2=-0.417,P=0.043) and positive correlation between the AR and Fas(r_1=0.711,P=0.018;r_2=0.639,P=0.025)、Fas-L(r_1=0.605,P=0.037;r_2=0.581,P=0.022)、Caspase-3(r_1=0.657,P=0.026; r_2=0.704,P=0.014).
     Discussion
     In the course of apoptosis,Bcl-2 gene is a kind of anti-apoptosis gene,and Bax gene is a kind of promoting apoptosis.Our result showed that the protein of Bcl-2,Bax,Fas,Fas L and Caspase-3 were not found by immunocytochemistry methods at normoxia and were found after undergoing hypoxia.The negative positive correlation between the AR and the ratio of Bcl-2/Bax mRNA and protein suggested that Bcl-2,Bax mRNA and protein may mediate hypoxic apoptpsis of MSCs,in which Bcl-2 inhibit apoptosis and Bax is contrary to Bcl-2.The positive correlation between the AR and Fas,Fas-L supported,no doubt,that both Fas and its ligand Fas-L take part in the regulation of apoptosis of MSCs,which are a kind of factors facilitating apoptosis.Caspase-3,the most key enzyme in apoptosis signal pathway,plays core role in regulating cell apoptosis and is a kind of promoting factors.On the whole,our results supported that both chondrosome pathway and receptor pathway took part in MSCs apoptotic process and that MSCs apoptosis may be dependent on caspase-3.
     Conclusions
     During hypoxia promoting apotosis proceeding of MSCs,the mRNA and protein of Bcl-2 may be a kind of protect factors,however,the mRNA and protein of Bax,Fas-L,Fas and Caspase-3 may provoke apoptosis.
     Article 3:Both Apoptosis And Multiplication Of Bone Marrow MSCs Transfected By Akt Gene Under Hypoxic Environment In Vitro
     Objective
     To elucidate whether Akt gene improved the capacity of both anti-apoptosis and multiplication of bone marrow MSCs of Wistar rat,ie.bearing hypoxia capacity of MSCs under hypoxic environment ex vivo.
     Materials and Methods
     1.Both Akt gene transfection and non-Akt gene transfection MSCs of bone marrow of wistar rat were cultured in culturing chamber with 94%N_2,1%O_2, 5%CO_2 at 37℃for different hypoxia time points(normxia,hypoxia 0.5h,1h,2h, 4h and 8h).
     2.Both AR and DR were analyzed by FCM after Annexin V/PI staining,cell multiplication by MTT methods,the expression of both Akt and p-Akt by immunofluorescence cytochemistry,Rt-PCR and western blot.
     Results
     1.Akt gene significantly decreased both AR and DR of MSCs under hypoxic environment(P<0.01) and there was not statistic significance(P>0.05) at different hypoxia time point.2.Akt gene significantly enhanced the capacity of multiplication of MSCs despite normoxic or hypoxic environment compared to non-Akt gene transfection,the capacity of multiplication of MSCs was significantly down-regulated in hypoxia than in nomoxia(P<0.01).3.Compared to non-Akt gene transfection,Akt gene significantly increased the expression of Akt mRNA (P<0.01) and protein(P<0.01) despite normoxia or hypoxia,and increased the expression of p-Akt protein(P<0.01) in hypoxia and was not changed its expression in normoxia(P>0.05).Despite Akt gene transfection,both Akt and p-Akt protein were expressed in MSCs by immunocytochemistry while normoxia or hypoxia.
     Discussion
     The results,Akt gene significantly increasing the expression of Akt mRNA and protein and doing not change the expression of p-Akt protein at normoxia and being significantly increased once at hypoxia,suggested that Akt protein phosphorylation may not be enough "triggered" and/or its function is satisfied with the survival need of MSCs at normoxia,which inhibits its phosphorylation by "degenerative feedback" mechanism in return,and it is rapidly activated once being stimulated by hypoxia.The result,Akt gene significantly decreasing both AR and DR of MSCs under hypoxia and there being not statistic significance at different hypoxia time point,suggested that Akt gene may significantly enhanced bearing-hypoxia capacity of MSCs ex vivo,however,which mechanism has been suspended at present.The phenomenon,Akt gene did not influence both AR and DR at normoxia,implied that the intrinsic Akt concentration may provide the need of survival and multiplication for MSCs and do not play role in anti-apoptosis by overexpression at all.The results,the AR(DR) being increased and multiplication capability being decreased when MSCs transfected by Akt gene at hypoxia compared to MSCs at normoxia,hinted that there may exist other pathway influencing on the apoptosis and multiplication of MSCs.Briefly,Akt gene transfection may enhanced bearing-hypoxia capacity of MSCs in hypoxia ex vivo, which may be the reason for the effect of CCM by transplanting Akt gene transfection MSCs beyond the effect of simply MSCs transplant.
     Conclusion
     Akt gene transfection may significantly enhanced bearing-hypoxia capacity of MSCs in hypoxia ex vivo.
     Article 4:Cardiac Neuroprotective Effect of Mesenchymal Stem Cells Transduced with Akt in Adriamycin-Inducd Heart Failure
     Objective
     To elucidate whether Akt-MSCs adjust sympathetic and cholinergic nerve and whether the beneficial effects of Akt-MSCs and MSCs are mediated by their nerve fiber sprouting in vivo.
     Materials and Methods
     healthy Wistar rat were adopted to draw out MSCs and build CHF model.Rats with CHF were randomized into three groups and then some index including myocardial norepinephrine (NE),choline acetyltransferase(ChAT),synaptophysin(SYN),and growth-associated protein 43(GAP-43) was analyzed.
     Rats with CHF,induced by adriamycin,were randomized into Akt-MSCs group(n=11), simple MSCs(s-MSCs,n=11) group and control group(n=12).Each group was administered intravenously Akt-MSCs or s-MSCs(2×10~6 cells in 100ul PBS,respectively) or the equal PBS,once a day for 3 times via tail vein,respectively.At the 4~(th) week,echocardiogrphic examine,contents of myocardial NE,ChAT,SYN and GAP-43 was analyzed.
     Results
     1.EF(P<0.01) was significantly improved in Akt-MSCs group and s-MSCs group than in control group,in which EF of the Akt-MSCs group was significant(P=0.001) in particularly. Mortality rate was not significant among three groups(P>0.05).
     2.Tissue NE was lower in Akt-MSCs group and s-MSCs group than in control group (P=0.000),in Akt-MSCs group than in s-MSCs group(P=0.000).
     3.The expression of ChAT was not significant difference between Akt-MSCs group and s-MSCs group(P=0.851) but it was higher compared with control group(P<0.05).
     4.The density of nerves,stained positive for SYN or GAP-43,were significantly higher in Akt-MSCs group than in s-MSCs group and control group,and in s-MSCs group than in control group,so is their semi-quantitative analysis.In the above comparisons,the P value was <0.01.
     Conclusion
     Transplantation of Akt-MSCs and MSCs,Akt-MSCs in particular,promoted cardiac nervous regeneration in fail heart,which might be mediated by growth-associated protein 43.
引文
1.Friedenstein AJ,Chailakhyan RK,Gerasimov UV.Bone marrow osteogenic stem cells:in vitro cultivation and transplantation in diffusion chambers.Cell Tissue Kinet.1987,20(3):263-72.
    2.Caplan AI.Mesenchymal stem cells.J Orthop Res.1991,9(5):641-50.
    3.Minguell JJ,Erices A,Conget P.Mesenchymal stem cells.Xp Biol Med.2001.226(6):507-520.
    4.Wexler SA,Donaldson C,Denning Kendall P,et al.Adult bone marrow is a rich source of human mesenchymal stem cells but umbilical cord and mobilized adult blood are not.Br J Haematol,2003,121(2):368-374.
    5.Zuk PA,Zhu M,Mizuno H,et al.Multilineage cells from human adipose tissue:implications for cell-based therapies.Tissue Eng,2001,7(2):211-228.
    6.张卫泽,陈跃武,陈永清,等.5-氮杂胞苷体外诱导成人脂肪间充质干细胞分化为心肌样细胞的初步研究.中国循环杂志,2006,3139:228-231.
    7.Bukowiecki LJ,Geloen A,Collet AJ.Proliferation and differentiation of brown adipocytes from interstitial cells during cold acclimation.Am J Physiol,1986,250(6 Pt 1):C880-C887.
    8.Rajkumar K,Modric T,Murphy LJ.Impaired adipogenesis in insulin-like growth factor binding protein-1 transgenic mice.J Endocrinol,1999,162(3):457-465.
    9.Zavifler NJ,Marinova L,Adams G,et al.Mesenchymal precursor cells in the blood of normal individuals.Arthritis Res,2000,2(6):477-48.
    10.Erices A,Conget PA,Mingue JJ.Mesenchymal progenitor cells in human umbilical cord blood.Br J Haematology,2000,109(1):235-242.
    11.Oscar K,Tom K,Wei MC,et al.Isolation of multipotent mesenchymal stem cells from umbilical cord blood.Blood,2004,103(5):1669-1675.
    12.Campagnoli C,Roberts IA,Kumar S,et al.Identification of mesenchymal stem/progenytor cells in human first2trimester fetal blood,liver,and bone marrow.Blood,2001,98(8):2396-2402.
    13.王丽娟,张叶萍,王金福,等.脐血间充质干细胞的生物学特征及其对造血干/祖细胞体外扩增的支持作用.中华血液学杂志2005(2).26(2):65-68.
    14.薛群,苗宗宁,曲静,等.胎盘间充质干细胞向神经细胞诱导的实验研究.江苏医药杂志2004,30(11):817-19.
    15.Kaviani A,Perry TE,Barnes CM,et al.The placenta as a cell source in fetal tissue engineering.J Pediatric Surg,2002,37:995-999.
    16.Noort WA,Kruisselbrink AB,Anker PS,et al.Mesenchymal stem cells promote engraftment of human umbilical cord blood2derived CD34 + cells in NOD/ SCID mice.Exp Hematol,2002,30(8):870-878.
    17.Almeidar Porada G,El Shabrawy D,Porada C,et al.Differentiative potential of human metanephric mesenchymal cells.Exp Hematol,2002,30(12):1454-1462.
    18.Jiang Y,Vaessen B,Lenvik T,et al.Multipotent progenitor cells can be isolated from postnatal murine bone marrow,muscle,and brain.Exp Hematol,2002,30:896-904.
    19.Williams JT,Southerland SS,Souza J,et al.Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes.Am Surg,1999,65(1):22-26.
    20.Grigoriadis AE,Heersche JN,Aubin JE.Differentiation of muscle,fat,cartilage and bone from progenitor cells present in a bone-derived clonal cell population:effect of dexamethasone.J Cell Biol,1988,106(6):2139-2151.
    21.Beauchamp JR,Morgan JE,Pagel CN,et al.Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source.J Cell Biol,1999,144(6):1113-1122.
    22.Baroffio A,Bochaton-Piallat ML,Gabbiani G,et al.Heterogeneity in the progeny of single human muscle satellite cells.Differentiation,1995,59(4):259-268.
    23.Schultz E.Satellite cell proliferative compartments in growing skeletal muscles.Dev Biol,1996,175(1):84-94.
    24.Bernard-Beaubois K,Hecquet C,Houcine O,et al.Culture and characterization of juvenile rabbit tenocytes.Cell Biol Toxicol,1997,13(2):103-113.
    25.Gronthos S,Zannettino AC,Graves SE,et al.Differential cell surface expression of the STRO-1 and alkaline phosphatase antigens on discrete developmental stages in primary cultures of human bone cells.J Bone Miner Res,1999,14(1):47-56.
    26.Liu F,Malaval L,Gupta AK,et al.Simultaneous detection of multiple bone-related mRNAs and protein expression during osteoblast differentiation:polymerase chain reaction and immunocytochemical studies at the single cell level.Dev Biol,1994,166(1):220-234.
    27.桂莉,范文辉,李露斯,等.大鼠骨髓间充质干细胞生物学特性及分化潜能研究,重庆医学,2004,33(10).1509-4.
    28.Pittenger MF,Mackay AM,Beck SC,et al.Multilineage potential of adult human mesenchymal stem cells.Science,1999,284:143-147.
    29.方利君,付小兵,王玉新,等.体外诱导骨髓间充质干细胞分化为上皮细胞的研究.中华实验外科杂志,2004,21(2):171-173.
    30.Reyes M,Dudek A,Jahagirdar B,et al.Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest, 2002,109 (3):337-346.
    
    31. Kopen GC,Prockop DJ,Phinney DQMarrow stromal cells migrate through out forebrain and cerebellum,and they ifferentiate into astrocytes after injection into neonatal mouse brains.Proc Natl Acad Sci USA, 1999, 96(19):10711-10716.
    
    32. Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol, 2000, 28 (8):875-884.
    
    33. Azizi SA, Stokes D, Augelli BJ, et al. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats-similarities to astrocyte grafts. Proc Natl Acad Sci USA ,1998 ,95 (7):3908-3913.
    
    34. Lu D, Mahmood A, Wang L, et al. Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. Neuroreport,2001,12:559-563.
    
    35. Sanchez Ramos J, Song S, Cardozo Pelaez F, et al. Adult bone marrowstromal cells differentiate into neural cells invivo. Exp Neurol, 2000, 164(2):247-256.
    
    36. Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone-marrow stromal cells differentiate into neurons J Neurosci Res, 2000,61(4):364-370.
    
    37. Mackenzie TC, Flake AW. Multilineage differentiation of human MSC after in utero transplantation. Cytotherapy, 2001, 3(5):403-405.
    
    38. Schwartz RE, Reyes M, Koodie L, et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest, 2002, 109(10):1291-1302.
    
    39. Saito T, Kuang JQ, Bittira B, et al. Xenotransplant cardiac chimera: immune tolerance of adult stem cells. Ann Thorac Surg, 2002, 74(1): 19-24.
    
    40. Toma C, Pittenger MF, Cahill KS, et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. 2002, 105(1):93-8.
    
    41. Liechty KW, Mackenzie TC, Shaaban AF, et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep.Nat Med, 2000, 6(11):1282-1286.
    
    42. Majumdar MK, Thiede MA, Mosca JD, et al. Phenotypic and functional comparison of cultures of marrow2derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol, 1998, 176 (1):57-66.
    
    43. Majumdar MK, Thiede MA, Haynesworth SE, et al. Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. J Hematother Stem Cell Res, 2000, 9 (6):841-848.
    
    44. Pittenger M F, Mackay A M, Beck S C, et al. Multilineage potential of adult human mesenchmal stem cells.Science,1999,284(5411):143-147.
    45.Mohammed S,Ullah,Andrew J,et al.The Plasma Membrane Lactate Transporter MCT4,but Not MCT1,Is Up-regulated by Hypoxia through a HIF-1α-dependent Mechanism.J Biol Chem.2006,281(14):9030-9037.
    46.牛丽丽,裴雪涛.骨髓间充质干细胞在心血管疾病治疗中的应用.中华内科杂志,2003,42(3):208-210.
    47.Aceves JL,Archundia A,Diaz G,et al.Stem cell perspectives in myocardial infarctions.Rev Invest Clin.2005,57(2):156-162.
    48.Kai C,Wollert,Helmut Drexler.Clinical Applications of Stem Cells for the Heart.Circulation Research.2005;96:151.
    49.Zimmet JM,Hare JM.Emerging role for bone marrow derived mesenchymal stem cells in myocardial regenerative therapy.Basic Res Cardiol.2005,100(6):471-481.
    50.Minguell JJ,Erices A.Mesenchymal stem cells and the treatment of cardiac disease.Exp Biol Med(Maywood).2006;231(1):39-49.
    51.宋来凤.从干细胞诱导成心肌细胞研究中的理论和技术瓶颈.中华心血管病杂志,2005,33(2):107-108.
    52.Mohyeddin Bonab M,Alimoghaddam K,Talebian F,et al.Mesenchymal stem cell and in vitro Aging.BMC Cell Biol.2006,7(1):14.
    53.Zhu W,Chen J,Cong X,et al.Hypoxia and serum deprivation-induced apoptosis in mesenchymal stem cells.Stem Cells.2006,24(2):416-425.
    54.KONG Hong-liang,LIU Ning-ning,HUO Xin,et al.Cell multiplication,apoptosis and p-Akt protein expression of bone mesenchymal stem cells of rat under hypoxia environment.NanJing.Journal of Nanjing Medical University,2007,21(4):233-239.
    55.孔宏亮,刘宁宁,张海鹏等.缺氧环境下大鼠骨髓间充质干细胞的凋亡及Fas、Fas-L 的表达.中国组织化学与细胞化学杂志.2007,16(5):538-543.
    56.Gross A.BCL-2 proteins:regulators of the mitochondrial apoptotic program.IUBMB Life.2001,52:231-236.
    57.Cory S,Adams JM.The bcl-2 family:regulators of the cellular life-or-death switch.Nat Rev Cancer.2002,2:647-656.
    58.Shroff EH,Snyder C,Chandel NS.Role of Bcl-2 family members in anoxia induced cell death.Cell Cycle.2007,6(7):807-809.
    59.Er E,Oliver L,Cartron PF,Juin P,Manon S,Vallette FM.Mitochondria as the target of the pro-apoptotic protein Bax.Biochim Biophys Acta.2006,1757(9-10):1301-1311.
    60.Antignani A,Youle RJ.How do Bax and Bak lead to permeabilization of the outer mitochondrial membrane? Curr Opin Cell Biol.2006,18(6):685-689.
    61.Budd RC.Death receptors couple to both cell proliferation and apoptosis.J Clin Invest. 2002, 109(4):437-441.
    
    62. Siegel RM, Fleisher TA. The role of Fas and related death receptors in autoimmune and other disease states. J Allergy Clin Immunol. 1999, 103(5 Pt 1):729-738.
    
    63. Nhan TQ, Liles WC, Schwartz SM. Physiological functions of caspases beyond cell death. Am J Pathol. 2006, 169(3):729-737.
    
    64. Nicholson DW. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ, 1999, 6:1028-1042.
    
    65. Isabelle Ernens, Sarah J, Goodfellow, et al. Hypoxic stress suppresses RNA polymerase III recruitment and tRNA gene transcription in cardiomyocytes. Nucleic Acids Res. 2006; 34(1): 286-294.
    
    66. Wollert KC, Drexler H. Helmut Drexler. Clinical Applications of Stem Cells for the Heart. Circulation Research. 2005; 96: 151.
    
    67. Persad S, Attwell S, GrayV, et al. Regulation of protein kinase B/Akt-serine473 phosphorylation by integrin-linked kinase: critical roles for kinase activilty and amino acids arginine 211 and serine343. J Biol Chen, 2001, 276(29)):27642-27469.
    
    68. Hemmings BA. Akt signaling: linking membrane events to life and death decisions. Science, 1997, 275: 628-630.
    
    69. Datta S R, Brunet A, Greenberg M E. cellular survival: aplay in three Akts. Genes, 1999, B, 2905-2907.
    
    70. Downward J. Mechanisms and consequences of activation of protein kinase B/Akt. Curr Opin Cell Biol, 1998, 10: 262-267.
    
    71. 霍金,孔宏亮,胡新华,等.pEGFP-C1/Akt体外转染骨髓间充质干细胞后对VEGF表达的影响, 中华实验外科杂志2007, 12(3): 206-211.
    
    72. Gnecchi M, He H, Noiseux N, et al.Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 2006,20(6):661-669.
    
    73. Lim SY, Kim YS, Ahn Y, et al.The effects of mesenchymal stem cells transduced with Akt in a porcine myocardial infarction model.Cardiovasc Res. 2006, 70(3):530-542.
    
    74. Braunwald E, Bristow MR. Congestive heart failure: fifty years of progress. Circulation. 2000; 102: IV14-IV23.
    
    75. Aydin M, Altin R, Ozeren A, et al. Cardiac autonomic activity in obstructive sleep apnea: time-dependent and spectral analysis of heart rate variability using 24-hour Hoher electrocardiograms. Tex Heart Inst J. 2004; 31(2):132-136.
    
    76. Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res. 2004;95:9-20.
    
    77. Amado LC, Saliaris AP, Schuleri KH, et al. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci USA. 2005; 102:11474-11479.
    
    78. Tomita S, Mickle DA, Weisel RD, et al. Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J Thorac Cardiovasc Surg. 2002;123:1132-1140.
    
    79. Gojo S, Gojo N, Takeda Y, Mori T, Abe H, Kyo S, et al. In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells. Exp Cell Res. 2003;288:51-59.
    
    80. Dai W, Hale SL, Martin BJ, et al. Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation. 2005; 112:214-223.
    
    81. KONG Hong-Hang, LIU Ning-ning, HUO Xin, et al. Cell multiplication, apoptosis and p-Akt protein expression of bone mesenchymal stem cells of rat under hypoxia environment. Journal of Nanjing Medical University, 2007,21(4): 233-239.
    
    82. Kong Hongliang, Zhang Liqun, Cao Shanfeng, et al. Apoptosis and proliferation of rat bone marrow mesenchymal stem cells transfected by Akt gene under hypoxia. Chinese journal of histochemistry and cytochemistry.2008;17(3):225-231.
    
    83. Noiseux N, Gnecchi M, Lopez-Ilasaca M, et al. Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther. 2006;14(6):840-850.
    
    84. Gnecchi M, He H, Noiseux N, et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 2006;20(6):661-669.
    
    85. Mirotsou M, Zhang Z, Deb A, et al. Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc Natl Acad Sci USA. 2007;104(5):1643-1648.
    
    86. Teraoka K, Hirano M, Yamaguchi K, et al. Progressive cardiac dysfunction in adriamycin-induced cardiomyopathy rats. Eur J Heart Fail. 2000;2(4):373-378.
    
    87. LI Shu-guo, MAO Xiao-bo, ZHANG Feng, et al. A Modified Rat Model of Dilated Cardiomyopathy Induced by Adriamycin. Chinese journal of comparative medicine. 2006;16(7):415-418.
    
    88. Yang XP, Liu YH, Rhaleb NE, et al. Echocardiographic assessment of cardiac function in conscious and anesthetized mice. Am J Physiol. 1999; 277: H1967-H1974.
    
    89. Lefrak EA, Pitha J, Rosenheim S, et al. A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer. 1973;32: 302-314.
    
    90. Singal PK, Iliskovic N. Doxorubicin-induced cardiomyopathy. N Engl J Med. 1998;339: 900-905.
    
    91. Arola OJ, Saraste A, Pulkki K, et al. Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis. Cancer Res. 2000; 60: 1789-1792.
    
    92. Kumar D, Kirshenbaum LA, Li T, et al. Apoptosis in adriamycin cardiomyopathy and its modulation by probucol. Antioxid Redox Signal. 2001;3: 135-145.
    
    93. Li T, Singal PK. Adriamycin-induced early changes in myocardial antioxidant enzymes and their modulation by probucol. Circulation. 2000; 102: 2105-2110.
    
    94. Siveski-Iliskovic N, Kaul N, Singal PK. Probucol promotes endogenous antioxidants and provides protection against adriamycin-induced cardiomyopathy in rats. Circulation. 1994;89: 2829-2835.
    
    95. H Lou, I Danelisen, P K Singal. Involvement of mitogen-activated protein kinases in adriamycin-induced cardiomyopathy. Am J Physiol Heart Circ Physiol. 2005; 288: H1925-H1930.
    
    96. Shake JG, Gruber PJ, Baumgartner WA, et al. Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg. 2002; 73:1919-1925.
    
    97. Al-Khaldi A, Al-Sabti H, Galipeau J, et al. Therapeutic angiogenesis using autologous bone marrow stromal cells: improved blood flow in a chronic limb ischemia model. Ann Thorac Surg. 2003; 75: 204-209.
    
    98. Al-Khaldi A, Eliopoulos N, Martineau D, et al. Postnatal bone marrow stromal cells elicit a potent VEGF-dependent neoangiogenic response in vivo. Gene Ther. 2003; 10: 621-629.
    
    99. Noritoshi Nagaya, Kenji Kangawa, Takefumi Itoh, et al. Transplantation of Mesenchymal Stem Cells Improves Cardiac Function in a Rat Model of Dilated Cardiomyopathy. Circulation. 2005;112:1128-1135.
    
    100.Kamihata H, Matsubara H, Nishiue T, et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation. 2001; 104:1046-1052.
    
    101. Tateishi-Yuyama E, Matsubara H, Murohara T, et al. Therapeutic Angiogenesis using Cell Transplantation (TACT) Study Investigators. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002; 360: 427-435.
    
    102.Kinnaird T, Stabile E, Burnett MS, et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res. 2004; 94: 678-685.
    
    103.Nakamura T, Mizuno S, Matsumoto K, et al. Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. J Clin Invest. 2000; 106:1511-1519.
    
    104. Li Y, Takemura G, Kosai K, et al. Postinfarction treatment with an adenoviral vector expressing hepatocyte growth factor relieves chronic left ventricular remodeling and dysfunction in mice. Circulation. 2003; 107: 2499-2506.
    
    105. Tokunaga N, Nagaya N, Shirai M, et al. Adrenomedullin gene transfer induces therapeutic angiogenesis in a rabbit model of chronic hind limb ischemia: benefits of a novel nonviral vector, gelatin. Circulation. 2004; 109: 526-531.
    
    106. Bristow M. Antiadrenergic therapy of chronic heart failure: surprises and new opportunities. Circulation. 2003; 107:1100-1102.
    
    107.Kaye D M, Vaddadi G, Gruskin S L, et al. Reduced myocardial nerve growth factor expression in human and experimental heart failure. Circ Res. 2000;86:E80-E84.
    
    108.Himura Y, Felten S Y, Kashiki M, et al. Cardiac noradrenergic nerve terminal abnormalities in dogs with experimental congestive heart failure. Circulation. 1993;88:1299-1309.
    
    109.Kaye D M, Lambert G W, Lefkovits J, et al. Neurochemical evidence of cardiac sympathetic activation and increased central nervous system norepinephrine turnover in severe congestive heart failure. J Am Coll Cardiol. 1994;23:570-578.
    
    110.Eisenhofer G, Friberg P, Rundqvist B, et al. Cardiac sympathetic nerve function in congestive heart failure. Circulation. 1996; 93:1667-1676.
    
    111. Grossman P M, Linares O A, Supiano M A, et al. Cardiac-specific norepinephrine mass transport and its relationship to left ventricular size and systolic performance. Am J Physiol. 2004; 287:H878-H888.
    
    112. Liang CS, Mao W, Iwai C, et al. Cardiac sympathetic neuroprotective effect of desipramine in tachycardia-induced cardiomyopathy. Am J Physiol Heart Circ Physiol. 2006;290(3):H995-1003.
    
    113.Kreusser MM, Buss SJ, Krebs J, et al. Differential expression of cardiac neurotrophic factors and sympathetic nerve ending abnormalities within the failing heart. J Mol Cell Cardiol. 2008;44(2):380-387.
    114. Kristen AV, Kreusser MM, Lehmann L, et al. Preserved norepinephrine reuptake but reduced sympathetic nerve endings in hypertrophic volume-overloaded rat hearts. J Card Fail. 2006;12(7):577-583.
    115.Rosenwinkel ET, Bloomfield DM, Arwady MA, et al. Exercise and autonomic function in health and cardiovascular disease. Cardiol Clin. 2001;19:369-387.
    
    116. Binkley PF, Nunziata E, Haas GJ, et al. Parasympathetic withdrawal is an integral component of autonomic imbalance in congestive heart failure: demonstration in human subjects and verification in a paced canine model of ventricular failure. J Am Coll Cardiol. 1991;18:464-472.
    
    117. Packer M. The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J Am Coll Cardiol. 1992;20:248-254.
    118. Serra SM, Costa RV, Teixeira De Castro RR, et al. Cholinergic stimulation improves autonomic and hemodynamic profile during dynamic exercise in patients with heart failure. J Card Fail. 2009;15(2):124-129.
    119.Androne AS, Hryniewicz K, Goldsmith R, et al. Acetylcholinesterase inhibition with pyridostigmine improves heart rate recovery after maximal exercise in patients with chronic heart failure. Heart. 2003;89(8):854-858.
    
    120. Mabe AM, Hoard JL, Duffourc MM, et al. Localization of cholinergic innervation and neurturin receptors in adult mouse heart and expression of the neurturin gene. Cell Tissue Res. 2006; 326:57-67.
    
    121.G.J O Evans, M A Cousin. Tyrosine phosphorylation of synaptophysin in synaptic vesicle recycling. Biochem Soc Trans. 2005; 33(Pt 6): 1350-1353.
    
    122. Dlugos CA, Pentney RJ. Quantitative Immunocyto-chemistry of GABA and synaptophysin in the cerebellar cortex of old ethanol-fed rats. Alcohol Clin Exp Res. 2002; 26:1728-1733.
    
    123.Benowitz LI, Shashoua VE, Yoon M. Specific changes in rapidly transported proteins during regeneration of goldfish optic nerve. J Neurosci. 1981; 1: 300-307.
    
    124.Benowitz LI, Perrone-Bizzozero NI, Finklestein SP, et al. Localization of the growth-associated phosphoprotein GAP-43 (B-50, F1) in the human cerebral cortex. J Neurosci.1989;9: 990-995.
    
    125. De la Monte S M, Federoff H J, Ng S C, et al. Brain Res Dev Brain Res.1989; 46:161-168.
    
    126. Mahalik T J, Carrier A, Owens G P, et al. Brain Res Dev Brain Res. 1992;67:75-83.
    127.Namgung U, Routtenberg A. Eur J Neurosci.2000; 12;3124-3136.
    
    128. Benowitz LI, Routtenberg A. GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci. 1997;20:84-91.
    129.Schmidt-Kastner R, Bedard A, Hakim A. Transient expression of GAP-43 within the hippocampus after global brain ischemia in rat. Cell Tissue Res. 1997;288:225-238.
    
    130. Li WY, Choi YJ, Lee PH, et al. Mesenchymal stem cells for ischemic stroke: changes in effects after ex vivo culturing. Cell Transplant. 2008;17(9):1045-1059.
    
    131. Jin GZ, Cho SJ, Choi EG, et al. Rat mesenchymal stem cells increase tyrosine hydroxylase expression and dopamine content in ventral mesencephalic cells in vitro. Cell Biol Int. 2008 Nov;32(11):1433-1438.
    
    132. Shibata T, Naruse K, Kamiya H, et al. Transplantation of bone marrow-derived mesenchymal stem cells improves diabetic polyneuropathy in rats. Diabetes. 2008 Nov;57(11):3099-3107.
    
    133. Leslie TA, Emson PC, Dowd PM, et al. Nerve growth factor contributes to the up-regulation of growth-associated protein 43 and preprotachykinin A messenger RNAs in primary sensory neurons following peripheral inflammation. Neuroscience. 1995;67(3): 753-761.
    
    134. Mohiuddin L, Fernandez K, Tomlinson DR, et al. Nerve growth factor and neurotrophin-3 enhance neurite outgrowth and up-regulate the levels of messenger RNA for growth-associated protein GAP-43 and T alpha 1 alpha-tubulin in cultured adult rat sensory neurones. Neurosci Lett. 1995;185(1):20-23.
    
    135. Huang F, Dong X, Zhang L, et al. The neuroprotective effects of NGF combined with GM1 on injured spinal cord neurons in vitro. Brain Res Bull. 2009. 6;79(1):85-88.
    
    136. Lutz BS, Wei FC, Ma SF, et al. Effects of insulin-like growth factor-1 in motor nerve regeneration after nerve transection and repair vs. nerve crushing injury in the rat. Acta Neurochir (Wien). 1999;141(10):1101-1106.
    
    137. Piehl F, Hammarberg H, H(o|¨)kfelt T, et al. Regulatory effects of trophic factors on expression and distribution of CGRP and GAP-43 in rat motoneurons. J Neurosci Res.1998;51(1):1-14.
    138. Huang ZY, Wu Y, Burke SP, et al. The 43000 growth-associated protein functions as a negative growth regulator in glioma. Cancer Res. 2003;63(11):2933-2939.
    
    139.Yang H, Shaw G, Raizada MK. ANG II stimulation of neuritogenesis involves protein kinase B in brain neurons. Am J Physiol Regul Integr Comp Physiol. 2002;283(1):R107-114.
    1.Friedenstein AJ,Chailakhyan RK,Gerasimov UV.Bone marrow osteogenic stem cells:in vitro cultivation and transplantation in diffusion chambers.Cell Tissue Kinet.1987,20(3):263-72.
    2.Caplan AI.Mesenchymal stem cells.J Orthop Res.1991,9(5):641-50.
    3.Minguell JJ,Erices A,Conget P.Mesenchymal stem cells.Xp Biol Med.2001.226(6):507-520.
    4.Wexler SA,Donaldson C,Denning Kendall P,et al.Adult bone marrow is a rich source of human mesenchymal stem cells but umbilical cord and mobilized adult blood are not.Br J Haematol,2003,121(2):368-374.
    5.Zuk PA,Zhu M,Mizuno H,et al.Multilineage cells from human adipose tissue:implications for cell-based therapies.Tissue Eng,2001,7(2):211-228.
    6.张卫泽,陈跃武,陈永清,等.5-氮杂胞苷体外诱导成人脂肪间充质干细胞分化为心肌样细胞的初步研究.中国循环杂志,2006,3139:228-231.
    7.Bukowiecki LJ,Geloen A,Collet AJ.Proliferation and differentiation of brown adipocytes from interstitial cells during cold acclimation.Am J Physiol,1986,250(6 Pt 1):C880-C887.
    8.Rajkumar K,Modric T,Murphy LJ.Impaired adipogenesis in insulin-like growth factor binding protein-1 transgenic mice.J Endocrinol,1999,162(3):457-465.
    9.Zavifler NJ,Marinova L,Adams G,et al.Mesenchymal precursor cells in the blood of normal individuals.Arthritis Res,2000,2(6):477-48.
    10.Erices A,Conget PA,Mingue JJ.Mesenchymal progenitor cells in human umbilical cord blood.Br J Haematology,2000,109(1):235-242.
    11.Oscar K,Tom K,Wei MC,et al.Isolation of multipotent mesenchymal stem cells from umbilical cord blood.Blood,2004,103(5):1669-1675.
    12.Campagnoli C,Roberts IA,Kumar S,et al.Identification of mesenchymai stem/progenytor cells in human first2trimester fetal blood,liver,and bone marrow.Blood,2001,98(8):2396-2402.
    13.王丽娟,张叶萍,王金福,等.脐血间充质干细胞的生物学特征及其对造血干/祖细胞体外扩增的支持作用.中华血液学杂志2005(2).26(2):65-68.
    14.薛群,苗宗宁,曲静,等.胎盘间充质干细胞向神经细胞诱导的实验研究.江苏医药杂志2004,30(11):817-19.
    15.Kaviani A,Perry TE,Barnes CM,et al.The placenta as a cell source in fetal tissue engineering.J Pediatric Surg,2002,37:995-999.
    16.Noort WA,Kruisselbrink AB,Anker PS,et al.Mesenchymal stem ceils promote engraftment of human umbilical cord blood2derived CD34 + cells in NOD/ SCID mice.Exp Hematol,2002,30(8):870-878.
    17.Almeidar Porada G,El Shabrawy D,Porada C,et al.Differentiative potential of human metanephric mesenchymal cells.Exp Hematol,2002,30(12):1454-1462.
    18.Jiang Y,Vaessen B,Lenvik T,et al.Multipotent progenitor cells can be isolated from postnatal murine bone marrow,muscle,and brain.Exp Hematol,2002,30:896-904.
    19.Williams JT,Southerland SS,Souza J,et al.Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes.Am Surg,1999,65(1):22-26.
    20.Grigoriadis AE,Heersche JN,Aubin JE.Differentiation of muscle,fat,cartilage and bone from progenitor cells present in a bone-derived clonal cell population:effect of dexamethasone.J Cell Biol,1988,106(6):2139-2151.
    21.Beauchamp JR,Morgan JE,Pagel CN,et al.Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source.J Cell Biol,1999,144(6):1113-1122.
    22.Baroffio A,Bochaton-Piallat ML,Gabbiani G,et al.Heterogeneity in the progeny of single human muscle satellite cells.Differentiation,1995,59(4):259-268.
    23.Schultz E.Satellite cell proliferative compartments in growing skeletal muscles.Dev Biol,1996,175(1):84-94.
    24.Bernard-Beaubois K,Hecquet C,Houcine O,et al.Culture and characterization of juvenile rabbit tenocytes.Cell Biol Toxicol,1997,13(2):103-113.
    25.Gronthos S,Zannettino AC,Graves SE,et al.Differential cell surface expression of the STRO-1 and alkaline phosphatase antigens on discrete developmental stages in primary cultures of human bone cells.J Bone Miner Res,1999,14(1):47-56.
    26.Liu F,Malaval L,Gupta AK,et al.Simultaneous detection of multiple bone-related mRNAs and protein expression during osteoblast differentiation:polymerase chain reaction and immunocytochemical studies at the single cell level.Dev Biol,1994,166(1):220-234.
    27.Hung S C,Chen N J,Hsieh SL,et al.Isolation and characterization of size-sieved stem cells from human bone marrow.Stem Cells,2002,20(3):249-258.
    28.颉玉欣,张进贵,郭晓华,等.体外分离大鼠骨髓间充质干细胞方法研究.河北医科大学学报,2004,25(3):136-156.
    29.何朝荣,张群林,黄从新,等.兔骨髓间充质干细胞的筛选与体外培养.郧阳医学院学报,2003,22(1):9.
    30.Bruder SP,Jaiswal N,Haynesworth SE.Growth kinetic,self-renewal,and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation.J Cell Biochem,1997,64(2):278-294.
    31.Colter DC,Class R,Digirolamo CM,et al.Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow.Proc N atl,A cad Sci.USA,2000,97(7):3213-3218.
    32.Javazon EH,Colter DC,Schwarz EJ,et aI.Rat marrow stromal cells are more sensitive to plating density and expand more rapidly from single-cell-derived colonies than human marrow stromal cells.Stem Cells,2001,19(3):219-225.
    33.艾国平,粟永萍,闫国和,等.骨髓间充质干细胞的分离与培养.第三军医大学学报23(5):553-555.
    34.Bianco P,Gehron Robey P.Marrow stromal stem cells.J Clin Invest,2000,105(12):1663-1668.
    35.Pittenger M F,Mackay A M,Beck S C,et al.Multilineage potential of adult human mesenchmal stem cells.Science,1999,284(5411):143-147.
    36.Colter DC,Sekiya I,Prockop DJ.Identification of a subpopulation of rapid lyself-renewing and multipotential adult stem cells in colonies of human marrow stromal cells.Proc Natl Acad Sci,2001,98(14):7841-7845.
    37.Jiang Y,Jahagirdar B,Reinhardt RL,et al.Pluripotent nature of adult marrow derived mesenchymal stem cells.Nature,2002,418:41-49.
    38.桂莉,范文辉,李露斯,等.大鼠骨髓间充质干细胞生物学特性及分化潜能研究,重庆医学2004,33(10).1509-4.
    39.Pittenger MF,Mackay AM,Beck SC,et al.Multilineage potential of adult human mesenchymal stem cells.Science,1999,284:143-147.
    40.方利君,付小兵,王玉新,等.体外诱导骨髓间充质干细胞分化为上皮细胞的研究.中华实验外科杂志,2004,21(2):171-173.
    41.Reyes M,Dudek A,Jahagirdar B,et al.Origin of endothelial progenitors in human postnatal bone marrow.J Clin Invest,2002,109(3):337-346.
    42.Kopen GC,Prockop DJ,Phinney DG.Marrow stromal cells migrate through out forebrain and cerebellum,and they ifferentiate into astrocytes after injection into neonatal mouse brains.Proc Natl Acad Sci USA,1999,96(19):10711-10716.
    43.Deans RJ,Moseley AB.Mesenchymal stem cells:biology and potential clinical uses.Exp Hematol,2000,28(8):875-884.
    44.Azizi SA,Stokes D,Augelli BJ,et al.Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats-similarities to astrocyte grafts.Proc Natl Acad Sci USA,1998,95(7):3908-3913.
    45.Lu D,Mahmood A,Wang L,et al.Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. Neuroreport,2001,12:559-563.
    
    46. Sanchez Ramos J, Song S, Cardozo Pelaez F, et al. Adult bone marrowstromal cells differentiate into neural cells invivo. Exp Neurol, 2000, 164(2):247-256.
    
    47. Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone-marrow stromal cells differentiate into neurons J Neurosci Res, 2000, 61(4):364-370.
    
    48. Mackenzie TC, Flake AW. Multilineage differentiation of human MSC after in utero transplantation. Cytotherapy, 2001, 3(5):403-405.
    
    49. Schwartz RE, Reyes M, Koodie L, et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest, 2002, 109(10): 1291-1302.
    
    50. Saito T, Kuang JQ, Bittira B, et al. Xenotransplant cardiac chimera: immune tolerance of adult stem cells [J]. Ann Thorac Surg, 2002, 74(1):19-24.
    
    51. Toma C, Pittenger MF, Cahill KS, et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. 2002, 105(1):93-8.
    
    52. Liechty KW, Mackenzie TC, Shaaban AF, et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep.Nat Med, 2000, 6(11):1282-1286.
    
    53. Bartholomew A, Sturgeon C, Siatskas M, et al.Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo.Exp Hematol,2002,30(1):42-48.
    
    54. Mclntosh K, Bartholomew A.Stromal cell modulation of the immune system. Graft, 2000, 3:824-328.
    
    55. Ricalton NS, Mclntosh KR.Induction of T cell hyporesponsivness by human mesenchymal stem cell.Blood, 1999,332b.
    
    56. Tse WT, Beyer W, Pendleton JD, et al.Bone marrow-derived Mesenchymal stem cells suppress T cell activation without inducing allogeneic anergy. Blood, 2000, 96:241a.
    
    57. Nicola MD, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood.2002, 99(10):3838-3843.
    
    58. Mclntosh KR, Klyushnenkova E, Shustova V, et al. Suppression of alloreactive T cell responses by human mesenchymal stem cells involves CD8~+ cells. Blood, 1999, 94:133a.
    
    59. Krampera M, Glennie S, Dyson J, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide, Blood, 2003, 101(9):3722-3729.
    
    60. Blanc KL, Tammik L, Sundherg B, et al. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex.Scand J Immunol,2003.57(1):17-20.
    61.Majumdar MK,Thiede MA,Mosca JD,et al.Phenotypic and functional comparison of cultures of marrow2derived mesenchymal stem cells(MSCs) and stromal cells.J Cell Physiol,1998,176(1):57-66.
    62.Majumdar MK,Thiede MA,Haynesworth SE,et al.Human marrow-derived mesenchymal stem cells(MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages.J Hematother Stem Cell Res,2000,9(6):841-848.
    63.Lazarus HM,Haynesworth SE,Gerson SL,et al.Exvivo expansion and Subsequent infusion of human bone marrow-derived stromal progenitor cells(mesenchymal progenitor cells):implications for therapeutic use.Bone Marrow Transplant,1995,16(4):557-564.
    64.Koc ON,Gerson SL,Cooper BW,et al.Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymyl stem cells in advanced breast cancer patients receiving high-dose chemotherapy.J Clin Oncol,2000,18(2):307-316.
    65.冯善伟,晓黎,李中,等.Brdu体外标记大鼠骨髓间充质干细胞的研究.第一军医大学学报,2005,25(2):187-191.
    1.Beltrami AP,Urbanek K,Kajstura J,et al.Evidence that human cardiac myocytes divide after myocardial infarction.N Engl J Med,2001,344(23):1750-1757 ).
    2.张鹏,陈世益.成肌细胞在肌肉骨骼系统疾病基因治疗中的应用研究进展.中国运动医学杂志,2003,22(5):483.
    3.王劲,郭朝华.5-氮胞苷诱导间充质干细胞分化为成肌细胞的实验研究.中华创伤杂志,2003,19(4):207.
    4.Pagani FD,DerSimonian H,Zawadzka A,et al.Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans.Histological analysis of cell survival and differentiation.J Am Coil Cardiol,2003,41:879-888.
    5.Menasche P,Hagege AA,Scorsin M,et al.Myoblast transplantation for heart failure.Lancet,2001,357(2):279-280.
    6.Yao Shou-nan,Kurachi K.Implantation myoblasts not only fuse with myofibers but also survive as muscle precursor cells.J Cell Sci,1993,105(Pt3):957-963.
    7.Van meter CH Jr,Claycombw C,Delcarpio JB,et al.Myoblast transplantation in the porcine model:apotential technique for myocardial repair.J Thorac Cardiovasc Surg,1995,110(5):1442-1448.
    8.Taylor DA,Atkins BZ,Hungspreugs P,et al.Regenerating functional myocardium:improved performance after skeletal myoblast transplantation.Nat Med,1998,4(8):929-933.
    9.Murry C E,Wiseman R W,Schwartz S M,et al.Skeletal myoblast transplantation for repair of myocardial necrosis.J clin Invest,1996,98(11):2512-2513.
    10.Hagege AA,Crrin C,Menasche P,et al.Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy.Lancet,2003,361(9356):491-492.
    11.Robinson SW,Cho PW,Levitsky HI,et al.Arterial delivery of genetically labelled skeletal myoblasts to the murine heart:long-term survival and phenotypic modification of implanted myoblasts.Cell Transplant,1996,5(1):77-91.
    12.Atkins BZ,Lewis CW,Kraus WE,et al.Intracardiac transplantation of skeletal myoblasts yields two populations of striated cells in situ.Ann Thorac S urg,1999,67(1):124-129.
    13.Suzuki K,Smolenski RT,Jayakumar J,et al.Heat shock treatment enhances graft cell survival in skeletal myoblast transplantation to the heart.Circulation,2000,102(19Supp13):216-221.
    14.Reinecke H,Poppa V,Murry CE.Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting.J Mol Cell Cardiol,2002,34(1):124-129.
    15. M Menasche P, Hagege AA, Vil quin JT, et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction.J Am Coll Cardial, 2003,41(7):1078-1083.
    
    16. Zhang F, Gao X, Yiang ZJ, et al. Cellular cardiomyoplasty: a preliminary clinical report. Cardiovasc Radiat Med, 2003, 4:39-42.
    
    17. Gepstein L. Cardiovascular therapeutic aspects of cell therapy and stem cells. Ann N Y Acad Sci. 2006 Oct; 1080:415-25.
    
    18. Klug MG, Soonpaa MH,Koh GY.et al. Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. .J Clin Invest, 1996,98(1):216-224.
    
    19. Muller M,Fleischmann BK,Selbert S,et al. Selection of ventricular-like cardiomyocytes from ES cells in vitro. .FASEB J, 2000, 14(15):2540-2548.
    
    20. Gourdie RG, Kubalak S, Mikawa T. Conducting the embryonic heart: orchestrating development of specialized cardiac tissues. Trends Cardiovasc Med, 1999,9(122): 18-26.
    
    21. Miyagawa S, Sawa Y, Taketani S, et al. Myocardial regeneration therapy for heart failure: hepatocyte growth factor enhances the effect of cellular cardio myoplasty. Circulation, 2002, 105(21):2556-2561.
    
    22. Muller-Ehmsen J, Peterson KL, Redes L, et al. Rebuilding adamaged heart: long-term surviva of transplanted neonatal rat cardiomyocytes after myocardial infarction and effecton cardiac function. Circulation, 2002, 105(14):1720-1726.
    
    23. Kehat I, Kenyagin-Karsenti D, Snir M, et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest, 2001, 108(3): 407-414.
    
    24. Kamihata H, Matsubara H, Nishiue T, et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines.Circulation, 2001, 104:1046-1052.
    
    25. Strauer BE, Brehm M, Zeus T, et al.Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation, 2002, 106:1913-1938.
    
    26. Tse HF, Kwong YL, Chan J K, et al. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet, 2003, 361:47-49.
    
    27. Perin EC, Dohmann HF, Borojevic R, et al. Transendocardial,autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation, 2003, 107: 2294-2302.
    
    28. Assmus B, Schachinger V, Teupe C, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation, 2002, 106:3009-3017.
    
    29. Sakai T, Li RK, Weisel RD, et al. Autologous heart cell transplantation improves cardiac function after myocardial injury. Ann Thorac Surg, 1999, 68(18):2074-2081.
    
    30. Malouf NN, Coleman WB, Grisham JW, et al. Adult-derived stem cells from the liver become myocytes in the heart invivo. Am J Pathol, 2001, 158:1929-1935.
    
    31. Condorelli G, Borello U, DeAngelis L, et al. Cardiomyocytes induce endothelial cellsto transdifferentiate into cardiac muscle: implications for myocardium regeneration. Proc Natl Acad Sci USA 2001, 98(12):10733-10738.
    
    32. Jackson KA, Majka SM, Wang H, et al. Regeneraion of ischemia cardic muscle and vascular endothelium by adult stem cells. J Clin Invest, 2001, 107:1395-1402.
    
    33. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature, 2001, 410:701-705.
    
    34. Kawamoto A, Gwon HC, Iwaguro H, et al. Therapeutic potential of exvivo expanded endothelial progenitor cells for myocardial ischemia. Circulation, 2001, 103(5):634-637.
    
    35. Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med, 2001, 7(3):430-436.
    
    36. Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells invitro. J Clin Invest, 1999, 103:697-705.
    
    37. Fukuda K. Molecular characterization of regenerated cardiomyocytes derived froma dult mesenchymal stem cells. Congenit Anom Kyoto, 2002, 42(1): 1-9.
    
    38. Wakitani S, Saito T, Caplan AI.Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-aza cytidine.Muscle Nerve, 1995, 18(12):1417-1426.
    
    39. Tomita S, Li RK, Weisel RD, et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation, 1999, 100(Suppl):247-256.
    
    40. Xie C, Jia B, Xiang Y, et al. Support of hMSCs transduced with TPO/FL genes to expansion of umbilical cord CD34+ cells in indirect co-culture. Cell Tissue Res. 2006, 4(1):18-25.
    
    41. Makmo S, Fukuda K, Miyoshi S, et al.Cardiomyocytes can be generated from marrow stromal cells in vitrol999, 103(5):697-705.
    
    42. Tuma C, Pittenger MF, Cahill KS, et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart.Circulation, 2002, 105(1):93-98.
    
    43. Fukuda K. Reprogramming of bone marrow mesenchymal stem cells into cardiomyocytes. CR Biol, 2002, 325(10):1027-1038.
    44. Tomita S, Nakatani T, Fukuhara S, et al. Bone marrow stromal cells contract synchronously with cardiomyocytes in a coculture system. Jpn J Thorac Cardiovasc Surg, 2002, 50(8):321-324.
    
    45. Wang JS, Shum-Tim D, Galipeau J, et al.Marrow stromal cells for cellular cardiomyoplasty: feasibility and potential clinical advantage.J Thorac Cardiovasc Surg, 2000,120(6):999-1005.
    
    46. Wang JS, Shum-TimD, Chedrawy E, et al. Thecoronary delivery marrow stromal cells for myocardial regeneration: pathophysiologic and therapeutic implications. J Thorac Cardiovasc Surg, 2001 122(4): 699-705.
    
    47. Ohnishi S, Yasuda T, Kitamura S, et al. Effect of Hypoxia on Gene Expression of Bone Marrow-derived Mesenchymal Stem Cells and Mononuclear Cells. Stem Cells. 2007, 50(8): 324-329.
    
    48. Shinji Tomita, Ren-Ke Li, Richard D, et al. Autologous transplantation of bone marrow cells improves damaged heart function. J Circulation, 1999;100(SII): 247-256.
    
    49. Tomita S, Mickle DA, Weisel RD, et al. Improved heart function with myogensis and angiogenesis after autologousporcine bone marrow stromal cell transplantation. J Thorac Cardiovasc Surg, 2002; 123(6):1132.
    
    50. Fukuhara S, Tomita S, Yamashiro S, et al. Direct cell-cell interaction of cardiomyocytes is key for bone marrow stromal cells to go into cardiac lineage in vitro. J Thorac Cardiovasc Surg, 2003, 125(6):1470-1480.
    
    51. Rangappa S, Entwistle JW, Wechsler AS, et al. Cardiomyocyte-mediated contact programs human mesenchymal stem cells to express cardio genic phenotype. J Thorac Cardiovasc Surg, 2003, 126(1):124-132.
    
    52. Rangappa S, Reddy VG, Bongso A, et al. Transformation of the adult human mesenchymal stem cells into cardiomyocyte like cells invivo. Cardiovasc Eng, 2002, 2(1): 1567-1574.
    
    53. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science, 1999, 284(2): 143-147.
    
    54. Behfar A, Zingman LV, Hodgson DM, et al, Stem cell differentiation requires a paracrine pathway in the heart. FASEB, 2002, 16(12):1558-1566.
    
    55. Badorff C, Brandes RP, Popp R, et al, Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes, Circulation,2003,107(7), 1024-1032.
    
    56. Akhyari P, FedakPWM, WeiselRD, et al. Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation, 2002, 106(12suppl):137-042.
    
    57. Min JY, Sullivan MF, Yang Y, et al. Significant improvement of heart function by cotransplantation of human mesenchymal stem cells and fetal cardiomyocytes in post infarcted pigs. Ann of Thorac Surg, 2002, 74(5): 1568-1575.
    
    58. Barbash IM, Chouraqui P, BaronJ, et al. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation, 2003, 108:863-868.
    
    59. Fuchs S,Baffour R,Zhou YF,et al.. Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Co Cardiol, 2001, 376:1726-1732.
    
    60. Losordo DW,Vale PR,Hendel RC, et al. Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. .Ciculation, 2002, 105(17):2012-2018.
    
    61. Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow cells repair the infarcted heart,improving function and survival.Proc Natl Acad Sci USA, 2001,1998: 10344-10349.
    
    62. Hamano K, Nishida M, Hirata K, et al. Local implantation of autologous bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease clinical trial and preliminary results. Jpn CircJ, 2001, 65:845-847.
    
    63. Stamm C, Westphal B, Kleine HD, et al. Autologou bone-marrow stem-cell transplantation for myocardial regeneration. Lancet.2003, 361:45-46.
    
    64. Bodo E, Michael B, Tobies Z, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans.Circulation, 2002, 106:1913-1918.
    
    65. Birigit A, Volker S, Claudius T, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction. Circulation, 2002, 106: 3009-3017.
    
    66. Bayes-Genis A, Salido M, Sol Ristol F, et al. Hostcell-derived cardiomyocytes in sex-mismatch cardiac allografts. Cardiovasc Res, 2002, 56(3):404-410.
    
    67. Strauer BE, Brehm M, Zeu S T, et al. Intracoronary human autologous stem cells transplantation for myocardial regeneration following myocardial infarction. Dtsch Med Wochenscher, 2001, 126(34-35): 932-938.
    
    68. Seeger FH, Tonn T, Krzossok N, et al. Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction. Eur Heart J. 2007, 13(2):207-214.
    
    69. Chen S, Liu Z, Tian N, et al. Intracoronary transplantation of autologous bone marrow mesenchymal stem cells for ischemic cardiomyopathy due to isolated chronic occluded left anterior descending artery. J Invasive Cardiol. 2006, 18(11):552-6.
    
    70. Katritsis DG, Sotiropoulou P, Giazitzoglou E, Electrophysiological effects of intracoronary transplantation of autologous mesenchymal and endothelial progenitor cells. Europace, 2007, 21(5): 1101-1108.
    71. Tomita Y, Makino S, Hakuno D, et al. Application of mesenchymal stem cell-derived cardiomyocytes as bio-pacemakers: current status and problems to be solved. Med Biol Eng Comput. 2007, 30(4): 138-145.
    
    72. Chang MG, Tung L, Sekar RB, et al. Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation. 2006, 113(15):1832-41.
    
    73. Wang Y, Haider HK, Ahmad N,Combining pharmacological mobilization with intramyocardial delivery of bone marrow cells over-expressing VEGF is more effective for cardiac repair. J Mol Cell Cardiol. 2006, 106:1913-1918.
    1. Kamihata H, Matsubara H, Nishiue T, et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines.Circulation, 2001, 104:1046-1052.
    
    2. Strauer BE, Brehm M, Zeus T, et al.Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation, 2002, 106: 1913-1938.
    
    3. Tse HF, Kwong YL, Chan J K, et al. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet, 2003, 361:47-49.
    
    4. Perin EC, Dohmann HF, Borojevic R, et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation, 2003, 107:2294-2302.
    
    5. Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow cells repair the infarcted heart,improving function and survival.Proc Natl Acad Sci USA, 2001,1998: 10344-10349.
    
    6. Hamano K, Nishida M, Hirata K, et al. Local implantation of autologous bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease clinical trial and preliminary results. Jpn CircJ, 2001, 65:845-847.
    
    7. Stamm C, Westphal B, Kleine HD, et al. Autologou bone-marrow stem-cell transplantation for myocardial regeneration. Lancet.2003,361:45-46.
    
    8. Birigit A, Volker S, Claudius T, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction. Circulation, 2002, 106: 3009-3017.
    
    9. Bayes-Genis A, Salido M, Sol Ristol F, et al. Hostcell-derived cardiomyocytes in sex-mismatch cardiac allografts. Cardiovasc Res, 2002, 56(3):404-410.
    
    10. Strauer BE, Brehm M, Zeu S T, et al. Intracoronary human autologous stem cells transplantation for myocardial regeneration following myocardial infarction. Dtsch Med Wochenscher, 2001, 126(34-35): 932-938.
    
    11. Seeger FH, Tonn T, Krzossok N, et al. Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction. Eur Heart J. 2007, 13(2):207-214.
    
    12. Chen S, Liu Z, Tian N, et al. Intracoronary transplantation of autologous bone marrow mesenchymal stem cells for ischemic cardiomyopathy due to isolated chronic occluded left anterior descending artery. J Invasive Cardiol. 2006, 18(11):552-6.
    
    13. Katritsis DG, Sotiropoulou P, Giazitzoglou E, Electrophysiological effects of intracoronary transplantation of autologous mesenchymal and endothelial progenitor cells.Europace,2007,21(5):1101-1108.
    14.Tomita Y,Makino S,Hakuno D,et al.Application of mesenchymal stem cell-derived cardiomyocytes as bio-pacemakers:current status and problems to be solved.Med Biol Eng Comput.2007,30(4):138-145.
    15.Chang MG,Tung L,Sekar RB,et al.Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model.Circulation.2006,113(15):1832-41.
    16.Wang Y,Haider HK,Ahmad N,Combining pharmacological mobilization with intramyocardial delivery of bone marrow cells over-expressing VEGF is more effective for cardiac repair.J Mol Cell Cardiol.2006,106:1913-1918.
    17.宋来凤.从干细胞诱导成心肌细胞研究中的理论和技术瓶颈.中华心血管病杂志,2005,33(2):107-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700