偏微分方程数值计算及增量未知元方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于微分方程的有限差分技术以及一致网格增量未知元方法,分别对一维和二维具有时间依赖系数的热方程以及一类一般的三维对流扩散方程进行了不同的研究。由于一致网格增量未知元方法可以很好地降低矩阵条件数,所以该方法的优越性在我们的理论分析和数值实验中都很好地体现了出来。非一致网格作为一种更为灵活的形式,对于许多问题,特别是边界层问题的求解,有着一致网格所无法比拟的优势。相应地非一致网格上的增量未知元方法便自然地引起了我们的注意。所以在本文的后半部分,我们从理论方面,以Dirichlet问题为例,对一维和二维非一致网格增量未知元方法下的系数矩阵条件数进行了详细得分析,并用数值算例对我们的理论分析进行了验证。
     对于具有时间依赖系数的一维热方程,我们提出了一类增量未知元型半隐θ格式,仔细分析了这一新格式的稳定性,并对其误差进行了估计。结果显示,当θ趋近于1/2时,格式的稳定性条件会明显改善.而当θ趋近于零时,我们得到了一个能帮助我们恢复初始格式误差的条件。对于二维情形,我们依然用有限差分进行离散,构造了一类交替方向增量未知元型半隐(ADIUSI)格式。并在傅立叶方法的帮助下,对格式的稳定性进行了详细的分析。数值试验验证了理论分析的正确性,其结果表明这一新的格式,在某些问题上,会比经典的交替方向格式更为有效。
     对于一类一般形式的三维对流扩散方程,在有限差分和增量未知元方法下,可以得到一个增量未知元型正定但非对称的线性方程组。其系数矩阵条件数要远远优于不用增量未知元方法的情形。考虑到该方法的这一优点,我们在文中将其与几种经典的迭代方法相结合,来求解上述线性系统.并从理论上对该系统的增量未知元型系数矩阵条件数进行了估计,然后通过数值试验验证了这几种增量未知元型迭代方法的有效性。
     我们注意到上述的差分离散和增量未知元方法都是在一致网格上进行的,然而对于许多问题,例如边界层问题、流体力学问题等,一致网格上的差分离散已不能满足它们求解精度的需要。很自然地,要考虑非一致网格上的差分离散以及相应地非一致网格增量未知元方法。随之而来的问题是,这种非一致网格增量未知元方法能否也像一致网格增量未知元方法那样,能有效降低系数矩阵条件数?我们在本文后半部分对于该方法的一维和二维情形都进行了详细分析。理论结果表明该方法依然可以很有效地降低矩阵条件数,数值试验结果与我们的理论分析完全吻合。
In this paper, based on the finite difference discretization of partial differential equations and the advantage that the incremental unknowns(IU) on uniform meshes can reducing the condition number of coefficient matrix effectively, we study the heat equations with the time-dependent coefficients in the 1 and 2 dimensions and a class of generalized three dimensional convection-diffusion equations with this method. The effectiveness of this method are established by the theoretical analysis and the numerical results. But for many problems, especially the boundary layer problems, nonuniform meshes are more flexible and efficient than the uniform meshes. So, the discretization technique and then the incremental unknowns on nonuniform meshes(NIU) become more and more important. With the Dirichlet problem, we theoretically and numerically analyze the condition number of the coefficient matrix with NIU in dimension 1 and 2.
     For the one dimensional heat equation with time-dependent coefficient, we propose a kind of IU-type semi-implicitθ-schemes and carefully study the stability, error estimation and condition number of these schemes. The theoretical analysis shows that a better stability condition was obtained when 9 close to 1/2. For the two dimensional case, we construct an alternating direction IU-type semi-implicit scheme. The stability condition of this new scheme is obtained with the Fourier method. Numerical results show that this new scheme is more efficient than the classical alternating directional scheme for some problems when r satisfies the stability condition.
     With the finite difference discretization techniques and the IU method, we get a nonsymmetric and positive-definite linear system when considering a class of generalized three dimensional convection-diffusion equations. Considering that the condition number of this coefficient matrix is much better than the matrix without IU, we use this method in conjunction with several classical iterative methods to approximate the solution of the system. After estimating the condition number of IU-type coefficient matrix, we numerically confirm that these IU-type iterative methods are much more efficient.
     Note that the finite difference discretization techniques and the IU method are defined on the uniform meshes. But for many problems, for example, the boundary layer or hydromechanics problems, the methods defined on the uniform mesh are no longer work very well. Hence the NIU method becomes more and more important. With the question that does the NIU method also can reduce the condition number of coefficient matrix as the IU method, we give a carefully analysis both in 1 and 2 dimensions. The theoretical results show that NIU method also work effectively, which was established by the numerical results.
引文
[1]A.R.Ansari,A.F.Hegarty,A note on iterative methods for solving singularly perturbed problems using non-monotone methods on Shishkin meshes,Comp.Math.Appl.Mech.Engrg.,192(2003),3673-3687.
    [2]S.N.Atluri,R.H.Gallagher,O.C.Zienkiewicz,Hybrid and mixed finite element methods,A wiley-interscience publication,1983.
    [3]I.Babuska,J.Chandra,J.E.Flaherty,Adaptive computational methods for partial differential equations,SIAM philadelphia,1983.
    [4]I.Babuska,A.Miller,A feedback finite element method with a posteriori error estimation.I.The finite element method and some properties of the a posteriori estimator,Comput.Methods Appl.Mech.Eng.,61(1987),1-40.
    [5]I.Babuska,W.C.RheinboIdt,Error estimates for adaptive finite element computations.SIAM J.Numer.Anal.,15(1978),736-754.
    [6]I.Babuska,M.Vogelius,Feedback and adaptive finite element solutionof one-dimensional boundary value problems,Numer.Math.44(1984),75-102.
    [7]Z.Z.Bai,G.H.Golub,L.Z.Lu and J.F.Yin,Block triangular and skewhermitian splitting methods for positive-definite linear systems,SIAM J.Sci.Comput.,26(3)(2005),844-863.
    [8]Z.Z.Bai,G.H.Golub,M.K.NG,Hermitian and skew-hermitian splitting methods for non-hermitian positive-definite linear systems,SIAM J.Matrix Anal.Appl.,24(3)(2003),603-626.
    [9]R.E.Bank,M.Benbourenane,The hierarchical basis multigrid method for converction-diffusion equations,Numer.Math.,61(1992),7-37.
    [10]G.Beckett,J.A.Mackenzie,On a uniformly accurate finite difference approximation of a singularly perturbed reaction-diffusion problem using grid equidistribution,J.Comp.Appl.Math.,131(2001),381-405.
    [11]S.C.Brenner,L.R.Scott,The mathematical theory of finite element methods,Springer-Verlag,New York,1994.
    [12]C.Carstensen,A unifying theory of a posteriori finite element error control,Numer.Math.,100(2005),617-637.
    [13]C.Carstensen,J.Hu,A unifying theory of a posteriori error control for nonconforming finite element methods,Numer.Math.,107(3)(2007),473-502.
    [14]J-P.Chehab,A nonlinear adaptative multiresolution method in finite differences with incremental unknowns,RAIRO Model.Math.Anal.Numer.,29(4)(1995),451-475.
    [15]J-P.Chehab,Incremental unknowns method and compact schemes,Math.Model.Numer.Anal.,32(1998),51-83.
    [16]J-P.Chehab,Solution of generalized Stokes problems using hierarchical methods and incremental unknowns,Appl.Numer.Math.,21(1)(1996),9-42.
    [17]J-P.Chehab,A.Miranville,Incremental unknowns on nonuniform meshes,Math.Model.Numer.Anal.,32(1998),539-577.
    [18]J-P.Chehab,B.Costa,Time explicit schemes and spatial finite differences splittings,J.Sci.Comp.,20(2004),159-188.
    [19]J-P.Chehab,R.Temam,Incremental unknowns for solving nonlinear eigenvalue problems:new multiresolution methods,Nuraer.Meth.Part.Diff.Equa.,11(3)(1995),199-228.
    [20]M.Chen,H.Choi,T.Dubois,J.Shen,R.Temam,The Incremental Unknowns-a multilevel scheme for the simulation of turbulent channel flows, Proceedings of the Summer Program 1996,Center for Turbulence Research,Stanford University and NASA Ames Research Center,(1996),1-19.
    [21]M.Chen,A.Miranville,R.Temam,Incremental unknowns in finite differences in three space dimensions,Computational and Applied Mathematics,14(3)(1995),1-15.
    [22]M.Chen,R.Temam,Incremental Unknowns for convection-diffusion equations,Appl.Numer.Math.,11(1993),365-383.
    [23]M.Chen,R.Temam,Incremental unknowns for solving partial differential equations,Numer.Math.,59(1991),255-271.
    [24]M.Chen,R.Temam,Nonlinear Galerkin method in the finite difference case and wavelet-like incremental unknowns,Numer.Math.,64(1993),271-294.
    [25]M.Chen,R.Temam,Nonlinear Galerkin method with multilevel incremental unknowns,Contributions in Numerical Matehematics,WSSIAA,2(1993),151-164.
    [26]M.Chert,R.Temam,Incremental Unknowns in finite differences:condition number of the matrix,SIAM J.Matrix Anal.Appl.,14(1993),432-455.
    [27]M.Chen,R.Temam,The incremental Unknown method I,Appl.Math.Lett.,4(3)(1991),73-76.
    [28]M.Chen,R.Temam,The incremental Unknown method Ⅱ,Appl.Math.Lett.,4(3)(1991),77-80.
    [29]X.L.Cheng,J.Zou,An inexact uzawa-type iterative method for solving saddle point problems,Int.J.Comp.Math.,80(2003),55-64.
    [30]P.G.Ciarlet,The Finite Element Method for Elliptic Problems,North-Holland,Amsterdam,1988.
    [31]B.Costa,L.Dettori,D.Gottlieb,R.Temam,Time marching multilevel techniques for evolutionary dissipative problems,SIAM J.Sci.Comp.,23(1)(2001),46-65.
    [32]W.Dorfler,O.Wilderotter,An adaptive finite element method for a linear elliptic equation with variable coefficients,ZAMM Z.Ange.Math.Mech,80(2000),481-491.
    [33]T.Dubois,F.Jauberteau,R.Temam,Incremental unknowns,multilevel methods and the numerical simulation of turbulence,Comp.Meth.Appl.Mech.Engrg.,159(1998),123-189.
    [34]G.Evans,J.Blackledge,P.Yardley,Numerical methods for partial differential equations,Springer-Verlag,London,2000.
    [35]S.C.Eisenstat,H.C.Elman,M.H.Schultz,Variational iterative methods for nonsymmetric system of linear equations,SIAM J.Numer.Anal.,20(1983),345-357.
    [36]S.Faure,J.Laminie,R.Temam,Finite volume discretization and multilevel methods in flow problems,J.Sci.Comp.,25(2005),231-261.
    [37]C.Foias,G.R.Sell,R.Temam,Inertial manifolds for nonlinear evolutionary equations,J.Diff.Equ.,73(1988),309-353.
    [38]M.Ganesh,K.Mustapha,A Crank-Nicolson and ADI Galerkin method with quadrature for hyperbolic problems,Numer.Meth.Part.Diff.Equ.,21(2005),57-79.
    [39]S.Garcia,Algebraic conditioning analysis of the incremental unknowns preconditioner,Appl.Math.Model.,22(1998),351-366.
    [40]S.Garcia,Higher-order incremental unknowns,hierarchical basis,and nonlinear dissipative evolutionary equations,Appl.Numer.Math.,19(4)(1996),467-494.
    [41]S.Garcia,Incremental unknowns and graph techniques in three spaze dimensions,Appl.Numer.Math.,44(2003),329-365.
    [42]S.Garcia,Incremental unknowns for solving the incompressible Navier-Stokesequations,Math.Comp.Simu.,52(2000),445-489.
    [43]S.Garcia,Numerical study of the incremental unknowns method,Numer.Meth.Part.Diff.Equ.,10(1994),103-127.
    [44]S.Garcia,The matricial framework for the incremental unknowns method,
    Numer.Funct.Anal.Optimiz.,14(1993),25-44.
    [45]S.Garcia,F.Tone,Incremental unknowns and graph techniques with indepth refinement,Int.J.Numer.anal.model.,4(2)(2007),143-177.
    [46]D.Gilberg,N.S.Trudinger,Elliptic Partial Differential Equations of Second Order,Springer-Verlag,Heidelberg,New York,1983.
    [47]J.Gopalakrishnan,G.Kanschat,A multilevel discontinuous Galerkin method,Numer.Math.,95(2003),527-550.
    [48]G.H.Golub,C.F.Van Loan,Matrix Computations.The John Hopkins University Press,Baltimore,1989.
    [49]O.Goubet,Construction of approximate inertial manifolds using wavelets,SIAM J.Math.Anal.,23(6)(1992),1455-1481.
    [50]O.Goyon,P.Poullet,Preconditioned Newton methods using incremental unknowns methods for the resolution of a steady-state Navier-Stokes-like problem,Appl.Math.Comput.,87(2-3)(1997),289-311.
    [51]J.L.Gracia,C.Clavero,A compact finite difference scheme for 2D reactiondiffusion singularly perturbed problems,J.Comp.Appl.Math.,192(2006),152-167.
    [52]M.M.Gupta,J.Zhang,High accuracy multigrid solution of the 3D convection-diffusion equation,Appl.Math.Comp.,113(2000),249-274.
    [53]P.W.Hemker,G.I.Shishkin,L.P.Shishkina,ε-uniform schemes with highorder time-accuracy for parabolic singular perturbation problems,IMA J.Numer.Anal.,20(2000),99-121.
    [54]C.Jung,R.Temam,Numerical approximation of two-dimensional convection-diffusion equations with multiple boundary layers,Inter.J.Numer.Anal.Model.,2(2005),367-408.
    [55]C.Jung,R.Temam,On parabolic boundary layers for convection-diffusion equations in a channel:Analysis and Numerical applications,J.Sci.Comput.,28(2006),361-410.
    [56]B.R.B.Kellogg,A.Tsan,Analysis of some difference approximations for a singular perturbation problems without turning points,Math.Comp.,32(1978),1025-1039.
    [57]S.Larsson,V.Thomee,Partial differential equations with numerical methods,Springer-Verlag,Berlin Heidelberg,2003.
    [58]W.Lenferink,Pointwise convergence of approximations to a convectiondiffusion equation on a Shishkin mesh,Appl.Numer.Math.,32(2000),69-86.
    [59]T.Linβ,M.Stynes,A hybrid difference scheme on a Shishkin mesh for linear converction-diffusion problems,Appl.Numer.Math.,31(1999),255-270.
    [60]T.Linss,Analysis of Galerkin finite element method on a Bakhvalov-Shishkin mesh for a linear convection-diffusion problem,IMA J.Numer.Anal.,20(2000),621-632.
    [61]J.M.-S.Lubuma,K.C.Patidar,Uniformly convergent non-standard finite difference methods for self-adjoint singular perturbation problems,J.Comp.Appl.Math.,191(2006),228-238.
    [62]J.A.Mackenzie,The efficient generation of simple two-dimensional adaptive grids,SIAM J.Sci.Comp.,19(1998),1340-1365.
    [63]J.A.Mackenzie,Uniform convergence analysis of an upwind finite-difference approximation of a convection-diffusion boundary value problems on an adaptive grid,IMA J.Numer.Anal.,19(1999),233-249.
    [64]J.A..Mackenzie,W.R.Mekwi.An analysis of stability and convergence of a finite-difference discretization of a model parabolic PDE in 1D using a moving mesh,IMA J.Numer.Anal.,27(2007),507-528.
    [65]H.MacMullen,J.J.H.Miller,E.O'Riordan,G.I.Shishldn,A second-order parameter-uniform overlapping Schwarz method for reaction-diffusion problems with boundary layers,J.Comp.Appl.Math.,130(2001),231-244.
    [66]M.Marion,R.Temam,Nonlinear Galerkin methods:the finite elements case,Numer.Math.,57(1990),205-226.
    [67]J.J.H.Miller,E.O' Riordan and G.I.Shishkin,Fitted Numerical Methods for Singular Perturbation Problems.Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions,World Scientific,Singapore,1996.
    [68]A.Miranville,A.C.Muresan,Block incremental unknowns for anisotropic elliptic equations,Appl.Numer.Math.,42(2002),529-543.
    [69]A.Miranville,Some generalizations of the Cahn-Hilliard equation,Asymp.anal.,22(2000),235-259.
    [70]A.Miranville,A.C.Muresan,The uncentered type incremental unknowns for a singularly perturbed bilocal problem,Rev.Anal.Numer.Theor.Approx.,29(2)(2000),161-171.
    [71]M.J.OReilly,E.O'Riordan,A Shishkin mesh for a singularly perturbed Riccati equation,J.Comp.Appl.Math.,182(2005),372-387.
    [72]F.Pouit,Stability study,error estimation,and condition number for semiimplicit schemes using incremental unknowns,Numer.Meth.Part.Diff.Equ.,12(1996),743-766.
    [73]P.Poullet,A.Boag,Incremental unknowns preconditioning for solving the Helmholtz equation,Numer.Methods Partial Differential Equations,23(6)(2007),1396-1410.
    [74]P.Poullet,Staggered incremental unknowns for solving Stokes and generalized Stokes problems,Appl.Numer.Math.,35(1)(2000),23-41.
    [75]A.Quarteroni,R.Sacco,F.Saleri,Numerical Mathematics,Springer-Verlag,New York,2000.
    [76]A.Quarteroni,A.Valli,Numerical Approximation of Partial Differential Equations.Springer Series in Computational Mathematics,vol.23.Springer,New York,1997.
    [77]H.-G.Roos,Layer-adapted grids for singular perturbation problems,ZAMM Z.Ange.Math.Mech,78(1998),291-309.
    [78]A.Rousseau,R.Temam,J.Tribbia,Boundary layers in an ocean related system,J.Sci.Comput.,21(3)(2004),405-432.
    [79]Y.Saad,M.H.Schultz,GMRES:A generalized minimal residual algorithm for solving nonsymmetric linear systems,SIAM J.Sci.Stat.Comput.,7(3)(1986),856-869.
    [80]S.Shih,R.B.Kellogg,Asymptotic analysis of a singular perturbation problem,SIAM J.Math.Anal.,18(1987),1467-1511.
    [81]G.I.Shishkin,P.N.Vabishchevich,Interpolation finite difference schemes on grids locally refined in time,Comp.Meth.Appl.Mech.Engrg.,190(2000),889-901.
    [82]L.J.Song and Y.J.Wu,Incremental unknowns method for solving threedimensional convection-diffusion equations,Numer.Math.J.Chinese Univ.(English Ser.),16(2007),14-27.
    [83]L.J.Song,Y.J.Wu,Incremental unknowns in three-dimensional stationary problem,Numer.Algor.,46(2007),153-171.
    [84]J.Stoer,R.Bulirsch,Introduction to numerical analysis,Springer-Verlag,New York,1993.
    [85]M.Stynes,H-G.Roos,The midpoint upwind scheme,Appl.Numer.Math.,23(1997),361-374.
    [86]Z.Z.Sun,Y.L.Zhu,A second order accurate difference scheme for the heat equation with concentrated capacity,Numer.Math.,97(2004),379-395.
    [87]M.T.Tachim,Numerical solutions of the Navier-Stokes equations using wavelet-like incremental unknowns,RAIRO Model.Math.Anal.Numer.,31(7)(1997),827-844.
    [88]R.Temam,Incremental unknowns in finite differences,Algor.tren.comput.fluid dynam.,(1991),85-106.
    [89]R.Temam,Inertial manifolds and multigrid methods,SIAM J.Math.Anal.,21(1990),154-178.
    [90]R.Temam,Infinite Dimentional Dynamical Systems in Mechanics and Physics,Appl.Math.Sci.68,Second Edition,Springer-Verlag,Berlin,New York,1997.
    [91]R.Temam,Numerical Analysis,Reidel,Dordrecht,1973.
    [92]J.W.Thomas,Numerical Partial Differential Equations:Finite Difference Methods,Springer-Verlag,New York,1995.
    [93]V.Thomee,Galerkin Finite Element Methods for Parabolic Problems,Lecture Notes in Math.1054,Springer-Verlag,Berlin,Heidelberg,New York,1982.
    [94]Z.F.Tian,S.Q.Dai,High-order compact exponential finite difference methods for convection- diffusion type problems,J.Comp.Phys.220(2007),952-974.
    [95]H.A.Van der Vorst,Bi-CGSTAB:A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems,SIAM J.Sci.Star.Comput.,13(2)(1992),631-644.
    [96]R.Verfiirth,A posteriori error estimators for the Stokes equations,Numer.Math.,55(1989),309-325.
    [97]R.Vulanovic,A priori meshes for singularly perturbed quasilinear two-point boundary value problems,IMA J.Numer.Anal.,21(2001),349-366.
    [98]Yujiang Wu,Xingxing Jia,Anlong She,Semi-implicit schemes with multilevel wavelet-like incremental unknowns for solving reaction diffusion equation,Hokkaido Math.J.,36(4)(2007),711-728.
    [99]Yujiang Wu,Yuhong Ran,Xingxing Jia,Jiangping Hu,Compact schemes and sixth order incremental unknowns:matrix construction,In:Proceedings of the Fourth International Workshop on Scientific Computing and Applications,(第四届国际科学计算与应用研讨会论文集)Ed.by B.Y.Guo and Z.C.Shi,Science Press,Beijing,(2007)160-165.
    [100]H.Yserentant,On the multi-level splitting of finite element spaces,Numer.Math.,49(1986),379-412.
    [101]H.Yserentant,Two preconditioners based on the multi-level splitting of finite element spaces,Numer.Math.,58(1990),163-184.
    [102]郭本瑜,偏微分方程的差分方法,科学出版社,北京,1988.
    [103]黄建清,伍渝江,一类加权半隐格式增量未知元方法的稳定性和误差估计,计算数学,27(2005),183-198.
    [104]苏煜城,吴启光,奇异摄动问题数值方法引论,重庆出版社,重庆,1992.
    [105]王烈衡,许学军,有限元方法的数学基础,科学出版社,北京,2003.
    [106]余德浩,汤华中,微分方程数值解法,科学出版社,北京,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700