模拟酸雨对不同土壤—作物系统温室气体排放的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球变暖和酸雨污染是当今重要的全球性环境问题,已引起各国政府和国际学术界的广泛关注。全球变暖的主要原因之一是人类影响了生态系统的碳、氮循环,造成大气中温室气体(CO2、CH4、N2O等)浓度不断提高。同时,化石燃料的燃烧过程也向大气排放SO2、NOX,造成酸雨污染。
     农田生态系统是人类活动最活跃的系统,在全球变化研究中具有十分重要的地位。酸雨因具有较高浓度的H+、SO42-、NO3-,可通过影响土壤理化性质、农作物的生长和生理过程、土壤微生物群落的组成与活性,对农田温室气体的产生和排放产生影响。定量研究酸雨污染对农田温室气体排放的影响,将为客观评价酸雨污染的生态效应和正确估计农田温室气体排放提供依据。
     本研究的目的是:定量研究雨水离子浓度升高和/或pH值降低对不同土壤-作物系统温室气体(CO2、CH4、N2O)排放的影响规律,探讨其影响途径。
     本研究盆栽试验用于研究模拟酸雨对土壤-作物系统温室气体排放的影响规律,室内培养试验用于探讨秸秆、土壤水分条件对酸雨作用的影响。盆栽试验选择酸性(pH5.48)(S1)、中性(pH 6.70)(S2)、碱性(pH 8.18)(S3)水稻土,以我国大面积种植的粮食作物冬小麦、水稻为实验对象,分别设置雨水离子浓度和pH值存在差异的3种模拟雨水(T1(pH 6.0)、T2(离子浓度为T1 2倍,pH 6.0)、T3(离子浓度为T1 2倍,pH 4.4)),雨水喷淋量参照南京市1970-2000年30年月平均降水量。盆栽试验时间持续2个冬小麦和2个水稻生长季。土壤-作物系统温室气体排放速率采用静态暗箱-气相色谱技术测定。
     室内培养试验Ⅰ选择与盆栽试验相同的3种水稻土(分别设置施用秸秆0、15g.kg-1土处理)在20℃条件下进行40 d的培养试验。培养期间分别用pH值存在差异的3种模拟雨水(TC1(pH 6.0)、TC2(pH 4.5)、TC3(pH 3.0))将土壤含水量调为400 g·kg-1土。室内培养试验Ⅱ只选择了中性土壤S2(分别设置施用秸秆0、15g·kg-1土处理),室温条件下进行51 d的培养试验。培养期间分别用模拟雨水CR1(离子浓度为T22倍,pH 5.6)、CR2(离子浓度为CR1 2倍,pH5.6)、CR3(离子浓度同CR1,pH 3.5),将土壤含水量分别设置为400 g·kg-1土和淹水条件。种子培养试验雨水设置同盆栽试验,25℃条件下黑暗培养。
     主要结果如下:
     1.小麦生长期,酸雨显著促进了碱性土壤-小麦系统暗呼吸和N20排放,S3T3组平均暗呼吸速率分别比S3T1组和S3T2组高23.6%、27.6%,S3T3组N20平均排放速率比S3T2组高25.6%(p<0.05)(2005~2006年);酸雨虽然未对中性土壤和酸性土壤-小麦系统平均暗呼吸速率和N20平均排放速率产生显著影响(p>0.05),但在小麦幼苗、拔节、灌浆等时期,也对温室气体排放产生了显著影响。
     2.水稻生长期,由于2006年和2007年田间秸秆填埋的差异,2年间酸雨对土壤-水稻系统温室气体排放的影响有所不同。
     2.1仅雨水pH值的降低并未对土壤-水稻系统平均暗呼吸速率产生显著影响;雨水离子浓度升高后可显著提高酸性土壤-水稻系统平均暗呼吸速率;当雨水离子浓度升高的同时pH值降低后,中性土壤-水稻系统2006年平均暗呼吸速率和碱性土壤-水稻系统2007年平均暗呼吸速率显著下降,但中性土壤-水稻系统2007年平均暗呼吸速率显著上升。具体的变化程度为:S1T2组2007年的平均暗呼吸速率比S1T1组高8.1%,S2T3组2006年平均暗呼吸速率比S2T1组降低21.4%,S3T3组2007年的平均暗呼吸速率比S3T1组低7.3%;S2T3组2007年的平均暗呼吸速率比S2T1组高7.9%(p<0.05)。
     2.2高离子浓度雨水对CH4排放有促进作用,低pH值雨水对CH4排放排有抑制作用。S1T2组CH4累积排放量比S1T1组高85.6%,S2T2组CH4累积排放量比S2T1组高19.2%,但未达到显著水平;S1T3组CH4累积排放量比S1T2组低51.5%,S2T3组CH4累积排放量比S2T2组低31.4%(p<0.05),但仅中性土壤-作物系统达到显著水平。
     2.3仅雨水pH值降低对土壤-水稻系统N20累积排放无显著影响(p>0.05)。雨水离子浓度升高抑制了酸性土壤-水稻系统和中性土壤-水稻系统N20排放。雨水离子浓度升高同时降低pH值后,抑制了中性土壤-水稻N20排放。具体的影响程度如下:S1T2组2006年N20累积排放量比S1T1组低16.6%(p=0.039),S2T2组2007年累积排放量比S2T1组低56.4%(p=0.019),S2T3组2007年累积排放量比S2T1组低71.9%(p=0.047)。
     3.通过室内培养试验证实,酸雨通过影响秸秆的分解过程对土壤系统温室气体排放产生影响。秸秆填埋是2006年和2007年间盆栽试验土壤-水稻系统结果差异的主要原因,同时土壤水分条件也发挥了重要影响。
     3.1低pH值雨水未显著影响土壤有机碳分解,但显著地影响了土壤中作物秸秆的分解与N20的产生与排放,从而对土壤系统C02、N20排放产生影响:酸雨促进了酸性和碱性水稻土中秸秆的分解,pH 3.0酸雨处理下秸秆在酸性土壤和碱性土壤中40 d分解总量比pH 6.0雨水处理下的分解总量高8%;酸雨抑制了中性水稻土中秸秆的分解,pH 3.0酸雨处理下秸秆40 d分解总量比pH 6.0雨水处理低15%。酸雨显著促进了酸性土壤对照组N20排放,S1TC3CK组N20累积排放量比S1TC1CK组高51.3%(p<0.05)。随着雨水pH值的降低,秸秆对土壤系统N20排放的抑制作用增强,导致3种土壤秸秆组N20排放量的差距随着雨水pH值的降低而缩小。
     3.2雨水离子浓度增加或pH值降低,未对中性土壤对照组或秸秆组CH4、N2O51d累积排放量产生显著影响,高离子浓度雨水可减少淹水处理的土壤对照组CO2排放,CR2CKF组C02-C累积排放量比CR1CKF低26.1%(p<0.05)。雨水差异对秸秆的分解差生了显著影响:淹水状态下,高离子浓度雨水与低pH值雨水均促进了中性土壤中秸秆的分解,秸秆分解总量在CR2F组、CR3F组中分别比在CR1F中高16.1%(p<0.01),2.6%(p<0.01);非淹水状态下,高离子浓度雨水和低pH值雨水均抑制了中性土壤中秸秆的分解,秸秆分解总量在CR2D组、CR3D组中分别比在CR1D中低5.3%(p<0.05),8.1%(p=0.111)。
     综上所述,酸雨未改变土壤-作物系统温室气体排放的季节动态特征。在作物的不同生育期,酸雨对不同土壤-作物系统温室气体排放的影响并不相同。酸雨并未改变作物收割后农田系统温室气体排放。小麦生长期,碱性土壤-作物系统较酸性土壤和中性土壤-作物系统易受酸雨的影响;水稻生长期,N2O、CH4排放在酸性土壤-作物系统与中性土壤-作物系统中比其在碱性土壤-作物系统中更易受酸雨的影响。酸雨主要通过提高作物生长过程的能耗,改变土壤中秸秆的分解速率、作物秸秆与土壤的C/N,提高秸秆木质素含量、降低秸秆纤维素含量等途径对农田温室气体排放产生影响。同时,在酸雨的影响过程中,土壤pH值、土壤水分条件发挥了重要作用。
Global warming and acid rain have become two mostly concerned environmental problems of worldwide importance. Anthropogenic increase of greenhouse gases is the main reason for Global warming. Meanwhile, SO2 and NOX emission from fossil fuel combustion is the main reason for acid rain.
     Agroecosystem plays an important status in the global change, and it is manipulated intensively by human. Acid rainwater increases the input of sulfate ion, nitrate ion, hydrogen ion to soil, and then has effects on the chemical properties of soil, the physiological characteristics and growth of crops, the community structure and activities of soil microorganisms, then induces the change to greenhouse gas (CO2, CH4, N2O) product and emission in agroecosystem. The quantitative investigation on the greenhouse gas emission from farmland treated with simulated acid rainwater will provide the method to evaluate the ecological effects of acid rain objectively. Furthermore, the results of this study will provide the theoretical basis to estimate the regional farmland greenhouse gas emission and its long-term trend in acid rain contaminated.
     The goal of this research is to quantitatively investigate the greenhouse gas (CO2, CH4, N2O) emission from soil-crop systems treated with different rainwater, which with higher ionic concentrations or lower pH values. The influence way of acid rain on greenhouse gas (CO2, CH4, N2O) emission from soil-crop systems was discussed.
     In this research, an outdoor pot experiment was used to study the effects of acid rain, and three incubation tests were conducted to discuss the influence way of acid rain. The outdoor pot experiment was conducted with paddy soils of pH 5.48 (S1), pH 6.70 (S2) and pH 8.18 (S3) during two years of rice-wheat growing season. Soil-crop systems were exposed to acid rainwater by spraying the crop foliage and irrigating the soil with simulated rainwater of T1 (pH 6.0), T2 (pH 6.0, ionic concentration was twice as rainwater T1), and T3 (pH 4.4, ionic concentration was twice as rainwater T1), respectively. The quantity of spray rainwater was calculated according to the monthly mean precipitation during 1970-2000. The static opaque chamber-gas chromatograph method was used to measure the flux of CO2, CH4, and N2O from soil-crop systems.
     Soil incubation test I, a 40-day incubation test, was conducted with the same paddy soils as the pot test. The soils were amended with 0 and 15 g-kg-1 of rice straw, adjusted to the moisture content of 400g-kg-1 air dried soil by using simulated rain of pH 6.0 (TC1), 4.5 (TC2), and 3.0 (TC3), and incubated at 20℃. Soil incubation test II, a 51-day incubation test, was conducted with the soil S2. The soil was amended with 0 and 15 g-kg-1 of rice straw, adjusted to the moisture content of 400g-kg-1 air dried soil or flooded, by using simulated rain of CR1 (pH 5.6, ionic concentration was twice as rainwater T2), CR2 (pH 5.6, ionic concentration was twice as rainwater CR1), and CR3 (pH 3.5, ionic concentration was the same as rainwater CR1), and incubated at room-temperature. Seeds culture test was conducted with rice seeds treated with the same simulated rainwater as in pot test, and incubated at 25℃in dark.
     Main results of this study are presented as follows:
     1. During the wheat-growing season, acid rain significantly promoted the average respiration rate and N2O flux from the alkaline soil-wheat systems. During 2005-2006, after the alkaline soil-wheat systems were treated with rainwater T3, the average respiration rate was 23.6% and 27.6% higher than that of alkaline soil-crop systems treated with rainwater T1 and T2, respectively. The N2O average emission rate in treatments S3T3 was 25.6% higher than that in treatments S3T2. Acid rain had significant effects on the dark respiration rate and N2O flux from neutral soil-wheat systems or acidic soil-wheat systems during some specific growth stage (seedling stage, jointing stage, and filling stage), while the average respiration rates and average N2O flux of these two soil-crop systems were not significantly influenced by acid rain.
     2. During the rice-growing season, the effects of acid rainwater on greenhouse gas emission from soil-rice systems were different between 2006 and 2007.
     2.1 Rainwater with lower pH value had no significant effects on the average respiration rates in three soil-rice systems. In acidic soil-rice systems, the average respiration rate was significantly promoted by the rainwater with higher ionic concentrations (T2) in 2007. Rainwater, with higher ionic concentrations and lower pH value, reduced the average respiration rate in neutral soil-rice systems during 2006 and that rate in alkaline soil-rice systems during 2007, while it increased the average respiration rate in neutral soil-rice systems during 2007. After the acidic soil-rice systems were treated with rainwater T2, the average respiration rate was 8.1%(p<0.05) higher than that of acidic soil-rice systems treated with rainwater T1. After soil-rice systems treated by rainwater T3, the average respiration rate was 21.4%(p<0.05) lower in neutral soil-rice systems during 2006,7.3%(p<0.05) lower in alkaline soil-rice systems during 2007, and 7.9%(p<0.05) higher in neutral soil-rice systems during 2007 than that rate in soil-rice systems treated with rainwater T1 during the same period respectively.
     2.2 Rainwater with higher ionic concentrations enhanced the CH4 emission, while rainwater with lower pH value reduced the CH4 emission from soil-rice systems. Higher ionic concentration rainwater could increase the CH4 cumulative emission from acidic soil-rice systems and from neutral soil-rice systems, but these effects did not reach significant level. Compared to the CH4 cumulative emission in rainwater T2 treatments, the CH4 emission decreased in acidic soil-rice systems and in neutral soil-rice systems treated with rainwater T3. After soil-rice systems treated with rainwater T2, the CH4 cumulative emission was 85.6% and 19.2% higher than that in acidic soil-rice systems and in neutral soil-rice systems treated with rainwater T1, respectively. After soil-rice systems treated with rainwater T3, the CH4 cumulative emission was 51.5% and 31.4% lower than that in acidic soil-rice systems and in neutral soil-rice systems treated with rainwater T2, respectively. However, only the effect reached significant level in neutral soil-rice systems.
     2.3 Rainwater with lower pH value had no significant effects on N2O cumulative emission from the three soil-rice systems. Higher ionic concentrations rainwater (T2) reduced the N2O cumulative emission from acidic soil-rice systems and from neutral soil-rice systems. Rainwater (T3), with higher ionic concentrations and lower pH value, could decrease the N2O cumulative emission from the neutral soil-rice systems. After soil-rice systems treated with rainwater T2, the N2O cumulative emission was 16.6% (p=0.039) (2006) and 56.4% (p=0.019) (2007) lower than that in acidic soil-rice systems and neutral soil-rice systems treated with rainwater T1, respectively. After neutral soil-rice systems treated with rainwater T3, the N2O cumulative emission was 71.9%(p=0.047) lower than that from neutral soil-rice systems treated with rainwater T1.
     3. It was demonstrated that acid rain affected the greenhouse gas emission from soil by disturbing the decomposition rate of straw. The moisture of soil played some important roles in the influence of acid rain.
     3.1 Lower pH value rainwater had no significant effect on the soil organic carbon decomposition while it significantly influenced the N2O emission and the straw decomposition. So it significantly influenced the greenhouse gas emission from soil systems. Compared with pH 6.0 rainwater treatment, acid rainwater of pH 3.0 treatment promoted the straw decomposition rates in both acidic paddy soil and alkaline paddy soil to 8% increase during 40 days, while it reduced by 15% in neutral paddy soil. Compared with pH 6.0 rainwater treatments, acid rainwater of pH 3.0 treatments promoted N2O cumulative emission from acidic paddy soil without straw incorporated by 51.3% higher (p <0.05) during 40 days. Acid rain changed the inhibitory effect of straw on the N2O emission, so the difference became smaller among N2O cumulative emission from the three soils with straw incorporated (AS).
     3.2 Rainwater, with higher ionic concentrations or with lower pH values, had no significant effects on the cumulative emission of CH4, N2O during 51 days. The CO2 cumulative emission was decreased in soils without straw by higher ionic concentration rainwater under submerged condition. After paddy soil treated with higher ionic concentrations rainwater (CR2), the CO2 cumulative emission was 26.1%(p<0.05) lower than that from paddy soil treated with rainwater CR1 under submerged condition. There was significant difference of straw decomposition rates in soils treated with different rainwater. Under submerged condition, rainwater with higher ionic concentrations or lower pH values could enhance the straw decomposition in neutral soil. The straw decomposition in CR2F groups and CR3F groups was 16.1%(p<0.01),2.6%(p<0.01) higher than that in CR1F groups, respectively. Under non-flooded condition, rainwater with higher ionic concentrations or lower pH values could inhibit the straw decomposition in neutral soil. The straw decomposition rates in CR2D groups and CR3D groups were 5.3%(p<0.05), 8.1%(p=0.111) lower than that in CR1D groups, respectively.
     In summary, the seasonal dynamic of greenhouse gas emission had not been changed by acid rain. During different growth stages, acid rain had different effects on the greenhouse gas product and emission from soil-crop systems. Acid rain had not changed the greenhouse gas emission from soil-rice systems after harvest. During wheat season, alkaline soil-wheat system was more sensitive than the other two soil-wheat systems. During rice season, CH4 and N2O emissions were more easily influenced by acid rain in acidic soil-rice systems and neutral soil-rice systems than that in alkaline soil-rice systems. Acid rain changed the basic physical and chemical properties of crop straw, straw decomposition rate and crop growth cost in soil-crop systems. All these led to the change of green house gas emission from soil-crop systems. Meanwhile, soil pH value and moisture played some important roles on the effects of acid rain on greenhouse gas emission.
引文
1. 蔡祖聪,沈光裕,颜晓元,等.1998.土壤质地、温度和Eh对稻田甲烷排放的影响[J].土壤学报,35(2):145-154
    2. 蔡瑞国,张敏,尹燕枰,等.2008.小麦灌浆过程中旗叶光合及抗氧化代谢与氮素营养关系研究[J].中国农业科学,41(1):53-56
    3. 陈灿,徐庆国,彭波,等.2008.不同化学诱变剂对水稻种子萌发和生长的影响[J].种子,27(3):9-13
    4. 陈中云,闵航,陈美慈,等.2001.不同水稻土甲烷氧化菌和产甲烷菌数量与甲烷排放量之间相关性的研究[J].生态学报,21(9):1498-1505
    5. 陈中云,闵航,吴伟祥.2003.农药污染对黄松稻田土壤产甲烷菌数量和甲烷排放通量影响的研究[J].中国沼气,21(1):18-21
    6. 陈德章,王明星.1993.稻田甲烷排放和土壤、大气条件的关系[J].地球科学进展,8(5):36-39
    7. 陈冠雄,徐慧,张颖,等.2003.植物-大气N2O的一个潜在排放源[J].第四纪研究,23(5):504-511
    8. 波钦诺克X H.荆家海,丁钟荣译.1981.植物生物化学分析方法[M].北京:科学出版社
    9. 丁维新,蔡祖聪.2002.土壤有机质和外源有机物对甲烷产生的影响[J].生态学报,22(10):1672-1679
    10.丁一汇,耿全震.1998.大气、海洋、人类活动与气候变暖[J].气象,24(3):12-17
    11.董玉红,欧阳竹.2005.有机肥对农田土壤二氧化碳和甲烷通量的影响[J].应用生态学报,16(7):1303-1307
    12.董玉红,欧阳竹,李鹏,等.2007.长期定位施肥对农田土壤温室气体排放的影响[J].土壤通报,38(1):97-100
    13.冯玉龙,曹坤芳,冯志立,等.2002.四种热带雨林树种幼苗比叶重,光合特性和暗呼吸对生长光环境的适应[J].生态学报,22(6):901-910
    14.冯宗炜.2000.中国酸雨对陆地生态系统的影响和防治对策[J].中国工程科学,2(9):5-12
    15.黄耀,刘世梁,沈其荣,等.2002.环境因子对农业土壤有机碳分解的影响[J].应用生态学报,13(6):709-714
    16.黄耀.2003.地气系统碳氮交换—从实验到模型[M].北京:气象出版社
    17.贾仲君,蔡祖聪.2003.水稻植株对稻田甲烷排放的影响[J].应用生态学报,14(11):2049-2053
    18.贾志红,易建华,孙在军.2006.不同覆盖物对烤烟根温及生长和生理特性的影响[J].应用生态学报,17(11):2075-2078
    19.焦燕,黄耀,宗良纲,等.2002.土壤理化特性对稻田甲烷排放的影响[J].环境科学,23(5):1-7
    20.焦燕,黄耀,宗良纲,等.2004.不同水稻土水稻生长季施用秸秆对后季麦田N2O排放的影响[J].南京农业大学学报,27(1):36-40
    21.李合生主编,孙群,赵世杰,章文华副主编.2000.植物生理生化实验原理和技术[M].北京:高等教育出版社
    22.李双江,刘文兆,高桥厚裕,等.2007.黄土塬区麦田CO2通量季节变化[J].生态学报,27(5):1987-1992
    23.林伟宏,张福锁,白克智.1999.大气CO2浓度升高对植物根际微生态系统的影响[J].科学通报,44(6):1690-1696
    24.柳敏,张璐,宇万太,等.2007.有机物料中有机碳和有机氮的分解进程及分解残留率[J].应用生态学报,18(11):2503-2506
    25.刘广深,徐冬梅,李克斌,等.2004.酸雨、铜和莠去津对土壤水解酶活性的影响[J].应用生态学报,15(1):127-130
    26.刘莉,李晓红,周志明,等.模拟酸雨对三峡库区4种典型土壤酸化及盐基离子淋溶释放的影响[J].重庆大学学报,2007,30(8):63-69
    27.马连祥,周定国,徐魁梧.2000.酸雨对杨树生长和木材化学性质的影响[J].林业科学,36(6): 95-99
    28.南京农业大学主编.1990.土壤农化分析[M].北京:农业出版社,第二版
    29.欧阳学军,周国逸,黄忠良,等.2005.土壤酸化对温室气体排放影响的培育实验研究[J].中国环境科学,25(4):465-470
    30.沈善敏.1998.中国土壤肥力[M],北京:中国农业出版社
    31.隋跃宇,焦晓光,张兴义.2006.不同施肥制度对小麦生育期土壤微生物量的影响[J].中国土壤与肥料,3:48-50
    32.孙文娟,黄耀,陈书涛,等.2005.稻麦作物呼吸作用与植株氮含量、生物量和温度的定量关系[J].生态学报,25(5):1152-1158
    33.田大伦,付晓萍,方晰,等.2007.模拟酸雨对樟树幼苗光合特性的影响[J].林业科学,43(8):29-35
    34.童贯和.2005.酸雨致酸土壤对小麦幼苗若干营养代谢的影响[J].应用与环境生物学报,11(3):279-282
    35.王德宣,张丽华,宋长春.2006.氮输入对沼泽湿地碳平衡的影响[J].环境科学,27(7):8520-8526
    36.王晖,莫江明,薛璟花,等.2006.氮沉降增加对森林凋落物分解酶活性的影响[J].热带亚热带植物学报,14(6):539-546
    37.王鹤松,张劲松,孟平,等.2007.华北低山丘陵区冬小麦田土壤呼吸变化规律及其影响机制[J].中国农业气象,28(1):21-24
    38.王跃思,刘广仁,王迎红,等.2003.一台气相色谱仪同时测定陆地生态系统CO2、CH4和N2O排放[J].环境污染治理技术与设备,4(10):84-90
    39.徐冬梅,刘广深,许中坚,等.2003.模拟酸雨对土壤酸性磷酸酶活性的影响及机理[J].中国环境科学,23(2):176-179
    40.徐小锋,田汉勤,万师强.2007.气候变暖对陆地生态系统碳循环的影响[J].植物生态学报,31(2):175-188
    41.俞元春,丁爱芳,胡茄,等.2001.模拟酸雨对土壤酸化和盐基迁移的影响[J].南京林业大学学报(自然科学版),25(2):39-42
    42.杨昂,孙波,赵其国.1999.中国酸雨的分布、成因及其对土壤环境的影响[J].土壤,1:13-18
    43.杨玉盛,董彬,谢锦升,等.2004.森林土壤呼吸及其对全球变化的响应[J].生态学报,24(3):583-592
    44.杨忠芳,余涛,唐金荣,等.2006.湖南洞庭湖地区土壤酸化特征及机理研究[J].地学前缘,13(1):105-112
    45.尹云锋,蔡祖聪.2007.不同类型土壤有机碳分解速率的比较[J].应用生态学报,18(10):2251-2255
    46.于克伟,陈冠雄,杨思河,等.1995.几种旱地农作物在农田N2O释放中的作用及环境因素的影响[J].应用生态学报,6(4):387-391
    47.张萍华,闵航,申秀英,等.2005.模拟酸雨对白术根际微生物的影响[J].浙江师范大学学报,28(3):309-312
    48.郑启伟,王效科,冯兆忠,等.2007.臭氧和模拟酸雨对冬小麦气体交换、生长和产量的复合影响[J].环境科学学报,27(9):1542-1548
    49.郑循华,王明星,王跃思.1999.农田NO排放的时间变异性[J].环境科学,20:17-21
    50.中华人民共和国国家统计局编.中国统计年鉴[EB/OL].2008. [2009-5-8] http://www.stats.gov.cn/tjsj/ndsj/2008/indexch.Htm
    51.中华人民共和国环境保护部.全国环境质量状况[EB/OL].2009. [2009-5-8]. http://www.mep.gov.cn/tech/hijc/jcxx/hjzlzk/200901/t20090121 133715.htm
    52.朱咏莉,吴金水,童成立,等.2008.稻田CO2通量对光强和温度变化的响应特征[J].环境科学,29(4):1040-1044
    53.邹建文,黄耀,宗良纲,等.2003.稻田CO2、CH4和N2O排放及其影响因素[J].环境科学学报,23(6):758-764
    54.邹建文,黄耀,郑循华,等.2004.基于静态暗箱法的陆地生态系统-大气CO2净交换估算[J].科学通报,49(3):258-265
    55.邹建文,黄耀,宗良纲,等.2006.稻田不同种类有机肥施用对后季麦田N2O排放的影响[J].环境科学,27(7):1264-1268
    56. Aciego Pietri J C, Brookes P C.2008. Nitrogen mineralization along a pH gradient of a silty loam UK soil[J]. Soil Biology and Biochemistry,40:797-802
    57. Achtnich C, Bak F, Conrad R.1995. Competition for electron donors among nitrate reducers, and methanogens in anoxic paddy soil[J]. Biology and Fertility of Soils,19(1):65-72
    58. Alley R B, Marotzke J, Nordhaus W D, et al.2003. Abrupt climate change[J]. Science,299: 2005-2011
    59. Andersson M, Kjoller A, Struwe S.2004. Microbial enzyme activities in leaf litter, humus and mineral soil layers of European forests[J]. Soil Biology and Biochemistry,36:1527-1537
    60. Baath E, Anderson T H.2003. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques [J]. Soil Biology and Biochemistry,35:955-963
    61. Back J, Huttunen S, Turunen M, et al.1995. Effects of acid rain on growth and nutrient concentrations in Scots pine and Norway spruce seedlings grown in a nutrient-rich soil[J]. Environmental Pollution,89(2):177-187
    62. Bengtsson G, Bengtson P, Mansson K. F.2003. Gross nitrogen mineralization, immobilization, and nitrification rates as a function of soil C/N ratio and microbial activity[J]. Soil Biology and Biochemistry,35:143-154
    63. Berg B.2000. Litter decomposition and organic matter turnover in northern forest soils[J]. Forest Ecology and Management,133:13-22
    64. Blagodatskaya E V, Anderson T H.1999. Adaptive responses of soil microbial communities under experimental acid stress in controlled laboratory studies[J]. Applied Soil Ecology,11:207-216
    65. Blodau C, Moore T R. Micro-scale CO2 and CH4 dynamics in a peat soil during a water fluctuation and sulfate pulse[J]. Soil Biology and Biochemistry,2003,35:535-547.
    66. Boeckx P, Van Cleempus O, Meyer T.1998. The influence of land use and pesticides on methane oxidation in some Belgian soils[J]. Biology and Fertility of Soils,127:293-298
    67. Borken W, Beese F, Brumme R, et al.2002. Long-term reduction in nitrogen and proton inputs did not affect atmospheric methane uptake and nitrous oxide emission from a German spruce forest soil[J]. Soil Biology and Biochemistry,34:1815-1819
    68. Bradford M A, Wookey P A, Ineson P, et al.2001. Controlling factors and effects of chronic nitrogen and sulphur deposition on methane oxidation in a temperate forest soil[J]. Soil Biology and Biochemistry,33:93-102
    69. Calace N, Fiorentini F, Petronio B M, et al.2001. Effects of acid rain on soil humic compounds[J], Talanta,54:837-846
    70. Chatskikh D, Olesen J E.2007. Soil tillage enhanced CO2 and N2O emissions from loamy sand soil under spring barley[J]. Soil and Tillage Research,97:5-18
    71. Chen Y, Wu C Y, Shui J G, et al.2006. Emission and fixation of CO2 from soil system as influenced by long-term application of organic manure in paddy soils[J]. Agricultural Sciences in China,5(6):456-461
    72. Christensen S, Degorska A, Prieme A.2001. Methane oxidation in Polish forest soils of contrasting atmospheric pollution[J]. Atmospheric Environment,35:2795-2798
    73. Chu H Y, Hosen Y, Yagi Y.2007. NO, N2O, CH4 and CO2 fluxes in winter barley field of Japanese Andisol was affected by N fertilizer management[J]. Soil Biology and Biochemistry,39:330-339
    74. Chung H, Zak D R, Reich P B, et al.2007. Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function[J].Globak Change Biology,13:980-989
    75. Dai Z H, Liu Y X, Wang X J, et al.1998. Changes In pH, CEC and exchangeable acidity of some forest soils in southern China during the last 32-35 years[J]. Water, Air, And Soil Pollution,108: 377-390
    76. Dannenmann M, Butterbach-Bahl K, Rainer Gasche, et al.2008. Dinitrogen emissions and the N2:N2O emission ratio of a Rendzic Leptosol as influenced by pH and forest thinning[J]. Soil Biology and Biochemistry,40:2317-2323
    77. Daum D, Schenk M K.1998. Influence of nutrient solution pH on N2O and N2 emissions from a soilless culture system[J]. Plant and Soil,203:279-287
    78. Dilly O, Bartsch S, Rosenbrock P, et al.2002. Shifts in physiological capabilities of the microbiota during the decomposition of leaf litter in a black alder (Alnus glutinosa (Gaertn.) L.) forest[J]. Soil Biology and Biochemistry,33:921-930
    79. Eaton W D, Farrell R E.2004. Catabolic and genetic microbial indices, and levels of nitrate, ammonium and organic carbon in soil from the black locust (Robinia pseudo-acacia) and tulip poplar (Liriodendron tulipifera) trees in a Pennsylvania forest[J]. Biology and Fertility of Soils,39: 209-214
    80. Fan H B, Wang Y H.2000. Effects of simulated acid rain on germination, foliar damage, chlorophyll contents and seedling growth of the hardwood species growing in China[J]. Forest Ecology and Management,126:321-329
    81. FAO. Production of cereals and share in world[EB/OL]. [2009-5-8]. http://www.fao.org/ statistics/yearbook/vol_1_1/pdf/bOl.pdf
    82. FAO. Land use[EB/OL]. [2009-5-8]. http://ww.fao.org/statistics/yearbook/vol_1_1/pdf/a04.pdf
    83.FAO.谷物统计资料-收获面积[EB/OL]. [2009-5-8]. http://www.fao.org/countryprofiles/stats/ default.asp?lang=zh&element= 1&iso3=CHN
    84. Frankenberg C, Meirink J F, vanWeele M, et al.2005. Assessing methane emissions from global space-borne observations[J]. Science,308:1010-1015
    85. Gadallah M A A.2000. Effects of acid mist and ascorbic acid treatment on the growth, stability of leaf membranes, chlorophyll content and some mineral elements of Carthamus Tinctorius, the safflower[J]. Water, Air and Soil Pollution,118:311-327
    86. Gindaba J, Olsson M, Itanna F.2004. Nutrient composition and short-term release from croton macrostachyus Del. and Millettia ferruginea (Hochst.) baker leaves[J]. Biology and Fertility of Soils,40:393-397
    87. Guo J P, Zhou C D.2007. Greenhouse gas emissions and mitigation measures in Chinese agroecosystems[J]. Agricultural and Forest Meteorology,142:270-277
    88. Hanson R S, Hanson T E.1996. Methanol trophic bacteria[J]. Microbial Review,60:439-471
    89. Horswill P, Sullivan O, Phoenix G K, et al.2008. Base cation depletion, eutrophication and acidification of species-rich grasslands in response to long-term simulated nitrogen deposition[J]. Environmental Pollution,155(2):336-349
    90. Huang Y, Jiao Y, Zong L G, et al.2002. Nitrous oxide emissions from wheat growing season with eighteen Chinese paddy soils:An outdoor pot experiment[J]. Biology and Fertility of Soils,36: 411-417
    91. Huang Y, Zhang W, Zheng X H, et al.2006. Estimates of methane emissions from Chinese rice paddies by linking a model to GIS database[J]. Acta Ecologica Sinica,26(4):980-988
    92. Hyodo F, Inoue T, Azuma JI, et al.2000. Role of the Mutualistic fungus in lignin degradation in the fungus-growing termite Macroterms gilvus (Isoptera; Macrotermitinae)[J]. Soil Biology and Biochemistry,32:653-658
    93. Iqbal J, Hua R G, Lin S, et al.2009. CO2 emission in a subtropical red paddy soil (Ultisol) as affected by straw and N-fertilizer applications:a case study in southern China agriculture[J]. Ecosystems and Environment,131:292-302
    94. IPCC,2001, Climate Change 2001, (http://www.ipcc.ch/)
    95. IPCC.2007. Climate Change 2007, (http://www.ipcc.ch/)
    96. Kemmitt S J, Wright D, Goulding K W T, et al.2006. pH regulation of carbon and nitrogen dynamics in two agricultural soils[J]. Soil Biology and Biochemistry,38:898-911
    97. Kerdchoechuen O.2005. Methane emission in four rice varieties as related to sugars and organic acids of roots and root exudates and biomass yield. Agriculture[J]. Ecosystems and Environment, 108:155-163
    98. King G M.1990. Regulation by light of methane emissions from a wetland[J]. Nature,345: 513-515
    99. Kreutzer K, Beier C, Bredemeier M, et al.1998. Atmospheric deposition and soil acidification in five coniferous forest ecosystems:a comparison of the control plots of the EXMAN sites[J]. Forest Ecology and Management,101:125-142
    100. Lal R.2004. Soil carbon sequestration to mitigate climate change[J]. Geoderma,123:1-22
    101. Larssen T, Schnoor J L, Seip H M, et al.2000. Evaluation of different approaches for modeling effects of acid rain on soils in China[J]. The Science of the Total Environment,246:175-193
    102. Larssen T, Seip H M, Semb A, et al.1999. Acid deposition and its effects in China:an overview[J]. Environmental Science and Policy,2:9-24
    103. Liao B H, Guo Z H, Probst A, et al.2005. Soil heavy metal contamination and acid deposition: experimental approach on two forest soils in Hunan, Southern China[J]. Geoderma,127:91-103
    104. Lou Y S, Li Z P, Zhang T L, et al.2004. CO2 emissions from subtropical arable soils of China[J]. Soil Biology and Biochemistry,36:1835-1842
    105. Ma J, Ma E, Xu H, et al.2009. Wheat straw management affects CH4 and N2O emissions from rice fields[J]. Soil Biology and Biochemistry, in press, www.elsevier.com/locate/soilbio
    106. Ma W K, Schautz A, Fishback L A E, et al.2007. Assessing the potential of ammonia oxidizing bacteria to produce nitrous oxide in soils of a high arctic lowland ecosystem on Devon Island, Canada[J]. Soil Biology and Biochemistry,39:2001-2013
    107. Magill A H, Aber J D.2000. Variation in soil net mineralization rates with dissolved organic carbon additions[J]. Soil Biology and Biochemistry,32:597-601
    108. Mannings S, Smith S, Bell J N B.1996. Effect of acid deposition on soil acidification and metal mobilization[J]. Applied Geochemistry,11:139-143
    109. Martens D A.2000. Plant residue biochemistry regulates soil carbon cycling and carbon sequestration[J], Soil Biology and Biochemistry,32:361-369
    110. McCauley A, Jones C, Jacobsen J.2003. Soil pH and organic matter[J]. Nutrient Management Module,8:1-12
    111. Menz F C, Seip H M.2004. Acid rain in Europe and the United States:an update[J]. Environmental Science and Policy,7:253-265
    112. Mer J L, Roger P.2001. Production, oxidation, emission and consumption of methane by soils:A review[J]. European Journal of Soil Biology,37:25-50
    113. Millar N, Baggs E M.2004. Chemical composition, or quality, of agroforestry residues influences N2O emissions after their addition to soil[J]. Soil Biology and Biochemistry,36:935-943
    114. Minoda T, Kimura M, Wada E.1996. Photosynthates as dominant source of CH4 and CO2 in soil water and CH4 emitted to the atmosphere from paddy fields[J]. Journal of Geophysical Research, 101:21091-21097
    115. Mol-Dijkstra J P, Kros H.2001. Modelling effects of acid deposition and climate change on soil and run-off chemistry at Risdalsheia, Norway[J]. Hydrology and Earth System Sciences,5(3): 487-498
    116. Momen B, Helms J A.1996. Effects of simulated acid rain and ozone on foliar chemistry of field-grown Pinus Ponderosa seedlings and mature trees[J]. Environmental Pollution, 91(1):105-111
    117. Momen B, Anderson P D, Helms J A.1999. Temperature dependency of acid-rain effect on photosynthesis of Pinus ponderosa[J]. Forest Ecology and Management,113:223-230
    118. Munzuroglu O, Obek E, Geckil H.2003. Effects of simulated acid rain on the pollen germination and pollen tube growth of apple (Malus Sylvestris Miller cv. Golden)[J]. Acta Biologica Hungarica, 54 (1):95-103
    119. Nayak D R, Adhya T K, Babu Y J, et al.2006. Methane emission from a flooded field of Eastern India as influenced by planting date and age of rice (Oryza sativa L.) seedlings Agriculture[J]. Ecosystems and Environment,115:79-87
    120. Niklinska M, Maryan ski M, Laskowski R.1999. Effect of temperature on humus respiration rate and nitrogen mineralization:implications for global climate change[J]. Biogeochemistry,44: 239-257
    121. Ouyang X J, Zhou G Y, Huang Z L, et al.2008. Effect of simulated acid rain on potential carbon and nitrogen mineralization in forest soils[J]. Pedosphere,18:503-514
    122. Pangle R E, Seiler J.2002. Influence of seedling roots, environmental factors and soil characteristics on soil CO2 efflux rates in a 2-year-old loblolly pine (Pinus taeda L.) plantation in the Virginia Piedmont[J]. Environmental Pollution,116:585-596
    123. Pennanen T, Perkioemaeki J, Kiikkilae O, et al.1998. Prolonged, simulated acid rain and heavy metal deposition:separated and combined effects on forest soil microbial community structure[J]. FEMS Microbiology Ecology,27:291-300
    124. Priha O, Grayston SJ, Pennanen T, et al.1999. Microbial activities related to C and N cycling and microbial community structure in the rhizospheres of Pinus sylvestris. Picea abies and Betula pendula seedlings in an organic and mineral soil[J]. FEMS Microbiology Ecology,30:187-199
    125.Rach A K.1999. Methane production in unamended and rice-straw-amended soil at different moisture levels[J]. Biology and Fertility of Soils,28:145-149
    126. Ramakrishnan B, Lueders T, Dunceld P F, et al.2001. Archaeal community structures in rice soils from different geographical regions before and after initiation of methane production[J]. FEMS Microbiology Ecology,37:175-186
    127. Robertson G P, Paul E A, Harwood R R.2000. Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere[J]. Science,289: 1922-1925
    128. Ruser R, Flessa H, Russow R, et al.2006. Emission of N2O, N2 and CO2 from soil fertilized with nitrate:effect of compaction, soil moisture and rewetting[J]. Soil Biology and Biochemistry,38: 263-274
    129. Rutigliano F A, De Santo A V, Berg B, et al.1996. Lignin decomposition in decaying leaves of Fagus Sylvatica L. and needles of Abies Alba mill[J]. Soil Biology and Biochemistry,28:101-106
    130. Sant'Anna-Santos B F, Silva L C, Azevedo A A, et al.2006. Effects of simulated acid rain on the foliar micromorphology and anatomy of tree tropical species[J]. Environmental and Experimental Botany,58:158-168
    131. Schutz H, W Seiler, R Conrad.1989. Processes involved in formation and emission of methane in rice paddies[J]. Biogeochemistry,7:33-53
    132. Shumejko P, Ossipov V, Neuvonen S.1996. The effect of simulated acid rain on the biochemical composition of scots pine (Pinus Syl Vestris L.) Needles[J]. Environmental Pollution,92(3): 315-321
    133. Shvetsova T, Mwesigwa J, Labady A, et al.2002. Soybean electrophysiology:effects of acid rain[J]. Plant Science,162:723-731
    134. Simek M, Cooper J E, Picek T, et al.2000. Denitrification in arable soils in relation to their physico-chemical properties and fertilization practice[J]. Soil Biology and Biochemistry,32: 101-110
    135. Simek M, Jisova L, Hopkins D.2002. What is the so-called optimum pH for denitrification in soil?[J]. Soil Biology and Biochemistry,34:1227-1234
    136. Singh B, Agrawal M.2004. Impact of simulated acid rain on growth and yield of two cultivars of wheat[J]. Water, Air, And Soil Pollution,152:71-80
    137. Sitaula B K, Sitaula J I B, A Aakra, et al.2001. Nitrification and methane oxidation in forest soil: acid deposition, nitrogen input and plant effects[J]. Water, Air, and Soil Pollution,130:1061-1066
    138. Sjoberg G, Nilsson S I, Persson T, et al.2004. Degradation of hemicellulose, cellulose and lignin in decomposing spruce needle litter in relation to N[J]. Soil Biology and Biochemistry,36:1761-1768
    139. Smart D R, Bloom A J.2001. Wheat leaves emit nitrous oxide during nitrate assimilation[J]. Proceedings of the National Academy of Sciences of the United States of America,98(14): 7875-7878
    140. Smith S J, Pitcher H, Wigley T M L.2001. Global and regional anthropogenic sulfur dioxide emissions[J]. Global and Planetary Change,29:99-119
    141. Sogn T A, Abrahamsen G.1998. Effects of N and S deposition on leaching from an acid forest soil and growth of Scats pine (Pinus sylvestris L.) after 5 years of treatment[J]. Forest Ecology and Management,103:177-190
    142. Solberg S, Andreassen K, Clarke N, et al.2004. The possible influence of nitrogen and acid deposition on forest growth in Norway[J]. Forest Ecol Manag,192:241-249
    143. Sitaula B K, Bakken L R, Abrahamsen G.1995. N-fertilization and soil acidification effects on N2O and CO2 emission from temperate pine forest soil[J]. Soil Biology and Biochemistry,27(11): 1401-1408
    144. Steinkamp R, Butterbach-Ball H, Papen H.2001. Methane oxidation by soils of an N limited and N fertilized spruce forest in the black forest, Germany[J]. Soil Biology and Biochemistry,33:145-153
    145. Stracher G B, Taylor T P.2004. Coal fires burning out of control around the world:thermodynamic recipe for environmental catastrophe[J]. International Journal of Coal Geology,59:7-17
    146. Suomela J, Neuvonen S, Ossipova S, et al.1998. A long-term study of the effects of simulated acid rain on birch leaf phenolics[J]. Chernosphere,36(4-5):639-644
    147. Teklay T, Malmer A.2004. Decomposition of leaves from two indigenous trees of contrasting qualities under shaded-coffee and agricultural land-uses during the dry season at Wondo Genet, Ethiopia[J]. Soil Biology and Biochemistry,36:777-786
    148. Thirukkumaran C M, Morrison I K.1996. Impact of simulated acid rain on microbial respiration, biomass, and metabolic quotient in a mature sugar maple (Acer saccharum) forest floor[J]. Canadian journal of forest research,26(8):1446-1453
    149. Tomlinson G H.2003. Acidic deposition, nutrient leaching and forest growth[J]. Biogeochemistry, 65:51-81
    150. Van der Weerden T J, Scherlock R R, Willians P H, et al.1999. Nitrous oxide emissions and methane oxidation by soil following cultivation of two different leguminous pastures[J]. Biology and Fertility of Soils,30:52-60
    151. Vanhala P, Fritze H, Neuvonen S.1996. Prolonged simulated acid rain treatment in the subarctic: effect on the soil respiration rate and microbial biomass[J]. Biology and Fertility of Soils,23(1): 7-14
    152. Vrba J, Kopacek J, Fott J, et al.2003. Long-term studies (1871-2000) on acidification and recovery of lakes in the Bohemian Forest (central Europe)[J]. The Science of the Total Environment,2003, 310:73-85
    153. Waldrop M P, Zak D R, Sinsabaugh R L.2004. Microbial community response to nitrogen deposition in northern forest ecosystems[J]. Soil Biology and Biochemistry,36:1443-1451
    154. Wang A P, Delaune R D, Masscheleyn P H, et al.1993. Soil redox and pH effects on methane production in a flooded rice soil[J]. Soil Science Society of America Journal,57:382-385
    155. Wang W.X, Wang T.1996. Short communication on acid rain formation in China[J]. Atmospheric Enuironment,30(23):4091-4693
    156. Wang W J, Dalal R C, Moody P W, et al.2003. Relationships of soil respiration to microbial biomass, substrate availability and clay content[J]. Soil Biology and Biochemistry,35:273-284
    157. Wang Y S, Wang Y H.2003. Quick measurement of CH4, CO2 and N2O emssions from a short-time eosystem[J], Advance of Atmospheric Seience,20(5):842-844
    158. Xiong Z Q, Xing G X, Zhu Z L.2007. Nitrous oxide and methane emissions as affected by water[J]. Soil and Nitrogen. Pedosphere,17(2):146-155
    159. Xu J M, Tang C, Chen Z L, et al.2006. Chemical composition controls residue decomposition in soils differing in initial pH[J]. Soil Biology and Biochemistry,38:544-552
    160. Yamulki S.2006. Effect of straw addition on nitrous oxide and methane emissions from stored farmyard manures. Agriculture[J]. Ecosystems and Environment,112:140-145
    161. Zheng J F, Zhang X H, Li L Q, et al.2007. Effect of long-term fertilization on C mineralization and production of CH4 and CO2 under anaerobic incubation from bulk samples and particle size fractions of a typical paddy soil[J]. Agriculture, Ecosystems and Environment,120:129-138
    162. Zheng X H, Wang M X, Wang Y S, et al.2000. Impacts of soil moisture on nitrous oxide emission from croplands:a case study on the rice-based agro-ecosystem in Southeast China[J]. Chemosphere-Global Change Science,2:207-224
    163. Zhuang S Y, Wang M K, King H B, et al.2006. Rain acid buffer capacities of alpine forest soils in central Taiwan[J]. Geoderma,137:174-178
    164. Zou J W, Huang Y, Zheng X H, et al.2007. Quantifying direct N2O emissions in paddy fields during rice growing season in mainland China:dependence on water regime[J], Atmospheric Environment,41:8030-8042

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700