土地利用变化和重金属污染对水稻土土壤呼吸和有机碳损失的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻土是我国重要的粮食生产资源和农田土壤碳库,同时产生温室气体排放,对于国家粮食安全和减缓气候变化具有至关重要的地位。我国面临着日益严峻的应对气候变化的严峻挑战,稻田土壤碳汇和温室气体减排已成为稻田可持续发展的重要任务。随着我国经济的快速发展,土地利用变化和环境污染日益加剧,水稻土有机碳碳汇的未来变化成为水稻土碳循环和全球变化研究的重要内容。本文从土壤有机碳的直接变化和土壤呼吸变化的实验测定,研究水稻土转变土地利用和重金属环境污染下水稻土有机碳的损失和温室气体产生和排放的变化,并讨论其土壤和生态系统过程机理,为科学分析土地利用和重金属污染对水稻土碳循环和碳汇的变化提供科学依据。
     本文以太湖地区典型水稻土-乌泥土为研究对象,就土地利用变化和重金属污染两个因素,选择了一直种植水稻的田块和改种水稻玉米3年的田块,采集其剖面不同深度的土壤样品,进行了土壤团聚体颗粒组分离,分别测定全土和分离的土壤团聚体总有机碳(TOC)、土壤溶解有机碳(DOC)和微生物生物量碳(SMBC),并对选择性样本测定了有机质的δ13C值。选择了重金属严重污染的田块与非污染的田块作为对比,进行了表土有机碳变化和土壤呼吸变化的野外和实验室培养研究,并分析了不同的有机碳组分和微生物生物量、细菌基因多样性变化等,获得的主要结果如下:
     1,水田改种玉米3年后,耕层土壤TOC明显下降,但DOC和SMBC趋向增加;粗团聚体颗粒组(2~0.2 mm)的TOC含量降低,而其他团聚体颗粒组TOC无显著变化。改种玉米后表层土壤(0~15cm)原土及各粒级团聚体的δ13C值均明显高于原稻田,计算表明玉米新碳绝大部分集中在0~20 cm土层,且主要富集在粗团聚体颗粒组中。水田转变成旱地后,耕层土壤粗团聚体颗粒组中有机碳更新周期明显较短,有机碳分解加速,碳储量快速损失。这说明水稻土中物理保护的有机碳在旱地耕作下团聚体破坏而快速分解,玉米新碳可能刺激了微生物活动而加快水稻土老碳分解。
     2,重金属污染土壤的基底呼吸速率为81.92 mgCO2-C·m-2·h-1,明显高于无污染农田的土壤呼吸速率71.19 mgCO2-C·m-2·h-1,因而重金属污染显著地提高了水稻土土壤呼吸的强度。与无污染农田的土壤相比,长期重金属污染下土壤呼吸强度提高了15.10%,并且显著降低了土壤的微生物生物量碳、微生物商、土壤有机碳和微生物量碳氮比。相关分析显示,重金属污染还显著提高了土壤呼吸对土壤温度响应的敏感性。因此,重金属污染影响了稻田的土壤有机碳库的积累,降低了土壤有机碳库的稳定性,使其容易受外界的温度变化的影响。
     3,在整个水稻生长季,稻田生态系统的CO2和CH4排放高峰分别出现在水稻生育前期和中期。重金属污染稻田的CO2和CH4排放量都显著低于未污染的稻田,结合重金属污染显著降低了地上部生物量的结果,可以认为是重金属的污染危害到水稻生长,减弱植株的光合作用从而影响其生物量的生产,导致农田CO2和CH4排放量降低。对比稻田生态系统和土壤的CH4排放差异,可以看出水稻植株对CH4排放具有巨大的贡献。麦田生态系统的CO2排放量显著的低于稻田生态系统的CO2排放量。同时,重金属对小麦生态系统的CO2排放通量的影响显著的低于对稻田生态系统的影响。重金属污染降低土壤-作物系统呼吸排放的同时,显著提高了无植株参与的土壤CO2的排放通量,而对CH4的排放通量没有影响。
     4,重金属污染下实验室培养的水稻土有机碳的矿化率为0.33 mgC·g-1·OC·d-1,显著高于无污染土壤有机碳矿化率(0.29 mgC·g-1·OC·d-1)。这种差异主要集中于培养前期,这说明重金属污染加快了活性碳库的分解,对土壤惰性碳库的影响不甚强烈;重金属污染下SOC、DOC和土壤微生物生物量碳都降低,土壤有机碳稳定系数(Kos)也低于无污染土壤。重金属污染影响着作物对水稻土有机碳的输入积累并影响了土壤2有机碳的稳定性,从而可能对水稻土长期的固碳潜力产生重要影响。
     5,重金属污染下水稻土表土细菌数量增加,而放线菌和真菌的数量显著降低,并强烈地降低了土壤真菌/细菌比。PCR-DGGE图谱分析表明,重金属污染降低了土壤细菌的群落结构和多样性,从而影响了土壤微生物群落对有机碳的矿化分解强度。可见,重金属污染通过改变土壤微生物的群落结构而影响了水稻土碳循环与温室气体排放。
     综上所述,土地利用的变化和重金属污染深刻影响水稻土土壤有机碳的变化。这些变化与土壤团聚体组成和有机碳的性质、土壤微生物的群落结构和多样性,因此,土地利用变化和重金属污染通过有机质性质—土壤微生物结构与功能-土壤生物物理过程的效应和过程的联系而影响水稻土碳循环过程及气候变化效应。这方面的研究还亟待发展,为探讨水稻土的环境治理和环境友好的农田管理对策与途径,实现稻田土壤增产固碳和温室气体减排的综合效益提供理论依据
Paddy soils are vital source of rice production and play a fundamental role in food security and socio-economic development of China. These soils are substantial contributor to greenhouse gases and main pool of organic carbon as well. Reduction emission of greenhouse gases from paddy soils has become one of the key isuues in the research on global changes in the background of global warming and national food security. China is facing an increasingly challenges to climate change, paddy soil carbon sinks and greenhouse gas emissions for sustainable development of paddy fields have become an important task. Under China's rapid economic development, land-use change and increasing environmental pollution, organic carbon changes in the future of paddy soil has been an important research aspect in carbon cycle and global changes. Effects of land usage changes and heavy metal pollutions on soil organic carbon loss and greenhouse gas generation and emissions changes were investigated based on the determination of soil organic carbon and soil respiration, and the mechanisms of soil and land ecosystem processes were also discussed, which provided a scientific basis for the analysis of the effects of land use and heavy metal contamination of paddy soil on carbon cycle and changes in carbon sinks.
     Therefore, both field and laboratory incubation study were carried to understand the effects of plantation on the carbon dynamics and the mechanism involve in soil respiration under heavy metal polluted paddy soil. Wunitu paddy soil, a typical Southeast Chinese soil, was selected as the object of this research. Two adjacent fields of Wunitu paddy soil (one with rice-wheat rotation and another with double corn for 3 years after rice and wheat) were chosen to study the SOC dynamics. Both topsoil and whole profile was sampled. Soil particle size factions (PSFs) were separated using low energy ultrasonic dispersion. C pools of total organic carbon (TOC), dissolved organic carbon (DOC) and microbial biomass carbon (MBC) were determined for bulk soils and PSFs. Selected samples of bulk soil and PSFs from both rice and corn fields were also used for 13C natural abundance measurement. Changes on topsoil organic carbon and soil respiration between the non-polluted and serious polluted soil were studied, compositions of soil organic carbon, microbial biomass and bacterial genetic diversity were also compared. The main results were list as following:
     1. TOC of topsoil decreased drastically after 3 years of continuous corn cultivation although marked increase of DOC and MBC was observed in the cornfield. This was in coincident with the decrease of SOC in the sand PSF despite no remarkable changes in the other PSFs from the corn filed. Significantly heavier carbon could be detected either in bulk samples or in a single PSF from the cornfield than from rice field. Calculation using the data of 813C%o(PDB) indicated that 80% of young carbon inputted by corn residues was allocated in the topsoil of 0-20cm and mainly found in the coarse PSF as well as in the pools of DOC and MBC. These results indicated that the carbon storage was decreased rapidly as a result of increased decomposition rate after the change of paddy soil into dryland soil. These may contributed to the destruction of the physical protected soil organic carbon due to the tillage, which changed the composition of soil particle fractions.
     2. Soil basal respiration CO2 flux of heavy metal polluted soil was 81.92 mgCO2-C·m-2·h-1 which was obviously higher than unpolluted soil (71.19 mgCO2-C·m-2·h-1). The paddy soil CO2 emission was significantly increased under heavy metal polluted condition. Compared with unpolluted soil, the soil breath intensity was increased 15% under long term heavy metal polluted condition, and the soil microbial biomass, microbial quotient, soil organic carbon and Cmic/Nmic was significantly decreased. Correlation analysis showed that a more prompt response of CO2 flux to soil temperature was increased under heavy metal polluted condition, and the accumulation and stability of paddy soil organic carbon pool was affected, which was decreased, easily affected by the change of temperature.
     3. CO2 and CH4 emission of paddy soil under heavy metal polluted condition was significantly lower than unpolluted paddy soil in the whole growing season. The rice growth was affected under heavy metal polluted condition due to inefficient photosynthesis that caused less biomass production ultimately decreasing CO2 and CH4 emission of paddy soil. But soil basal respiration CO2 flux was increased under heavy metal polluted condition. This might be due to the fact that decomposition of soil organic carbon and soil CO2 emission was affected by the change of soil microbial activity under heavy metal polluted condition. Difference of CH4 emissions between rice ecosystem and soil was attributed to the rice plant. CO2 emissions in Wheat field ecosystem were significantly lower than that of the rice ecosystem. At the same time, effects of heavy metals on CO2 emissions in wheat ecosystem were significant lower than rice ecosystem. Heavy metal contamination was found to decrease the soil respiration and increase the CO2 emission in non-plant ecosystem, but no impacts on the flux of CH4 emission.
     4. The soil organic carbon mineralization rate in heavy metals polluted paddy soil was 0.33 mgC·g-1·OC·d-1, which was significantly higher than non-polluting soil organic carbon mineralization rate 0.29 mgC·g-1·OC·d-1. This difference mainly concentrated on beginning of mineralization, indicated that it's the activated carbon not the inert carbon in soil which was most effected by heavy metals pollution. Soil carbon pools were also influenced by heavy metals pollution with the decreasing of Cmic, DOC, TOC and Kos. Heavy metal pollution has changed the nature of soil organic carbon, on the other hand is a higher activity in the new accumulated organic carbon. Heavy-metal contamination impacted on the growth and stability of paddy soil organic carbon, thus affecting China's long-term potential of paddy soil carbon sequestration.
     5. Heavy metal pollution has increased the number of bacteria in soil, and a significant reduction in the number of actinomycetes and fungi, and a strong reduction of the ratio of fungi to bacteria in paddy soil. Soil bacterial diversity and structure of community were found to be reduced by DGGE, thus affecting the microbial mineralization of organic carbon. Heavy metal pollution can be seen to change the structure of soil microbial community, thus the function of microbial communities.
     To sum up, organic carbon in paddy soil was deeply affected by land usage changes and the pollutions of heavy metal, which was related to the compositions of soil aggregates, characterizations of soil organic carbon, community structure and diversity of soil microorganisms. That is, soil carbon cycle and climate changes were interrelated by the interactions of organic carbon, structure and functions of microorganisms and soil biogeochemical process. Researches in this area were needed to develop. It provided a theoretical basis to achieve the benefits of carbon sequestration and reducing greenhouse gas emission in paddy soil in particular the current trend of global warming.
引文
Alvarez R, Alvarez C. Temperature regulation of soil carbon dioxide production in the Humid Pampa of Aregentina: estimation of carbon fluxes under climate change. Biology and Fertility of Soils,2001, 34:282-285.
    Baath E. Effects of heavy metals in soil on microbial processes and populations (a review).Water Air Soil and Pollution,1989,47:335-379.
    Balesdent J, Mariotti A, Guillet B. Nature 13C abundance as a tracer for soil organic matter dynamics studies. Soil Biol. Biochem.,1987,19:25-30
    Bassam B, Caetano-Anolles G, Gresshoff P. Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical Biocheistry,1991,196:80-83
    Benner R, Fogel M L, Sprague E K, et al. Depletion of 13C in lignin and its implications for stable isotope studies. Nature,1987,329:708-710
    Ber B, Ekbohm G, Soderstrom B, et al. Reduction of decomposition rates of Scots pine needle litter due to heavy-metal pollution. Water Air and Soil Pollution,1991,59,165-177
    Berg B. Reduction of decomposition rates of scots pine needle litter due to heavy metals pollution. Water, Air, and Soil Pollution,1991,59:165-177.
    Blair J G, Lefroy R, Lisle L. Soil carbon fractions based on the degree of oxidation and the development of a carbon management index for agricultural systems. Austrian Journal of Agricultural Research, 1995,46:1459-1466.
    Boucher U, Balabane M, Lamy I, et al. Decomposition in soil microcosms of leaves of the metallophyte Ambidopsis halleri. Effect of leaf-associated heavy metals on biodegrade, Enviromental Pollution, 2005,135 (2):187-194
    Bowden R, Nadelhoffer K, Boone R, et al. Contributions of above ground litter, below ground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest. Canada Journal of Forest Research,1993,23:1402-1407.
    Bowman R, Reeder J, Wienhold B. Quantifying Laboratory and Field Variability to Assess Potential for Carbon Sequestration. Community Soil Science Plant Analysis,2002,33(9&10),1629-1642
    Brookes P C. Effects of metal toxicity on t he size of the soil microbial biomass. Journal of Soil Science, 1984,35:341-346.
    Buchmann N. Biotic and a biotic factor controlling soil respiration rates in Piceaabies stands. Soil Biology and Biochemistry,2000,32(11,12):1625-1635.
    Campbell C, McConkey B, Zentner R, et al. Long term effects of tillage and rotations on soil organic C and total N in a clay soil in southwestern Saskatchewan. Can J Soil Sci,1996 76:395-401
    Cao M, Gregson K., Marshall S, et al. Global methane emissions from rice paddies. Chemosphere,1996, 33:879-897.
    Caravaca F, Lax A, Albaladejo J. Aggregate stability and carbon characteristics of particle size fractions in cultivated and forested soils of semiarid Spain. Soil Tillage Res.,2004,78:83-90
    Chandra K, William B H, Chandra K M. Interaction of heavy metal toxicants with brain constitutive nitric oxide synthase. Molecular and Cellular Biochemistry,1995,194(1):263-263
    Cicerone R J, Shetter J D and DelwicheC C. Seasonal variations of methane flux from a California rice paddy. Geophys Res,1983,88:7203-7209
    Collins H P, Blevins R L, Bundy L G, et al. Soil carbon dynamics in corn-based agro-ecosystems:results from carbon-13 natural abundance. Soil Sci. Soc. Am. J.,1999,63:584-591
    Conant R T, Paustian K. Spatial variability of soil organic carbon in grasslands:Implications for detecting change at different scales. Environmental Pollution,2002,116 (1) 127-135
    Cotrufo M F, De Santo, Alfani A, et al. Effects of urban heavy metal pollutions on organic matter decomposition in Quercus ilex L woods, Enviromental Pollution,1995,89(1):81-87
    Dalal R C. Soil microbial biomass—what do the numbers really mean. Aust. J. Exp. Agr.,1998, 38:649-665.
    Davidson E A, Ackerman A L. Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry,1993,20:161-164
    Desjardins T, Folgarait P, Girardin C, et al. Soil organic matter dynamics along a rice chronosequence in northeastern Argentina: Evidence from natural 13C abundance and particle size fractionation. Soil Biol. Biochem.,2006,11:1-9
    Eichner C A, Erb R W, Timmis K N, et al. Thermal gradient gel electrophoresis analysis of bio-protection from pollutant shocks in the activated sludge microbial community. Applied and Environmental Microbiology,1999,65:102-109
    Fabienne G, Antonis C. Impacts of heavy metal contamination and phytoremediation on a microbial community during a twelve month microcosm experiment. Fems Microbiology Ecology,2004,48: 273-283.
    Falkowski P, Scholes R, Boyle E, et al. The global carbon cycle: a test of our knowledge of earth as a system. Science,2000,290; 291-296.
    Falloon P, Smith P. Simulating SOC changes in long-term experiments with Roth C and CENTURY: Model evaluation for a regional scale application. Soil Use and Management,2002,18:101-111
    Fang C., Moncrieff J. The dependence of soil CO2 efflux on temperature. Soil Biology & Biochemistry, 2001,33:155-165.
    Fernandez I. Soil carbon dioxide characteristics under different forest types and after harvest. Soil Science of Society of America Journal,1993,57:1115-1121.
    Fliebbach A, Martens R. Soil microbial biomass and activity in soil treated with heavy metal contaminated sewage sludge. Soil Biol.,1994,26:1201-1205.
    Fliepbach A, Martens R, Reber H. Soil microbial biomass and activity in soils treated with heavy metals contaminated sewage sludge. Soil Bology and Biochemistry,1994,26:1201-1205
    Garcia C, Hernanderz T, Roldan, A., Martin, A. Effect of pant cover decline on chemical and microbiological parameters under Mediterranean climate. Soil Biol. Bilchem,2002,34:635-642.
    Giller K, Witter E, McGrath S P. Toxicity of heavy metals to microorganisms and microbial processes in agriculture soils. Soil Biochem,1998,30:1389~1414
    Gough C M, Seiler J. The influence of environmental, soil carbon, root, and stand characteristics on soil CO2 efflux in loblolly pine (Pinus taeda L.) plantations located on the South Carolina Coastal Plain. Forest Ecology and Management,2004,191:353-363
    Gregorich E G, Ellert B H, Monreal C M. Turnover of soil organic matter and storage of corn residue carbon estimated from natural 13C abundance. Can. J. Soil Sci.,1995,75:161-167.
    Gregorich E G, Liang B C, Drury C F, et al. Elucidation of the source and turnover of water soluble and microbial biomass carbon in agricultural soils. Soil Biol. Biochem.,2000,32:581-587
    Hedrick D B, Peacock A, Stephen J R, et al. Measuring soil microbial community diversity using polar lipid fatty acid and denaturing gradient gel electrophoresis data. Journal of Microbiological Methods, 2000,41:235-248
    Hill D. Environmental Soil Physics. Academic Press, San Diego-London-Boston- New York-Sydney-Tpkyo- Toronto,1998,291-305.
    Holzapfel A, Conrad R, Seiler W. Effects of vegetation on the emission of methane from submerged paddy soil. Plant and Soil,1986,92:223-233
    Houghton R A. Changes in the storage of terrestrial carbon since 1850. In: Soil and Global Change. Boca Raton, Florida:CRC Press.1995,45-65
    Huang X X, Gao M, Wei C F, et al. Tillage Effect on Organic Carbon in a Purple Paddy Soil. Pedosphere, 2006,16(5):660-667
    Jenkison and Ladd J N, Microbial biomass in soil: measurement and turnover in:Soil Biochemistry, Paul E A and Ladd J N (eds), New York: Marcel Dekker INC,1981:415-471.
    Jolivet C, Guillet B, Karroum M, et al. Soil organic carbon dynamics in cleared temperate forest spodosols converted to maize cropping. Plant Soil,1997,191:225-231
    Jones J B, Mulholland P J. Carbon dioxide variation in a Hardwood forest stream: Anintegrative measure of whole catch men soil respiration. Ecosystems,1998,1(2):183-196.
    Jun D, Thierry B. Influence of heavy metals on C and N mineralization and microbial biomass in Zn, Pb, Cu, and Cd contaminated soils. Applied Soil Ecology,2004,25:99-109.
    Kandeler E, Luftenegger G. Influence of heavy metals on the functional diversity of soil microbial communites. Biology and Fertility of Soil,1997,23:299-306.
    Kandeler E, Luftenegger G. Influence of heavy metals on the functional diversity of soil microbial communites. Biology and Fertility of Soil,1997,23:299-306.
    Kao P H, Huang C C, Hseu Z Y. Response of microbial activities in a neutral loamy soil to heavy metals treated with biosolid. Chemosphere,2006,64(1):63-70
    Kennedy A C, Gewin V L. Soil microbial diversity: present and future considerations. Soil Sci.,1997, 162:607-617
    Khan K S. Effect of cadmium, lead on size of microbial biomass. Pedosphere,1998,8:27-32.
    Kuperman R G, Carreiro M M. Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem. Soil Biology and Biochemistry,1997,29(2): 179-190.
    Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004,304: 35-39.
    Leinweber P, Schulten H R. Dynamics of soil organic matter studied by pyrolysis-field ionization mass spectrometry. J. Anal. Appl. Pyrol.,1993,25:123-136
    Leiros M C, Trasar-Cepeda C, Seoane S, et al. Dependence of mineralization of soil organic matter on temperature and moisture. Soil Biology and Biochemistry,1999,31:327-335
    Li F M, Song QH, Patrick K, et al. Dynamics of soil microbial biomass C and soil fertility in cropland mulched with plastic film in a semiarid, agro-ecosystem. Soil Biology & Biochemistry 2004,36: 1893-1902.
    Li L, Zhang X, Zhang P, Pan G, et al. Variation of organic carbon and nitrogen in aggregate size fractions of a paddy soil under fertilisation practices from Tai Lake Region, China. Journal of the Science of Food and Agriculture,2007,87:1052-1058.
    Liang B C, Wang X L, Ma B L. Maize root-induced change in soil organic carbon pools. Soil Sci. Soc. Am. J.,2002,66:845-847
    Lupwayi N Z, Rice W A, Clayton G W. Soil microbial biomass and carbon dioxide flux under wheat as influenced by tillage and croprotation. CanJ Soil Sci,1999,79:273-280
    Mahmood T, Azam F, Hussain F, et al. Carbon availability and microbial biomass in soil under an irrigated wheat-maize cropping system receiving different fertilizer treatments. Biology and Fertility Soil,1997,25:63-68.
    McCarthy C M, Murray L. Viability and metabolic features of bacteria indigenous to a contaminated deep aquifer. Microbial Ecology.1996,32:305-321.
    Mcgrath S P, Chaudhri A M. Long term effects of metal sin sewage on soils microorganisms and plant. Journal of industrial microbiology,1995,14:94-101.
    Mosier A R. Soil processes and global change. Biol. Fertil. Soils,1998,27(3):221-229
    Muyzer G, De Waal E C, Uitterlinden A G Profiling of complex microbial population by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16SrRNA. Appl. Environ. Microbiol.1993,59 (3):695~700
    Muyzer G. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr. Microbiol.1999, 2:317-322
    Nakatsu C H, Torsvik V, and Φver(?)s L. Soil Community Analysis Using of 16S rDNA Polymerase Chain Reaction Products. Soil Sci. Soc. AM.J,2000,64:1382-1388
    Nannipieri P, Kandeler E, Ruggiero P. Enzyme activities and microbiological and biochemical processes in soil, in:Burns, R.G, Dick, R.P. (Eds.), Enzymes in the Environment. New York:Marcel Dekker, 2002:1-34
    Nelson D W, Sommers L E, Total carbon organic carbon and organic matter. In:Sparks D. L., Page A L. Methods of Soil Analysis. Part 3:Chemical Methods. Madison, Wisconsin, USA.1996.,973-977
    Neue H U, Bucker H P, Scharpenseel H W. Organic matter dynamics, soil properties and cultural practices in rice paddies and their relationships to methane production, in:Bouwman AF (Ed.), Soils and the Greenhouse Effect, John Wiley & Sons, New York,19,0.457-466.
    Nosir S. The impact of the almalyk industrial complex on soil chemical and biological properties. Environmental Pollution,2005,136:331-340.
    Odum E.1985. Trends expected in stressed ecosystems. Bioscience,35:419-422
    Olk D C, Cassman K G, Randall E W, et al. Changes in chemical properties of organic matter with intensified rice cropping in tropical lowland soil. Eur. J Soil Sci,1996,47:293-303
    Ouyang Y, Zheng C. Surgical processes and CO2 flux in soil ecosystem. Journal of Hydrology,2000, 234:54-70
    Palmborg G, Lal R, Roane T, et al. Multivariate analysis of microbial activity and soil organic matter at a forest site subjected to low-level heavy metal contamination. Integrated Soil Analysis. Ambio,1998, 27:53-67.
    Pan G X, Li L Q, Wu L S, et al. Storage and sequestration potential of topsoil organic carbon in China's paddy soils. Global Change Bio.,2003,10:79-921
    Pan G X, Li L Q, Zhang Q, et al. Organic carbon stock in topsoil of Jiangsu Province, China, and the recent trend of carbon sequestration. J. Environm. Scis.,2005,17(1):1-7
    Pan G, Wu L. Organic carbon stratification and size distribution of three typical paddy soils from Taihu Lake region, China. Journal of Environmental Sciences,2008,20:456-463.
    Parton W J, Schimel D S, Cole C V, et al. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal,1987,51:1173-1179.
    Paustian K, Andren O, Janzen H. et al. Agricultural soil as a C sink to offset CO2 emissions. Soil Use Management.1997,13:230-244
    Powlson D S. The soil microbial biomass:before, beyond and back. In:Ritz, K., Dighton, J., Giller, G.E. (Eds.),Beyond the Biomass. Chichester, UK:Willey,1994:3-20
    Puget P, Lal R, Izaurralde C, et al. Stock and distribution of total and corn-derived soil organic carbon in aggregate and primary particle fractions for different land use and soil management practices. Soil Sci.,2005,170(4):256-279
    Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 1992,44B:81-89.
    Raich J W, Tufekcioglu A. Vegetation and soil respiration:Correlations and controls. Biochemistry,2000, 48:71-90,2000.
    Reich P B, Walters M B, Ellsworth D S, et al., Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf lifespan:atestacrobiomes and functional groups.Oecologia,1998, 114:471-482.
    Roane T M, Pepper I L. Microbial responses to environmentally toxic. Microbial Ecol.,1999,38 (4): 358-364.
    Sass R L, Fisher FM. Methane emissions from rice paddies:a process study summary.Nutr. cycling Agroecosyst,1997,48:119-127
    Sass R L, Fisher F M, Harcombe P A, et al. Methane emission from rice fields as influence by solar radiation, temperature and straw incorporation. Global Biogeochem. Cycle,1991,5:275-287
    Scanlon B R. Soil gas movement in unsaturated systems. In:Sumner M E (Editor-in-chief.). Handbook of Soil Science, CRC Press, Boca Raton-London-New York-Washington DC.2000,277-319.
    Schimel D S, Braswell B H, Holland E A, et al. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochemistry Cycle,1994,8:279-293.
    Schlesinger W H, Andrews J A. Soil respiration and the global cycle. Biochemistry.2000,48:7-20.
    Schulten H R, Leinweber P. New insights into organic-mineral particles: composition, properties and models of molecular structure. Biol. Fertil. Soils,2000,30:399-432
    Schutter M E, Sandeno J M, Dick R P. Seasonal, soil type, and alternative management influences on microbial communities of vegetable cropping systems. Biol. Fertil. Soils,2001,34:397-410
    Schwager S J, Mikhailova E. A. Estimating variability in soil organic carbon storage using the method of statistical differentials. Soil Science,2002,16(3):194-200
    Shrestha R K, Lal R. Ecosystem carbon budgeting and soil carbon sequestration in reclaimed mine soil Environment lnternntional,2006,32(6):781-796
    Smith J L, Paul E A. The significance of soil microbial biomass estimations. Soil Biol. Biochem.,1992: 357-396
    Smith P. How long before a change in soil organic carbon can be detected? Global Change Biology, 2004b,10:1878-1883
    Smith P. Monitoring and verification of soil carbon changes under Article 3.4 of the Kyoto Protocol. Soil Use and Management,2004a,20:264-270
    Sombroek W G, Nachtergaele F O, Hebel A. Amount dynamics and sequestering of carbon in tropical and subtropical soils. Ambio,1993,22(7):417-425
    Song G H, Pan G X, Li L Q, et al. Topsoil organic carbon storage of China and its loss by cultivation. Biogeochem.,2005,74:47-62
    Staddon P L. Carbon isotopes in functional soil ecology. Trends in Ecology and Evolution,2004,19(3): 148-154
    Stemmer M, Gerzabek M H, Kandeler E. Organic matter and enzyme activity in particle-size fractions of soils obtained after low-energy sanitation. Soil Biol. Biochem.,1998,30:9-17
    Su Z, Xiong Y, Zhu J, et al. Soil organic carbon content and distribution in a small landscape of Dongguan, South China. Pedosphere,2006,16(1):10-17
    Timothy B P, Thomas C K. Temperature controls on diurnal carbon dioxide flux: implications for estimating soil carbon loss. Soil science of society of America Journal,2003,67(6):1763-1772.
    Vaaspuez-Murrieta M, Migueles-Gardunno I, Franco-Hemandez O, et al. C and N mineralization and microbial biomass in heavy metal contaminated soil. European Journal of Soil Biology,2006,42(2): 89-98
    Valentini R, Matteuccl G, Dolman A J, et al., Respiration as main determinant of carbon balance in European forests .Nature,2000,404:861-865.
    Valsecchi G C. Microbial biomass, activity, and organic matter accumulation in soils contaminated with heavy metal. Biol. Fertil. Soils.1995,4:25-259.
    Vance E D, Brooks P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry,1987,19:703-707.
    Wang B, Adachi K. Differences among rice cultivars in root exudation, methane oxidation, and populations of methanogenic and methanotrophic bacteria in relation to methane emission. Nutr. Cycl. Agroecosyst.2004,58:349-356.
    Wang S, Tian H, Liu J, et al. Pattern and change of soil organic carbon storage in China:1960s-1980s.Tellus,2003,55(B):416-427
    Witt C, Cassman K G, Olk D C, et al. Corporation an residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems. Plant Soil,2000,225: 263-278
    Wood C W, Edwards J H. Agro-ecosystem management effects on soil carbon and nitrogen. Agricultural Ecosystem and Environment,1992,39:123-138
    Wu H B, Guo Z T, Peng C H. Distribution and storage of soil organic carbon in China. Global Biochemical Cycles 2003,17:1048-1058
    Yang Y, Liu C, Xu L, et al. Effects of heavy metal contamination on microbial biomass and community structure in soils. Chinese Journal of Geochemistry,2004,2(4):239-243
    Zhang P, Zheng J, Pan G, et al. Changes in microbial community structure and function within particle size fractions of a paddy soil under different long-term fertilization treatments from the Tai Lake region, China. Colloids and Surfaces B:Biointerfaces,2007,58:264-270
    Zhang X, Li L, Pan G Topsoil organic carbon mineralization and CO2 evolution of three paddy soils and the temperature dependence, Journal of Environmental Sciences,2007,19:319-326.
    Zheng J, Zhang X, Li L, et al. Effect of long-term fertilization on C mineralization and production of CH4 and CO2 under anaerobic incubation from bulk samples and particle size fractions of a typical paddy soil. Agriculture, Ecosystems and Environment,2007,120:129-138.
    安中华,董元华,安琼,等.苏南某市农田土壤环境质量评价及其分级.土壤,2004,36(6):631-635.
    柏松,黄成敏,唐亚.土壤有机碳稳定同位素的古环境指示意义及影响因素.土壤,2006,38(2):148-152.
    曹广民,李英年,张金霞,等.高寒草甸不同土地利用格局土壤CO2的释放量.环境科学,2001,22(6):14-19.
    陈怀满,郑春荣.复合污染与交互作用研究——农业环境保护中研究的热点与难点.农业环境保护,2002,21(2):192-192.
    陈四清,崔骁勇,周广胜,等.内蒙古锡林河流域大针茅草原土壤呼吸和凋落物分解的CO2排放速率研究.植物学报,1999,41(6):645-650.
    戴万宏,王益权,黄耀,等.农田生态系统土壤CO2释放研究.西北农林科技大学学报,2004,32(12):1-7
    董玉红,欧阳竹,李鹏,等.长期定位施肥对农田土壤温室气体排放的影响.土壤通报,2007,38(1):97-100
    段学军,闵航.Cd胁迫下稻田土壤生物活性与酶活性综合研究.农业环境科学学报,2004,23(3):422-427.
    龚平,孙铁珩,李培军.重金属对土壤微生物的生态效应.应用生态学报,1997,8(2):218-224.
    龚子同主编.中国土壤系统分类:理论、方法与实践.北京:科学出版社,1999:109-194.
    侯鹏程,徐向东,潘根兴.不同土地利用方式对农田表土有机碳库的影响——以太湖地区吴江市为例.南京农业大学学报,2007,30(2):68-72
    黄耀,孙文娟.近20年来中国大陆农田表土有机碳含量的变化趋势.科学通报,2006,51(7):750-763.
    贾仲君,蔡祖聪.水稻植株对稻田甲烷排放的影响.应用生态学报,2003,14(11):2049-2053
    蒋先军,骆永明,赵其国.重金属污染土壤的微生物学评价.土壤,2000,3:130-134.
    康金花,郝丽.含氯离子土壤有机质分析方法的初步研究.干旱区研究,1999,16(4):65-68
    李恋卿,潘根兴,张平究,等.太湖地区水稻土颗粒中重金属元素的分布及其对环境变化的响应.环境科学学报,2001,21(5):607-612.
    李恋卿,潘根兴,张平究,等.太湖地区水稻土表层土壤10年尺度重金属元素积累速率的估计.环境科学,2002,23(3):119-123.
    李恋卿,潘根兴,张旭辉,等.土壤团聚体有机碳稳定性同位素组成.南京农业大学学报,2000,23(1):114-116.
    李明峰,董云社,齐玉春,等.锡林河流域羊草群落春季CO2排放日变化特征分析.中国草地,2003,25(3):9-14.
    李延茂,胡江春,汪恩龙,等.森林生态系统中土壤微生物的作用与应用.应用生态学报,2004,15(10):1943-1946.
    李振高.骆永明.滕应.土壤微生物研究法.中国科学院南京土壤研究所微生物室.北京科学出版社.1985
    李忠佩,吴大付.红壤水稻土有机碳库的平衡值确定及固碳潜力分析.土壤学报,2006,43(1):46-52.
    廖敏,陈雪花,陈承利,等.土壤-青菜系统中铅污染对土壤微生物活性及多样性的影响.环境科学学报,2007,27(2):220-227.
    林昌善.环境生物学.北京:中国环境科学出版社.1997:185-188.
    林启美,吴玉光,刘焕龙.熏蒸法测定土壤微生物量碳的改进.生态学杂志,1999,18(2):63-66.
    刘洪莲,李艳慧,李恋卿,等.太湖地区某地农田土壤及农产品中重金属污染及风险评价.安全与环境学报,2006a.6(5):60-63
    刘洪莲,李恋卿,潘根兴.苏南几个水稻土中Cu、Pb、Hg、As的剖面分布及其影响因素.农业环境科学学报.2006a,25(5):1221-1227.
    刘惠,赵平,林永标,等.华南丘陵区农林复合生态系统早稻田CH4和N2O排放通量的时间变异.生态环境.2006,15(1):58-64
    刘建军,王得祥,雷瑞德,等.秦岭天然油松、锐齿栎林地土壤呼吸与CO2释放,地理科学,2003,39(2):8-13
    刘启明,朴河春,郭景恒,等.应用δ13C值探讨土壤中有机碳的迁移规律.地质地球化学,2001,29(1):32-35.
    刘启明,王世杰,朴河春,等.稳定碳同位素示踪农林生态转换系统中土壤有机质的迁移和赋存规律.环境科学,2002,23(4):89-92.
    刘守龙,童成立,张文菊,等.湖南省稻田表层土壤固碳潜力模拟研究.自然资源学报,2006,21(1):118-125.
    刘霞,刘树庆,王胜爱,等.重金属复合污染对土壤微生物生态特征的影响研究.农业环境科学学报,2007,26:17-21.
    娄运生,李忠佩,张桃林.不同利用方式对红壤CO2排放的影响.生态学报,2004,24(5):978-983
    鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,1999,106
    陆志敏,潘根兴,郑聚锋,等.不同状态样品培养下太湖地区黄泥土好气呼吸与CO2产生潜力.生态环境,2007,16(3):987-993
    马瑾,潘根兴,万洪富,等.珠江三角洲典型区域土壤重金属污染调查研究.土壤通报,2004,35(5):636-638.
    马静,徐华,蔡祖聪,等.水稻植株对稻田CH4排放日变化的影响.土壤,2007,39(6):859-862
    马毅杰,陈家坊,等.水稻土物质变化与生态环境.北京:科学出版社,1999:123-141
    孟磊,丁维新,蔡祖聪,等.长期定量施肥对土壤有机碳储量和土壤呼吸的影响.地球科学进展,2005,20(6):687-692.
    倪进治,徐建民,谢正苗.土壤生物活性有机碳库及其表征指标的研究.植物营养与肥料学报,2001,7(1):56-63.
    倪进治,徐建民,谢正苗.土壤水溶性有机碳的研究进展.生态环境,2003,12(1):71-75.
    潘根兴著,地球表层系统土壤学.北京:地质出版社,2000:73.
    潘根兴,Andrew C., Chang等.土壤-作物污染物分配与食品安全评价模型.应用生态学报,2002,13(7):849-853
    潘根兴,曹建华,周运超.土壤碳及其在地球表层系统碳循环中的意义.第四纪究,2000,20(4):
    325-334.
    潘根兴,高建芹,刘世梁,等.活化率指标苏南土壤环境中重金属污染冲击初探.南京农业大学学报,1999,22(2):46-49,
    潘根兴,李恋卿,张旭辉.土壤有机碳库与全球变化研究的若干前沿问题.南京农业大学学报,2002,25(3):79-88.
    潘根兴,李恋卿,张旭辉,等.中国土壤有机碳库量与农业土壤碳固定动态的若干问题.地球科学进展,2003,18(4):609-618.
    潘根兴,赵其国,蔡祖聪.《京都议定书》生效后我国耕地土壤碳循环研究若干问题.中国基础科学,2005,2:12-18.
    潘根兴,赵其国.我国农田土壤碳库演变研究:全球变化和国家粮食安全.地球科学进展,2005,20(4):384-393.
    潘根兴.中国土壤有机碳库及其演变与应对气候变化.气候变化研究进展,2008,4(5);282-289
    庞奖励,张健,黄春长.High TOC分析仪快速测定土壤和黄土样品中的有机碳.分析仪器,2003,1:34-38
    朴河春,刘启明,余登利,等.用天然13C丰度法评估贵州茂兰喀斯特森林区玉米地土壤中有机碳的来源.生态学报,2001,21(3):434-439.
    任丽新,王庚辰,张仁健,等.成都平原稻田甲烷排放的实验研究.大气科学,2002,11(6):731-743.
    沈承德,易惟熙,孙彦敏,等.鼎湖山森林土壤14C表观年龄及δ13C分布特征.第四纪研究,2000,20(4):335-344.
    沈善敏主编.中国土壤肥力.北京:中国农业出版社,1998,484
    宋国菡.耕垦下表土有机碳库变化及水稻土有机碳的团聚体分布与结合形态.南京:南京农业大学(博士学位论文),2005
    孙波,赵其国,张桃林,等.土壤质量评价的生物学指标.土壤,1997,29(5):225-234.
    孙瑞娟,王德建,林静慧.太湖流域土壤肥力演变及原因分析.土壤,2006,38(1):106-109
    孙铁珩,周启星.污染生态学研究的回顾与展望.应用生态学报,2002,13(2):221-223.
    唐丽娜,张晋京,窦森,等.重金属影响下有机物料分解与转化的研究.水土保持学报,2006,20(1):92-94
    腾应,黄昌勇,骆永明,等.重金属复合污染下红壤微生物活性及其群落结构的变化.土壤学报,2005,42(5):819-828.
    滕应,龙健.重金属污染土壤的微生物生态效应及修复研究进展.土壤与环境,2002,11(1):85-89.
    汪业勖,赵士洞,牛栋.陆地土壤碳循环的研究动态.生态学杂志,1999,18(5):29-35.
    王晶,解宏图,朱平,等.土壤活性有机质(碳)的内涵和现代分析方法概述.生态学杂志.2003.22(6):109-112.
    王嘉,王仁卿,郭卫华.重金属对土壤微生物影响的研究进展.山东农业科学,2006,1:101-105.
    王立刚,邱建军,李维炯.黄淮海平原地区夏玉米农田土壤呼吸的动态研究.土壤肥料,2002(6):13-17.
    王明星.中国稻田甲烷排放.北京:科学出版社,2001:83-150
    王小国,朱波,王艳强,等.不同土地利用方式下土壤呼吸及其温度敏感性.生态学报,2007,27(5):1960-1968
    王秀丽,徐建民,姚槐应,等.重金属铜、锌、镉、铅复合污染对土壤环境微生物群落的影响.环境科学学报,2003,23(1):22-27
    徐华,蔡祖聪,李小平.种稻土壤CH4排放规律的研究.土壤与环境.1999,8(3):193-197.
    徐秋芳,姜培坤,沈泉.灌木林与阔叶林土壤有机碳库的比较研究.北京林业大学学报,2005,7(2):18-22.
    许桂莲,王烯校.Zn,Cd及其复合对小麦幼苗吸收Ca,Fe,Mn的影响.应用生态学报,2001,12(2):275-278.
    许炼烽.镉对红壤微生物的影响.农业环境科学,1999,12(4):145-147.
    许信旺.不同地理尺度下农田土壤有机碳分布与变化.南京:南京农业大学博士学位论文,2008
    许信旺,潘根兴,等.不同土地利用对表层土壤有机碳密度的影响,水土保持学报,2005,19(6):193-200.
    阎姝,潘根兴,李恋卿.重金属污染降低水稻土微生物商并改变PLFA群落结构—苏南某地污染稻田的案例研究.生态环境,2008,17(5):1828-1832
    杨济龙,祖艳群.蔬菜土壤微生物种群数量与土壤重金属含量的关系.生态环境,2003,12(3):281-284.
    杨元根,Paterson E, Campbell C.重金属铜的土壤微生物毒性研究.土壤通报,2002,33(2):55-60.
    姚槐应,黄昌勇.土壤微生物生态学及其试验技术.北京:科学出版社,2006:106-107.
    易志刚,蚁伟民,周丽霞.土壤各组分呼吸区分方法研究进展.生态学杂志,2003,22(2):65-69.
    尹军霞,陈瑛,郑丽.Cd胁迫下油菜土壤微生物区系及主要生理类群研究.农业环境科学学报,2006,25(6):1529-1534.
    张 琪,李恋卿,潘根兴,等.近20年来宜兴市域水稻土有机碳动态.第四纪研究,2004,24(2):236-241.
    张春霞,郝明德,魏孝荣,等.黑垆土长期轮作培肥土壤有机质氧化稳定性的研究.土壤肥料,2004(3):11-16.
    张东秋,石培礼,张宪洲.土壤呼吸主要影响因素的研究进展.地球科学进展,2005,20(7):778-785
    张甲坤,陶澍,曹军.土壤中水溶性有机碳测定中的样品保存与前处理方法.土壤通报,2002,31(4):174-176.
    张剑波,邵可声,李智,等.北京地区春季稻稻田甲烷排放的研究.环境科学,1994,15(5):23-27.
    张宪洲,刘允芬,钟华平.西藏高原农田生态系统土壤呼吸的日变化和季节变化特征.资源科学,2003,25(5):103-107.
    张平究,潘根兴,等.长期不同施肥下太湖地区黄泥土微生物活性与多样性的变化.生态学报,2004,24(12):2818-2824.
    张旭辉,李典友,潘根兴,等.我国湿地土壤资源保护与气候变化问.气候变化研究进展,2008,4(4):202-208
    章明奎,王丽平.重金属污染对土壤有机质积累的影.应用生态学报,2007,18(7):1479-1483
    赵祥伟,骆永明,滕应,等.重金属复合污染农田土壤的微生物群落遗传多样性研究.环境科学学报,2005,25(2):186-191.
    郑聚锋,张旭辉,潘根兴,等.水稻土基底呼吸与CO2排放强度的日动态及长期不同施肥下的变化.植物营养与肥料学报,2006,12(4):485-494
    郑聚峰.长期不同施肥条件下南方典型性水稻土有机碳矿化与CO2、CH4产生研究.南京:南京农业大学(博士学位论文),2007
    周萍,张旭辉,潘根兴.长期不同施肥对太湖地区黄泥土总有机碳及颗粒有机碳的影响.植物营养与肥料学报,2006,12(6):765-771
    周涛,史培军,孙睿,等.气候变化对净生态系统生产力的影响.地理学报,2004,59(3):357-365.
    周涛,史培军,王绍强.气候变化及人类活动对中国土壤有机碳储量的影响.地理学报,2003,58(5):727-734.
    周运超,潘根兴,李恋卿,等.太湖地区3种水稻土不同温度培养中有机碳库变化及其对升温的影响.环境科学,2003,24(1):46-51.
    周志田,成升魁,刘允芬,等.中国亚热带红壤丘陵区不同土地利用方式下土壤CO2排放规律初探.资源科学,2002,24(2):83-87
    朱永官,陈保冬,林爱军,等.珠江三角洲地区土壤重金属污染控制与修复研究的若干思考.环境科学学报,2005,25(12):1575-1579.
    朱咏莉,吴金水,周卫军,等.亚热带稻田生态系统CO2排放及影响因素.中国环境科学.2005,25(2):151-154
    邹建文,黄耀,宗良纲,等.稻田CO2,CH4和N2O排放及其影响因素.环境科学学报.2003,23(6):758-764
    邹建文,焦燕,王跃思,等.稻田CO2、CH4和N2O排放通量测定方法研究.南京农业大学学报,2002,25(4):45-48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700