免耕方式对燕麦田温室气体排放与土壤性状的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
免耕是具有保水、保土和保肥作用的一种重要耕作技术,是北方农牧交错区防风固土、涵养水分、节能减排、稳产高产的有效耕作措施之一。本研究以内蒙古阴山北麓武川县为研究区域,通过田间试验和室内测定分析方法,研究不同保护性耕作方式的旱作燕麦土壤性状和温室气体排放规律。研究结果如下:
     1、土壤CO2排放季节变化差异明显,CH4和N2O排放季节性差异不明显。CH4排放通量多为负值,表现为“吸收”。与传统耕作相比,免耕留茬覆盖减少了CO2排放和CH4吸收,增加了N2O排放。秸秆覆盖处理对温室气体排放的影响高于留茬高度。免耕施肥比不施肥处理增加了CO2、N2O排放和CH4吸收。氮肥对增加温室气体排放的影响较大;氮磷、氮磷钾肥配施对CO2排放和CH4吸收影响更大,而对N2O排放的影响低于单施氮肥,磷、钾肥对温室气体排放的影响较小。温室气体综合排放效应受CO2排放通量主导,CH4和N2O通量对其影响甚微。
     2、免耕对改变土壤水分和温度,增加土壤养分作用明显。免耕留茬覆盖处理增加了土壤水分,降低了地温。免耕留茬覆盖处理0-10cm、10-20cm和0-20cm土层平均水分含量分别比传统耕作高86.95%、46.62%和66.18%;10cm和20cm土层平均地温分别比传统耕作低2.92℃和2.02。C;在0-10cm土层有机碳、全氮、全磷均显著或极显著高于传统耕作,10-20cm土层与传统耕作相差不大。免耕施氮肥降低了土壤水分含量,增加了全氮含量,而对土壤有机碳和全磷含量影响较小;磷肥的施入增加了土壤全磷含量,而对土壤水分、有机碳、全氮影响不明显;钾肥对土壤水分、有机碳、全氮、全磷均无明显影响;施肥对土壤地温的影响极小。
     3、土壤酶活性季节性变化明显。免耕留茬覆盖处理土壤酶活性均显著高于传统耕作。免耕覆盖对提高土壤酶活性效果高于留茬。免耕施肥可以提高土壤酶活性,氮肥对脲酶、碱性磷酸酶和蔗糖酶活性影响最大,磷肥次之,钾肥无明显影响;钾肥对过氧化氢酶活性影响较大,氮肥对其无显著影响;氮磷、氮磷钾肥配施对土壤酶的影响大于氮磷钾肥单施。
     4、免耕留茬覆盖处理土壤微生物量碳、氮、磷及微生物商比传统耕作均显著增加。秸秆覆盖量对土壤微生物量及微生物商的增加效果高于留茬处理。免耕施肥土壤微生物量碳、氮、磷及微生物商均高于免耕不施肥处理;氮肥对微生物量碳、氮和微生物商增加幅度最大,磷肥对微生物量磷增加幅度最大,钾肥对微生物量及微生物商影响较小;氮磷和氮磷钾肥配施土壤微生物量及微生物商高于氮磷钾肥单施。
     5、土壤温室气体排放受土壤理化性状、酶活性及微生物量等多种因素影响。土壤地温、水分、养分、酶及微生物量等与土壤温室气体排放关系密切。0-10cm土层地温、有机碳与CO2、CH4和N2O排放均呈显著正相关关系,0-10cm、10-20cm土层水分、全氮与CO2、CH4和N2O排放均呈显著或极显著正相关,各土层全磷与温室气体排放相关性不显著;土壤各温室气体排放与土壤脲酶和蔗糖酶活性均表现为极显著或显著正相关,而与碱性磷酸酶和过氧化氢酶活性相关显著性不强;土壤微生物量碳、氮和微生物量商与CO2、CH4和N2O排放均呈极显著或显著正相关,土壤微生物量磷与CO2排放呈显著正相关,而与CH4、N2O排放通量相关性不显著。
     免耕对农田土壤性状及温室气体排放的影响是长期和比较缓慢的过程,变化特征也随着研究时间的长短有所不同。由于本文仅对试验区进行了连续两年的研究,对阐述土壤性状和温室气体排放的长期特征还有待进一步深入。
No-tillage is an important farming technique which conserves soil, fertilization and water of the farmland. It is also known as the effective farming measure to fix soil, conserve water, save energy and reduce emission of CO2, and keep high and stable yield in north china. Taking the Wuchuan County in Inner Mongolia Autonomous Regional for example, this research analysed the change characteristics of ecological factors and the emission characteristics of greenhouse gases in the farmland soil using different farming methods and no-till fertilization measures. Field experiment and laboratory tests were conducted during the two-year study period. The results were as follows:
     1. The soil CO2 emission was significantly different and subject to the seasonal changes; the CH4 and N2O emissions were not obvious with the seasonal changes. The CH4 emission flux almost appeared to be negative and presented as "absorption". Comparing with stubble covering, no-tillage reduced the CO2 emission, the CH4 absorption and the synthesized greenhouse effect while it may increase the N2O emissions. Straw mulch treatment showed more significant influence on the greenhouse gases emissions than stubble height. The fertilization treatment increased the emissions of CO2, N2O, and the absorption of CH4, comparing with no fertilization in the no-tillage fertilizer experiment. The single nitrogen fertilizer treatment showed more influence on increasing the greenhouse gases emissions. The N-P fertilizer and N-P-K fertilizer application combined treatments showed even more influence on the CO2 emissions and the CH4 absorption; and of these treatments on the N2O emissions, the influence was lower than the single nitrogen fertilizer treatment. The phosphatic fertilizer treatment and the potassic fertilizer treatment showed less influence on the emission of greenhouse gases. The comprehensive effect of the greenhouse gases emission was majorly dominated by the CO2 flux, and it was little affected by the CH4 flux and N2O flux.
     2. No-tillage was effective for increasing the soil nutrient content and changing the soil moisture and temperature. No-tillage and stubble mulching treatments increased the soil moisture content and reduced the soil temperature comparing with conventional tillage. In no-tillage treatment, the average soil moisture content of three soil layer (0-10cm,10-20cm and 0-20cm) was 86.95%,46.62% and 66.18% higher than conventional tillage treatment, respectively, the average soil temperature in 10cm and 20cm depth were 2.92℃and 2.02℃lower than conventional tillage, respectively; the soil organic carbon, total nitrogen and, total phosphorus were significantly or highly significantly higher than traditional farming in 0-10cm layer, but close to 0-20cm layer. The no-tillage fertilization experiment showed that the application of nitrogen fertilizer lowered in the soil water content but increased in the total nitrogen content, while soil organic carbon and total phosphorus had no significant change; the phosphate fertilizer applied into the soil making an increase of total phosphorus content, but had no significant effect on soil moisture, organic carbon and total nitrogen; the application of potash fertilizer had no significant effect on soil moisture, organic carbon, total nitrogen and total phosphorus; fertilization had-little influence to soil temperature.
     3. The soil enzyme activity had been changed regularly in different season. Experiment of different tillage methods showed that the soil enzyme activity in the no-tillage with stubble covering treatment was significantly higher than that in the conventional tillage treatment. The effect by no-tillage and covering was higher than those by increasing stubble height on improving the soil enzyme activity. The no-tillage fertilizer treatment can improve the soil enzyme activity. For the activity of urease, alkaline phosphatase and saccharase, the nitrogen fertilizer treatment had the most significant effect, followed by the phosphate fertilizer treatment; the potash fertilizer treatment had no obvious effect. For the activity of hydrogen peroxide, the potash fertilizer treatment showed more influence than other treatment; the nitrogen fertilizer treatment showed no significant effect. The N-P fertilizer and N-P-K fertilizer application combined treatments had larger effect on the soil enzyme activity than the single application of N, P or K fertilizer.
     4. The result of different tillage method experiments indicated that the soil microbial biomass C, microbial biomass N, microbial biomass P and the microbial quotient was significantly increased under the treatment of no-tillage with stubble covering, comparing with conventional tillage methods. The effect of straw coverage treatment was better than the stubble height treatment on increasing the soil microbial biomass and microbial quotient. The soil microbial biomass C, N, P and the microbial quotient were higher under the no-tillage and fertilizer treatment than the no-tillage without fertilizer treatment. The largest increase of the microbial biomass C, N and microbial quotient was under the nitrogen fertilizer treatment. The largest increase of the microbial biomass P was under the phosphate fertilizer treatment. The potash fertilizer treatment was little effected to the microbial biomass and microbial quotient. The N-P fertilizer and N-P-K fertilizer application combined treatments had larger effect on the microbial biomass and microbial quotient than the single application of N, P or K fertilizer.
     5. The emissions of soil greenhouse gases are subject to the soil physical and chemical characteristics, enzyme activities, microbial biomass and many others. The research results showed that the soil temperature, moisture, nutrients, enzymes and soil microbial biomass were closely related to the emissions of soil greenhouse gases. In detail, the significant positive correlation was observed between the soil temperature (0-10cm depth) and the emissions of CO2, CH4 and N2O; the same was between the organic carbon and those three gases. The soil moisture of two different soil layer (0-10cm depth and10-20cm depth) and the total-N was significantly (or highly significant) positive correlated with the emissions of CO2, CH4 and N2O. The total-P in all soil layers was not obvious correlated with the emissions of the soil greenhouse gases. There were significant positive correlations between the two soil enzyme (urease, saccharase) activities and the emissions of soil greenhouse gases. While the correlation was not obvious on alkaline phosphatase activity and catalase activity; the microbial biomass C, microbial biomass N and microbial quotient was very significant or obvious positive correlations with the emissions of CO2, CH4 and N2O; the microbial biomass P was significant positive correlation with the CO2 emissions but was not obvious correlated with the emission flux of CH4 and N2O.
     The influence of no-tillage on field experiment and greenhouse gases emissions is a long and slow process. Variation characteristics are different depend on the length of study time. The exploration of soil properties and long-term emission of soil greenhouse gas needed to be improved as the experiment lasted only two years.
引文
1孙园园,李首成,周春军,等.土壤呼吸强度的影响因素及其研究进展[J].安徽农业科学,2007,35(6):1738-1739,1757.
    2张宇,张海林,陈继康,等.耕作方式对冬小麦田土壤呼吸及各组分贡献的影响[J].中国农业科学,2009,42(9):3354-3360.
    3李长生,肖向明,S.Frolkin,等.中国农田的温室气体排放[J].第四纪研究,2003,23(5):493-503.
    4刘建民,胡立峰,张爱军.保护性耕作对农田温室效应的影响研究进展[J].农艺科学,2006,22(8):246-249.
    5 Lal R. Soil carbon sequestration impacts on global climate change and food security[J]. Science,2004,304:1623-1627.
    6 ROLD a N A, CARAVACA F, HERN a NDEZ M T,et al. No-tillage, crop residue additions, and legume cover cropping effects on soil quality characteristic under maize in Patzcuaro watershed[J]. Soil and Tillage Research,2003,172:65-73.
    7盛婧,赵德华,陈留根.农业生产措施对土壤碳库的影响[J].生态环境,2006,15(2):386-390.
    8 WEST T O,POST W M.Soil organic carbon sequestration rates by tillage and crop rotation:A global data analysis[J].Soil Science Society of America Journal,2002,66:1930-1946.
    9秦红灵.北方农牧交错带保护性耕作对农田土壤风蚀影响效应研究[D].中国农业大学,博士学位论文,2007
    10程序.农牧交错带研究中的现代生态学前沿问题[J].资源科学学报,1999,21(5):1-9.
    11雅洁,董建林,艾克新.内蒙古黄河流域及京津周围地区生态环境存在问题及建设的必要性[J].内蒙古林业调查设计,2000,(3):3-5
    12方精云,朴世龙,赵淑清,等.CO2失汇与北半球中高纬度陆地生态系统的碳汇[J].植物生态学报,2001,25(5):594-602.
    13方精云.中国陆地生态系统的碳循环及其全球意义[c]//现代生态学的热点问题研究.北京:中国科学技术出版社,1996:240-250.
    14何婷婷,华珞,张振贤,等.影响农田土壤有机碳释放的因子及固碳措施[J].首都师范大学(自然科学版),2007,(1):66-72.
    15潘根兴,赵其国.我国农田土壤碳库演变研究:全球变化和国家粮食安全[J].地球科学进展,2005,20(4):384-393.
    16 Mader P, Flie bach A, Dubois D, et al. Soil fertility and biodiversity in organic farming[J]. Science,2002,293:1694-1697.
    17Wardle D A, Bardgett R D, Klironmos, J N, et al. Ecological linkages between aboveground and belowground biota [J]. Science,2004,304 (5677):1629-1633.
    18朱咏莉,童成立,吴金,等.透明箱法监测稻田生态系统C02通量的研究[J].环境科学,2005,26(6),8-14.
    19 Lal R. World soils and greenhouse effect. IGBP Global Change Newsletter,1999,37: 4-5.
    20潘根兴,赵其国,蔡祖聪. 《京都议定书》生效后我国耕地土壤碳循环研究若干问题[J].科学前沿,2005,(2):12-18.
    21张国盛,黄高宝,YIN Chan.农田土壤有机碳固定潜力研究进展[J].生态学报,2005,25(2):352-358.
    22郭广芬,张称意,徐影.气候变化对陆地生态系统土壤有机碳储量变化的影响[J].生态学杂 志2006,25(4):435-442.
    23高焕文.保护性耕作概念、机理与关键技术[J].四川农机,2005,(4):22-23.
    24张星杰.内蒙古黄河流域旱作农田保护性耕作效应[D].内蒙古农业大学,博士学位论文,2008
    25何文清,赵彩霞,隋鹏,等.农牧交错带地区发展保护性耕作的意义与前景[J].干旱地区农业研究,2006,24(4):119-122.
    26高换文,李洪文,李问盈.可持续机械化旱作农业研究[J].干旱地区农业研究,1999,(1):57-62.
    27高换文,李问盈,李洪文.中国特色保护性耕作技术[J].农业工程学报,2003,19(3):1-4.
    28蔡典雄,王小彬,张志田,等.寿阳旱农试区保护性耕作体系研究[J].干旱地区农业研究,1998,16(3):45-46.
    29王晓燕,高焕文,李洪文,等.保护性耕作对农田地表径流与土壤水蚀影响的试验研究[J].农业工程学报,2000,(3):66-69.
    30张飞,赵明,张宾.我国北方保护性耕作发展中的问题[J].中国农业科技导报,2004,6(3):36-39.
    31郑建初,芮雯奕,冯金侠,等.南方水田土壤有机碳动态研及其前沿领域[J].农业环境科学学报,2006,25(增刊):334-338.
    32 http://huangmo.eco.gov.cn/4/huangmokepu/20091102/126.html
    33 http://www.weather.com.cn/static/html/article/20090608/34547.shtml
    34廖允成,付增光,贾志宽.中国北方农牧交错带土地沙漠化成因及其防治技术[J].干旱地区农业研究,2002,20(2):95-98.
    35王小彬,蔡典雄,华珞,等.土壤保持耕作—全球农业可持续发展优先领域[J].中国农业科学2006,39(4):741-749.
    36王静爱,徐霞,刘培芳.中国北方农牧交错带土地利用与人口负荷研究[J].资源科学,1999,21(5):19-24.
    37张海林,孙国峰,陈继康,等.保护性耕作对农田碳效应影响研究进展[J].中国农业科学2009,42(12):4275-4281.
    38高旺盛.论保护性耕作技术的基本原理与发展趋势[J]. 中国农业科学2007,40(12):2702-2708.
    39 Schertz D.Conservation tillage:an analysis of acreage projections in the United States[J].Journal of Soil and Water Conservation,1988,33:256-258.
    40 Mannering J,Schertz D,Jul ian B. 'Overview of Conservation Tillage',Effects of Conservation Tillage of Groundwater Quality.Chelsea,MI:Lewis Publishers,1987.
    41 Uri N D. Factors affecting the use of conservation tillage in the United States[J]. Water,Air,and Soil Pollution,1999,116:621-638.
    42 Conservation Tillage Information Center,Indiana.What is conservation tillage? http://www.ctic.purdue.edu/Core4/CT/Definitions.html.2000.
    43 CTIC.Tillage type definitions.(2002-11-11)[2009-03-05]http://www2.ctic.purdue. edu/Core4/CT/Definitions.html 2002-11-11
    44 CTIC.2003,http://www.ctic.purdue.edu/ctic/ctic.html.
    45中国耕作制度研究会.中国少免耕与覆盖技术研究.北京:科学出版社,1991.
    46张铁军,李禹红.再议保护性耕作[J].农机科技推广,2004,(3):10-11.
    47高焕文.保护性耕作概念、机理与关键技术[J].四川农机,2005,(4):22-23.
    48李曼,崔和瑞.发展保护性耕作技术,促进农业可持续发展[J].中国农机化,2005,(5):51-53.
    49马春梅,纪春武,唐远征,等.保护性耕作土壤肥力动态变化的研究—秸秆覆盖对土壤温度的 影响[J].农机化研究,2006,(4):137-139.
    50冯聚凯,崔彦宏,甄瑞,等.华北平原一年两熟区保护性耕作技术研究进展[J].中国农学通报,2006,22(6):177-181.
    51章秀福,王丹英,符冠富,等.南方稻田保护性耕作的研究进展与研究对策[J].土壤通报,2006,37:346-351.
    52高旺盛.切实加强北方沙尘源农田保护性耕作制度建设的考察报告.科技日报,2004-05-20.
    53师江澜,刘建忠,吴发启.保护性耕作研究进展与评述[J].干旱地区农业研究,2006,24(1):205-212.
    54赵建波.保护性耕作对农田土壤生态因子及温室气体排放的影响[D].山东农业大学,博士学位论文,2008
    55 陕西经济信息网.保护性耕作工程建设规划http://www.sei.gov.cn/ShowArticle.asp?ArticleID=185085&ArticlePage=1,2009,9
    56曹建军.保护性耕作技术的推广应用及项目管理.(2009-03-05)[2009-04-17]http://www.amic.agri.gov.cn/DesktopModules/Infosll/Infos/ThisInfo. aspx?ItemID=70650, 2009,4
    57刘巽浩.泛论我国保护性耕作的现状与前景[J].农业现代化研究,2008,29(2):208-212.
    58 Lal R. Soil carbon sequestration impacts on global climate change and food security [J]. Science,2004,304(11):1623-1627.
    59杨学明.利用农业土壤固定有机碳-缓解全球变暖与提高土壤生产力[J].土壤与环境,2000,9(4):311-315.
    60 Reicosky D C, Lindstrom M J, Schumacher T E, et al. Tillage-induced C02 loss across an eroded landscape [J]. Soil and Tillage Research,2005,81(2):183-194.
    61 Reicosky D C, Reeves DW, Prior S A, et al. Effects of residue management and controlled traffic on carbon dioxide and water loss[J]. Soil & Tillage Research,1999,52(3): 153-165.
    62 Alvaro-Fuentes J, Cantero-Martinez C, Lopez, MV, et al. Soil carbon dioxide fluxes following tillage in semiarid Mediterranean agroecosystems[J]. Soil and Tillage Research,2007,96(1/2):331-341.
    63 Franzluebbers A J, Hons F M, Zuberer D A. Tillage-induced seasonal changes in soil physical properties affecting soil CO2 evolution under intensive cropping[J]. Soil and Tillage Research,1995,34:41-60.
    64 Bruce C Ball, Albert Scott, John P Parker. Field N2O, CO2 and CH4 flues in relation to tillage, compaction and soilquality in Scotland[J]. Soil & Tillage Research, 1999,53(1):29-39.
    65 Daniel L Mummey, Jeffrey L Smith, George Bluhm. Assessment of alternative soil management practices on N2O emissions from US agriculture[J]. Agriculture, Ecosystems and Environment,1998,70:79-87.
    66 Choudhary M A, Akramkhanov A, Saggar S. Nitrous oxide emissions from a New Zealand cropped soil: tillage effects, spatial and seasonal variability[J]. Agriculture, Ecosystems and Environment,2002,93(1):33-43.
    67 Pierre-Andr□Jacinthe, Warren A Dick. Soil management and nitrous oxide emissions from cultivated fields in southern Ohio[J]. Soil & Tillage Research,1997,41(3): 221-235.
    68 Willison T W, Webster C P, Goulding K W T, et al. Methane oxidation in temperate soil effective of land use and the chemical form of nitrogern-fertilizer [J]. Chemosphere, 1995,30(3):539-546.
    69 Prieme A, Christensen S. Seasonal and variation of methane oxidation in a Danish spurce forest [J]. Soil Biol. Biochem,1997,29(8):1165-1172.
    70万运帆,林而达.翻耕对冬闲农田CH4和CO2排放通量的影响初探[J].中国农业气象,2004,25(3):8-10.
    71伍芬琳,张海林,李琳,等.保护性耕作下双季稻农田甲烷排放特征及温室效应.中国农业科学,2008,41(9):2703-2709.
    72赵建波,李增嘉,迟淑筠,等.保护性耕作条件下小麦田甲烷吸收及影响因素[J].应用生态学报,2008,19(11):2490-2496.
    73 Elder J W, Lal R. Tillage effects on gaseous emissions from an intensively farmed organic soil in North Central Ohio [J]. Soil and Tillage Research,2008,98(1):45-55.
    74任万辉,许黎,王振会.中国稻田甲烷产生和排放研究I.产生和排放机理及其影响因子[J].气象,2004,30(6):3-7.
    75 Mer J L, Roger P. Production, oxidation, emission and consumption of methane by soils: a review[J]. European Journal of Soil Biology,2001,37:25-50.
    76 Shao J A, Huang X X, Gao M, et al. Response of CH4 emission of paddy fields to land management practices at a microcosmic cultivation scale in China[J]. Journal of Environmental Sciences,2005,17(4):691-698.
    77 Hutsch B W. Tillage and land use effects on methane oxidation rates and their vertical profiles in soil[J]. Biology and Fertility of Soils,1998,27(3):284-292.
    78 Willison T W, Webster C P, Goulding K W T, et al. Methane oxidation in temperate soils: effective of land use and the chemical form of nitrogen fertilizer [J]. Chemosphere, 1995,30:539-546.
    79黄国宏,肖笃宁,李玉祥,等.芦苇湿地温室气体甲烷(CH4)排放研究[J].生态学报,2001,21(9):1494-1497.
    80王晓燕,高焕文,杜兵,等.保护性耕作的不同因素对降雨入渗的影响[J].中国农业大学学报,2001,6(6):42-47
    81 CHIMNER R A, COOPER D J. Influence of water table levels on CO2 emissions in a Colorado subalpine fen:an in situ microcosm study[J]. Soil Biology & Biochemistry,2003, 35(3):345-351.
    82 SUBKE J A, REICHSTEIN M, TENHUNEN J D. Explaining temporal variation in soil CO2 efflux in a mature spruce forest in Southern Germany [J]. Soil Biology & Biochemistry, 2003,35(11):1467-1483.
    83刘绍辉.土壤呼吸的影响因素及全球尺度下温度的影响[J].生态学报,1997,17(5):469-475
    84陈素英,胡春胜.太行山前农田生态系统土壤呼吸速率的研究[J].生态农业研究,1997,5(2):42-46
    85 Singh J S, Raghub an shi V S, Reddy V S, et al. Methane flux romirrigated paddy and dry landrice fields,and from seasonally dry tropical forest ands avanna soil of India[J]. Soil Biol. Biochem.,1998,30(2):135-139.
    86 Adamsen A P S, King G M. Methane consumption intemperate and subarctic forest soils: rates, verticalzonation, and responses on Water and nitrogen[J].Appl. Environ. Microbiol.,1993,59:485-490.
    87 Peterjohn W T, Mellilo J M, Steudler P A, etal. Responsible to trace gas fluxes and N available to experiment all yelevated soil temperatures [J]. Ecological Applications,1994,4(3):617-625.
    88 Kammann C, Grunhage L, J ger H-J, et al. Methane fluxes from differentially managed grassland study plots:the important role of CH4 oxidation in grassland with a high potential for CH4 product ion [J]. Environmental Pollution,2001,115:261-273.
    89 Strie.R G. Diffusional limit the consumption of atmospheric methane by soils [J]. Chemosphere,1993,26:1-4.
    90陈全胜,李凌浩,韩兴国,等.典型温带草原群落土壤呼吸温度敏感性与土壤水分的关系[J].生态学报,2004,24(4):831-836.
    91齐玉春,董云社,章申.华北平原典型农业区土壤甲烷通量研究[J].农村生态环境,2002,18(3): 56-58.
    92李海防,夏汉平,熊燕梅,等土壤温室气体产生与排放影响因素研究进展[J].生态环境,2007,16(6):1781-1788
    93封克、殷士学,影响氧化亚氮形成与排放的土壤因素[J],土壤学进展,1995,23(6),35-40
    94 RUDAZ A 0, WALTI E, KYBURZ G, et al. Temporal variation in N2O and N-2 fluxes from a permanent pasture in Switzerland in relation to management, soil water content and soil temperature [J]. Agriculture Ecosystem & Environment,1999,73 (1):83-91.
    95 Dick W.A. Organic carbon, nitrogen, and phosphorus concentrations and pH in soil profiles as affected tillage intensity[J]. Soil Science Society,1983,47:102-107
    96 Blevins R. L, Thomas G. W, Smith M. S, et al. Changes in soil properties after 10 years continuous non-tilled and conventionally tilled com[J]. Soil and Tillage Research, 1983, (3):135-146.
    97逄蕾,黄高宝.不同耕作措施对旱地土壤有机碳转化的影响[J].水土保持学报2006,20:110-113.
    98 Rachid Mrabet. Differential response of wheat to tillage management systems in a semiarid area of Morocco[J]. Field Crops Research,2000,66(5):165-174.
    99 Yang X M, Wander M M. Tillage effects on soil organic carbon distribution and storage in a silt loam soil in Illinois [J]. Soil and Tillage Research,1999,52(1/2):1-9.
    100张国盛,Chan K Y, Li G D,等.长期保护性耕作方式对农田表层土壤性质的影响[J].生态学报,2008,28(6):2722-2728.
    101庄恒扬,刘世平,沈新平,等.长期少免耕对稻麦产量及土壤有机质与容重的影响[J].中国农业科学,1999,32(4):39-44.
    102张志国,徐琪,Blevins R. L.长期免耕覆盖对土壤某些理化性质及玉米产量的影响[J].土壤学报,1998,35(3):384-391.
    103 Hendrix, P. F., Han, C. Y., Groffman, P.M. Soil respiration in conventional and no-tillage agroecosystems under different winter cover crop rotations[J]. Soil and Tillage Research,1998(12):135-148.
    104 Sampson R N, Scholes R J. Additional human-induced activities//Land Use, Land-Use Change, and Forestry. UK:Cambridge University Press,2000.
    105王立刚.黄淮海平原地区农业生态系统土壤碳氮循环规律的初步研究:[D].北京:中国农业大学,2002.
    106 Biederbeck v. o. Labile soil organic matter as influenced by cropping practices in an arid environment [J]. Soil Biology and Biochemistry,1994,26(12):1647-1656.
    107耿远波,章申,董云社,等.草原土壤的碳氮含量及其与温室气体通量的相关性[J].地理学报,2001,56(1):44-53.
    108李明峰,董云社,耿元波,等.草原土壤的碳氮分布与CO2排放通量的相关性分析[J].环境科学,2004,25(2):7-11.
    109宋长春,王毅勇,王跃思,等.季节性冻融期沼泽湿地CO2、CH4和N2O排放动态[J].环境科学,2005,26(4):7-12.
    110 Vermoesen A. Composition of the soil gas phase and hydro carbons [J]. Pedologie, 1991, (41):119-132.
    111 PUGET-P, LAL R. Soil organic carbon and nitrogen in a Mollisol in central Ohio as affected by tillage and land use[J]. Soil & Tillage Research,2005,80:201-213.
    112 BLANCO-CANQUI H, LAL R. No-tillage and soil-profile carbon sequestration:an on-farm assessment[J]. Soil Science Society of America Journal,2005,80:201-213.
    113 ROLDAN A, CARAVACA F, HERNANDEZ M T, et al. No-tillage, crop residue additions, and legume cover cropping effects on soil quality characteristic under maize in Patzcuaro watershed [J]. Soil and Tillage Research,2003,172:65-73.
    114 Bockus W.W., Shroyer J. P., The impact of reduced tillage on soil-borne plant pathogens [J]. Annual Review of Phytopathology,1998,36:485-500
    115高云超,朱文珊,陈文新.秸秆覆盖免耕土壤微生物生物量与养分转化的研究[J].中国农业科学,1994,27(6):41-49
    116赵四申,段汝浩,宁吉洲等.玉米秸秆整株深埋还田技术研究[J].农业工程学报,2002,18(2): 58-61
    117 RICHARD D. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest Bowden[J]. Forest Ecology and Management,2004,196:43-56.
    118胡荣桂.氮肥对旱地土壤甲烷氧化能力的影响[J].生态环境,2004,13(1):74-77.
    119 GREGORICH E G, ROCHETTE P, VANDENBYGART A J, et al. Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada[J]. Soil & Tillage Research,2005,83(1):53-72.
    120章铁,刘秀清,孙晓莉.粟茶间作模式对土壤酶活性和土壤养分的影响[J].中国农学通报,2008,24(4):265-268
    121吴金水,林启美,黄巧云,等.土壤微生物生物量测定方法及其应用[M].北京:气象出版社,2006: 117.
    122杨万勤,王开运.土壤酶研究动态与展望[J].应用与环境生物学报,2002,8(5)564-570.
    123和文祥,蒋新,卞永荣,等.杀虫双对土壤酶活性影响的研究[J].西北农林科技大学学报,2002,30(1):13-17.
    124 DICK R P. Soil Enzyme Activities as Indicators of Soil Quality[M]//Defining Soil Quality for a Sustainable Environment (No.35). Madison:Soil Science Society of America, Society of Agriculture,1994:107-124.
    125 DICK R P. Soil Enzyme Activities as Integrative Indicators of Soil Health [M]//Biological Indicators of Soil Health. Wallingford:CAB International,1996: 121-156.
    126薛东,姚槐应,黄昌勇.植茶年龄对茶园土壤微生物特性及酶活性的影响[J].水土保持学报,2005,19(2):84-87.
    127万淑婉.双季稻高产田的土壤微生物及土壤酶生物学指标.江西农业大学学报,1993,15(4):351-355.
    128杨招弟,蔡立群,张仁陟,等.不同耕作方式对旱地土壤酶活性的影响.土壤通报,2008,39(3):514-517.
    129陈蓓,张仁陟.免耕与覆盖对土壤微生物数量及组成的影响[J].甘肃农业大学学报,2004,39(6):634-1638.
    130李阜棣,喻子牛,何绍江.农业微生物实验技术[M].北京:中国农业出版社,1996.
    131武术,林先贵,尹睿,胡君利等.大气C0,浓度升高对添加麦秸条件下稻田土壤酶活性的影响[J].生态与农村环境学报,2008,24(4):32-36.
    132王灿,王德建,孙瑞娟,林静慧.长期不同施肥方式下土壤酶活性与肥力因素的相关性[J].生态环境2008,17(2):688-692.
    133王娟,刘淑英,王平,等.不同施肥处理对西北半干旱区土壤酶活性的影响及其动态变化[J].土壤通报,2008,39(2):299-303.
    134许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986.
    135于群英.土壤磷酸酶活性及影响因素研究[J].安徽技术师范学院学报,2001,15(4):5-8.
    136刘恩科,赵秉强,李秀英,等.长期施肥对土壤微生物量及土壤酶活性的影响[J].植物生态学报,2008,32(1):176-182
    137李洪文,陈君达,高焕文.旱地农业三种耕作措施的对比研究[J],干旱地区农业研究.1997,15(1):7-11.
    138 Coote D R, Malcoln Mcgovern C A. Effects of conventional and no-till corn growth in rotation on three soils In Eastern Ontario [J]. Soil and Tillage Research, 1989 (14):67-84.
    139 Domzal H, Slowinska-Jurkiewica A. Effects of tillage and weather conditions on structure and Physical properties of soil and yield of winter wheat [J]. Soil and Tillage Research,1987, (10):225-241.
    140 Curci M, Pizzigallo M D R, Crecchio C, et al.. Effects of conventional tillage on biochemical properties of soils [J]. Biology and fertility of soils,1997,25:1-6.
    141张志明,曹承绵,李荣华.不同耕法对草甸黑土酶活性的影响,中国土壤酶学研究文集[C].沈阳:辽宁科学技术出版社,1988,148-154.
    142关松荫等,土壤酶学研究方法[M].北京,农业出版社.1986,220-249
    143鲁萍,郭继勋,朱丽.东北羊草草原主要植物群落土壤过氧化氢酶活性的研究[J],应用生态学报,2002,13(6):675-679.
    144靳盂贵,赵俊英,罗泽娇.采用土壤水利用技术的冬小麦田土壤过氧化氢酶活性分析[J],水文地质工程地质,2003,(2):11-14.
    145李阜棣主编.土壤微生物学.北京:中国农业出版社,1996,131
    146陈国潮,何振立,黄昌勇.菜茶果园红壤微生物量磷与土壤磷以及磷植物有效性之间的关系研究[J].土壤学报,2001,38(1):75-80
    147张电学,韩志卿,李东坡等.不同促腐条件下秸秆还田对土壤微生物量碳、氮、磷动态变化的影响[J].应用生态学报,2005,16(10):1903-1908.
    148高云超,朱文珊,陈文新.秸秆覆盖免耕土壤细菌和真菌生物量与活性的研究[J].生态学杂志,2001(2):30-36.
    149 Doran J W. Soil microbial and biochemical changes agsociated with reduced tillage [J]. Soil Science Society of American.1980,44:765-771
    150姜勇,梁文举,闻大中.免耕对农田土壤生物学特性的影响[J].土壤通报,2004,35(3): 347-351.
    151罗明,文启凯,纪春燕,等.不同施肥措施对棉田土壤微生物量及其活性的影响[J].土壤,2002, 1,53-55.
    152 Andreas Flie β bach, Paul Mader. Microbial biomass and size-density fractions differ between soil of organic and conventional agricultural systems[J]. Soil Biology & Biochemistry,2000,32:757-768.
    153 Debosz.K, Rasmussen P H, Pedersen A R.Temporal variations in microbial biomass C and cellulolytic enzyme activity in arable soil:Effect of organic matter input [J]. Applied Soil Ecology,1999,13:209-218.
    154罗明,文启凯,周抑强,等.有机、无机肥料配合施用对地膜棉田土壤微生物及生化特性的影响[J].新疆农业大学学报,1997,20(4):45-48.
    155 Dick R P A.Review:long-term effects of agricultural systems on soil biochemical and microbial parameters[J]. Agric Ecosyst Environ,1992,40:25-36.
    156 Fang C,Moncrieff J B,Gholz H, et al.Soil C02 efflux and its spatial variation in a Florida slash pine. plantation[J]. Plant and soil,1998,205:135-146.
    157任天志,Stefano Grego.持续农业中的土壤生物指标研究[J].中国农业科学,2000,33(1):68-75.
    158 http://www.wuchuan.gov.cn/newsfb/symore.asp?id=0&cid=681&vcd=0
    159陈正新,王学兵,史世斌,等.内蒙古阴山北麓农牧交错带生态建设中天然草地的利用[J].中国草地,2001,23(6):68-72.
    160董治宝,陈广庭.内蒙古后山地区土壤风蚀问题初论[J].水土保持学报,1997,3(2):84-90.
    161秦红灵,高旺盛,马月存,等.两年免耕后深松对土壤水分的影响[J].中国农业科学2008,41(1): 78-85.
    162李琳,胡立峰,陈阜,等.长期不同施肥类型对稻田甲烷和氧化亚氮排放速率的影响[J].农业环境科学学报,2006,25(增刊):707-710.
    163南京农学院主编.土壤农化分析[M].北京:.农业出版社,1986:33-139.
    164关松荫.土壤酶及其研究法[M].北京:农业出版社,1986:274-279.
    165吴金水,林启美,黄巧云,等.土壤微生物生物量的测定方法及应用[M].北京:气象出版社,2006.
    166王义祥,翁伯琦,黄毅斌.土地利用和覆被变化对土壤碳库和碳循环的影响[J].亚热带农业研究,2005,1(3):44-51.
    167齐玉春,董云社,耿元波,等.我国草地生态系统碳循环研究进展[J].地理科学进展,2003,22(4): 342-352.
    168谢军飞,李玉娥.农田土壤温室气体排放机理与影响因素研究进展[J].中国农业气象,2002,23(4): 47-52.
    169王跃思,薛敏,黄耀,等.内蒙古天然与放牧草原温室气体排放研究[J].应用生态学报,2003, 14(3): 372-376.
    170宋长春,王毅勇.湿地生态系统土壤温度对气温的响应特征及对CO2排放的影响[J].应用生态学报,2006,17(4):625-629.
    171冯虎元,程国栋,安黎哲.微生物介导的土壤甲烷循环及全球变化研究[J].冰川冻土,2004,26(4):411-419.
    172张振贤,华珞,尹逊霄,等.农田土壤N20的发生机制及其主要影响因素[J].首都师范大学学报:自然科学版,2005,26(3):114-120.
    173张秀君.土壤N2O产生的微生物过程[J].沈阳教育学院学报,2005,7(1):129-131.
    174 Ramaswamy V, Boucher 0, Haigh J. Radiative forcing of climate change. In:IPCC. Climate Change 2001:The Scientific Basis (IPCC Third Assessment Report). UK and New York, NY, USA:Cambridge University Press,2001:212.
    175 IPCC. Climate Change 2007. The Physical science basis//Solomon S, Qin D, Manning M, et al, eds. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press,2007.
    176 IPCC, Climate Change 2001:The Scientific Basis:Chapter 4. Atmosphere Chemistry and Greenhouse Gases. Cambridge:Cambridge University Press. UK 2001.
    177黄昌勇.土壤学[M].北京:中国农业出版社,2000:32-49.
    178 LAL R.The potential of soils of the tropics to sequester carbon and mitigate the greenhouse effect [J]. Advances in Agronomy,2002,74:155-192.
    179 LAL R.Global potential of soil C sequestration to mitigate the greenhouse effect [J]. Plant Science,2003,22:151-184.
    180陈小红,段争虎.土壤碳素固定及其稳定性对土壤生产力和气候变化的影响研究[J].土壤通报,2007,38(4):765-772.
    ]81吴凤芝,孟立君,王学征.设施蔬菜轮作和连作土壤酶活性的研究[J].植物营养与肥料学报,2006,12(4):554-558.
    182 COTRUFO M F, INESON P. Effects of Enhanced Atmospheric CO2 and Nutrient Supply on the Quality and Subsequent Decomposition of Fine Roots of Betula pendula Roth. and Picea sitchensis (Bong) Carr [J]. Plant and Soil,1995,170(2):267-277.
    183郑洪元,张德生.土壤动态生物化学研究.北京:科学出版社,1982.
    184张宪武主编.土壤微生物研究—理论、应用、新方法.沈阳:沈阳出版社,1993,483-504
    185陈安磊,王凯荣,谢小立,等.不同施肥模式下稻田土壤微生物生物量磷对土壤有机碳和磷素变化的响应[J].应用生态学报,2007,18(2):2733-2738.
    186 Brookes PC, Powlson DS, Jenkinson DS.1984. Phosphorus in soil microbial biomass [J].Soil biology and Biochemistry,17:169-175.
    187何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997,29(2):61-69.
    188徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响[J].土壤学报,2002,39(1):89-96.
    189 Paustian, K,O. A. Carbon and nitrogen budets of four agro-ecosystems with annual and perennial crops, with and without N fertilizer[J]. Journal of Application Ecology,1990,27:60-84.
    190 Cheng W.X and David C. Effect of living roots on soil organic matter decomposition[J]. Soil Biology and Biochemistry,1990,22:781-787.
    191 Drury C.F, et al. Red clover, tillage influence on soil temperature, water content, and corn emergence [J]. Agronomy Journal,1999,91:101-108.
    192黄高宝,李玲玲,张仁陟,等.免耕秸秆覆盖对旱作麦田土壤温度的影响[J].干旱地区农业研究,2006,24(5):1-4.
    193袁家富.麦田秸秆覆盖效应及增产作用[J].生态农业研究,1996,4(3):61-65.
    194杨学明,张晓平,方华军,等.北美保护性耕作及对中国的意义[J].应用生态学报,2004,15(2):335-340.
    195朱杰,牛永志,高文玲,等.秸秆还田和土壤耕作深度对直播稻田土壤及产量的影响[J].江苏农业科学,2006,6:388-391.
    196 Lutzow M., Leifeld J., KainzM. Indications for soil organic matter quality in soils under different management [J]. Geoderma,2002,105(3-4):243-258.
    197曹志洪.解译土壤质量演变规律,确保土壤资源持续利用[J].世界科技研究与发展,2001,23(3):28-32.
    198巩杰,黄高宝,陈利顶,等.旱作麦田秸秆覆盖的生态综合效应研究[J],干旱地区农业研究,2003,21(3):69-73.
    199徐春阳,沈其荣,冉炜,等.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响[J].土壤通报,2002,39(1):89-96.
    200 Hutsch B W,Webster C P,Powlson D S.Longterm effects of nitrogen fertilization on Methane oxidation in soil of the broad balk wheat experiment[J]. Soil Biol. Boilchem.,1993,25:1307-1315.
    201焦燕,黄耀.影响农田氧化亚氮排放过程的土壤因素[J].气候与环境研究,2003,8(4):457-466.
    202熊正琴,邢光熹,鹤田治雄,等.种植夏季豆科作物对旱地氧化亚氮排放贡献的研究[J].中国农业科学,2002,35(9):1104-1108.
    203徐文彬,洪业汤,陈旭晖,等.贵州省旱田土壤N20释放及其环境影响因素[J].环境科学,2000,21(1):7-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700