延边黄牛TCAP、DECR1、PRKAG3基因SNP检测及与肉质性状的关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以延边黄牛为研究对象,利用PCR-SSCP方法对TCAP、DECR1、PRKAG3基因进行检测,分析基因的遗传特性并寻找与肉质性状相关的SNPs位点,分析SNP位点不同基因型与生产性状的关联关系。结果如下:
     (1) TCAP基因存在3个突变位点,分别为267位点的C-T突变、300位点的T-C突变、336位点的A-G突变;DECR1基因存在2处突变,分别为23263处的A-G突变,23473处的A-G突变;PRKAG3基因检测到4738处存在C-T突变。
     (2)三个基因除DECR1基因不处于Hardy-Weinberg平衡状态外,其他均处于Hardy-Weinberg平衡状态。遗传变异情况分析表明,TCAP基因的纯合度、杂合度、有效等位基因数分别为0.6322、0.3678、1.5818;DECR1基因的纯合度、杂合度、有效等位基因数分别为0.6922、0.3078、1.4447;PRKAG3基因的纯合度、杂合度、有效等位基因数分别为0.6113、0.3887、2.5727。三个基因的多态信息含量分别为0.3013、0.2604、0.3051,均为属于中度多态。
     (3) TCAP、DECR1、PRKAG3个基因与肉质性状的相关分析发现,TCAP基因基因型AA对蒸煮损失有一定的负面影响;基因型AB对c*24(彩度)存在一定的正面影响。DECR1基因型AA对蒸煮损失、pH24性状有一定的负效应。基因型BB对pH1有一定的负面影响;基因型AB对L*1(亮度)有一定的正面影响。PRKAG3基因基因型AB对嫩度存在一定的正面影响;基因型AB对a*24(红色度)和b*24(黄色度)值有一定的负而影响。
     (4) TCAP、DECR1、PRKAG3三个基因与脂肪酸含量的连锁分析表明,DECR1基因的基因型BB对肉豆蔻酸的组成有一定的负面影响;基因型BB对硬脂酸、亚麻酸有一定的正面影响;PRKAC3基因的基因型BB与油酸存在一定的正相关。TCAP基因各基因型之间没有发现显著差异。
     (5) TCAP、DECR1、PRKAG3三个基因与氨基酸含量之间的连锁分析发现,TCAP基因基因型BB对甘氨酸含量存在一定的正面影响。DECR1基因基因型BB对组氨酸与赖氨酸有一定的负面影响。PRKAG3基因基因型AA对天冬氨酸有一定的正面影响;基因型AB对谷氨酸、丙氨酸、脯氨酸、精氨酸和缬氨酸含量均有定的正面影响。
The polymorphisms of TCAP.DECR1/PRKAG3 gene were detected by PCR-SSCP method in Yanbian Yellow Cattle, and to reveal the association between SNPs and meat traits. The resuls showed that:
     (1) Three mutational sites were founded in TCAP, which is 267 C-T mutation,300 T-C mutation,336 A-G mutation. Tow mutational sites were founded in DECR1, which is 23263 A-G mutation and 23473 A-G mutation. One mutational site was founded in PRKAG3, which is 4738 C-T mutation.
     (2)TCAP gene and PRKAG3 gene are in Hardy-Weinberg balance, and DECR1 gene is not. The analyzed of hereditary variation showed, the homozygosity, heterozygosity and effective alleles number of TCAP is 0.6322,0.3678, 1.5818, respectively. The homozygosity, heterozygosity and effective alleles number of DECR1 is 0.6922,0.3078.1.4447, respectively. The homozygosity, heterozygosity and effective alleles number of PRKAG3 is 0.6113,0.3887,2.5727. The polymorphism information content of these is 0.3013,0.2604,0.3051, respectively. They are midrange polymorphism.
     (3) The relationship of TCAP. DECRK PRKAG3 with meat traits was studied, the results is genotype AA of TCAP is negatived correlation with cooking loss, genotype AB of TCAP is positived correlation with c*2-1 (chroma). Genotype AA of DECR1 is negatived correlation with cooking loss and pH2·1·Genotype BB of DECR1 is negatived correlation with pH1-Genotype AB of DECR1 is positived correlation with L*, (lightness).Genotype AB of PRKAG3 is positived correlation with tenderness, and genotype AB of PRKAG3 is negatived correlation with a*21 (red) and b*24 (yellow).
     (4) The relationship of TCAP、DECR1、PRKAG3 with fatty acid content was studied, the results showed:genotype BB of DECR1 is negatived correlation with tetradecylic acid, and it is positived correlation with stearie acid and linoleic acid. Genotype BB of PRKAG3 is positived correlation with oleinic acid. TCAP gene have no significant correlation.
     (5) The relationship of TCAP, DECRK PRKAC3 with ami no acid content was studied, the results showed:genotype BB of TCAP is positived correlation with aminoacetic acid. Genotype BB of DECR1 is negatived correlation with histidine and lysine. Genotype AA of PRKAG3 is positived correlation with aspartate. Genotype AB of PRKAG3 is positived correlation with glutamate, alanine, praline, arginine, valine, respectively.
引文
[1]Andersson L, Georges M Domestic-animal genomics:deciphering the genetics of complex traits. Nat Rev Genet,2004,5:202-212
    [2]于如瑾,等。延边黄牛,中国牛业科学,2006,32,5
    [3]李国范,金龙南,申京浩,延边黄牛品种资源保护的现状及其对策,吉林农业科技学院学报,2006,15(2):22—24
    [4]李洪龙,李钟乐,李贵松等.延边黄牛与利延一代牛的短期育肥屠宰试验.延边大学农学学报,1999,2(14):268-275
    [5]苗树君,曲永利,刘立成.不同杂交品种肉牛育肥效果的比较试验,黄牛杂志,2004,30(6):12-14
    [6]俞美子,高祝兰,王德武.利木赞牛与延边黄牛杂交效果的研究,奶牛肉牛,2005,4:26
    [7]严昌国,王勇,朴圣哲等.延边黄牛牛肉品质特性的研究,黄牛杂志,2004,30(3):5-7
    [8]张继川,黄秉周,吕福玉,延黄牛——中国第二个肉用型牛品种培育成功,中国牛业科学,2009,35(3):25—26
    [9]展凤军,张康康,王海丽,延边黄牛牛肉质量分级肉色脂肪色标准图谱的制作,肉类研究,2009,3:3—5
    [10]曹阳.肉牛微卫星DNA的群体遗传变异分析及其与肉用性状关系的研究,延边大学硕士论文:2003
    [11]李梅,延边黄牛细胞遗传与血液蛋白多态性的研究,延边大学硕士论文:2005
    [12]金海国,曹阳,金允浩,延边黄牛的微卫星遗传变异及DNA指纹分析,延边大学农学学报,2007,29(4):229-233
    [13]霍艳军,在延边黄牛微卫星遗传标记与生产性能的相关研究[D],延边大学
    硕士论文:2007
    [14]Page BT, Casas E, Quaas RL, Thallman RM, Wheeler TL, Shackelford SD, Koohmaraie M, White SN, Bennett GL, Keele JW, Dikeman ME and Smith TPL.2004. Association of markers in the bovine CAPNl gene with meat tenderness in large crossbred populations that sample influential industry sires. J. Anim. Sci.,82: 3474-3481
    [15]White SN, Casas E, Wheeler TL, Shackelford SD, Koohmaraie M, Riley DG, Chase CCJr, Johnson DD, Keele JW and Smith TPL.2005. A new single nucleotide polymorphism in CAPNl extends the current tenderness marker test to include cattle of Bos indicus, Bos taurus, and crossbred descent. Journal of Animal Science,83: 2001-2008
    [16]Labeit S,Kolmerer B,Linke W.The giant protein titin:emerging roles in physiology and pathophysiology.Circulation Research,1997,80:290-294
    [17]Barendse, W. G.2002. DNA markers for meat tenderness. International patent application No. PCT/AU02/00122. World Intellectual Property Org. Int. Publication No. WO 02/064820 Al. Chung, H. Y., M. E. Davis, H. C. Hines, and D. M. Wulf. 1999
    [18]Barendse W 2003. DNA markers for marbling. Patent publication WO2004070055. Available:http://ep.espacenet.com/. Accessed:19 August 2004
    [19]Michal JJ, Zhang ZW, Gaskins CT and Jiang Z.2006. The bovine fatty acid binding protein 4 gene is significantly associated with marbling and subcutaneous fat depth in Wagyu x Limousin F2 crosses. Anim. Genet.,37:400-402.
    [20]Mullen AM, Stapleton PC, Corcoran D, Hamill RM and White A.2006. Understanding meat quality through the application of genomic and proteomic approaches. Meat Science,74(1):3-16
    [21]韩瑞华,昝林森,杨大鹏,郝荣超,2008.秦川牛IGF2基因SNPs检测及其与胴体、肉质性状的相关性,遗传,30(12):1579-1584
    [22]李武峰,许尚忠,曹红鹤,李宏滨,3个杂交牛种H-FABP基因第二内含子的遗传变异与肉品质性状的相关分析,畜牧兽医学报,2004,35(3):252-255
    [23]Li H, Xu SZ, Gao X and Ren HY.2007. Structure of the Bovine ACAD8 Gene and the Association of Its Polymorphism with the Production Traits. J. Genet Genomics,34(4):315-320
    [24]Buchanan FC, Fitzsimmons CJ, Van Kessel AG, Thue TD, Sim DCW and Schmutz SM.2002. Association of a missense mutation in the bovine leptin gene with carcass fat content and leptin mRNA levels. Genet. Sel. Evol.,34:105-116
    [25]Mears GJ, Mir PS, Bailey DRC, Jones SDM.2001. Effect of Wagyu genetics on marbling, backfat and circulating hormones in cattle. Canadian Journal of Animal Science,18:6573
    [26]Tatsuda K, Oka A, Iwamoto E, Kuroda Y, Takeshita H, Kataoka H and Kouno S. 2008. Relationship of the Bovine Growth Hormone Gene to Carcass Traits in Japanese Black Cattle. J. Anim. Breed. Genet.,125:45-49
    [27]Zhang S, Knight TJ, Reecy JM and Beitz DC.2008. DNA polymorphisms in bovine fatty acid synthase are associated with beef fatty acid composition. Anim. Genet.,39:62-70
    [28]Roy R, Ordovas L, Zaragoza P, Romero A, Moreno C, Altarriba J and Rodellar C. 2006. Association of polymorphisms in the bovine FASN gene with milk-fat content. Anim.Genet,37:215-218
    [29]Florini JR, Ewton DZ and Coolican SA.1996. Growth hormone and the insulin-like growth factor system in myogenesis. Endocrine Reviews,17:481-517
    [30]Di Stasio L, Destefanis G, Brugiapaglia A, Albera A and Rolando A.2005. Polymorphism of the GHR gene in cattle and relationships with meat production and quality. Anim. Genet.,36:138-140
    [31]Valle G, Faulkner G, De Antoni A, et al. Telethonin, a novel sarcomeric protein of heart and skeletal muscle. FEBS Lett,1997,515(2):163-168
    [32]Mayans, O., P. F. van der Vcn, et al. Structural basis for activation of the titin kinase domain during myofibrillogenesis. Nature,1998,395(6705):863-869
    [33]Yu, S.L, Chung, H. J., Jung, K C, Sang, B. C, Yoon, D. H., Lee, S. H., et al. (2004) Cloning and Characterization of Bovine Titin-cap(TCAP) Gene Asian-Austrian Journal of Animal Science,17(10),1344-1349
    [34]Nicholas G, Thomas M, Langley B,et al,. Titin-cap associates with, and regulates secretion of, Myostatin. J Cell Physiol.2002,10,193(1):120-31
    [35]Tian LF, Li HY, Jin BF, MDM2 interacts with and downregulates a sarcomeric protein, TCAP
    [36]Alphey MS, Yu W, Byres E, et al. Structure and reactivity of human itochondrial 2,4-dienoyl-CoA reductase:enzyme-ligand interactions in a distinctive short-chain reductase active site. J Biol Chem.2005 Jan 28; 280(4):3068-77
    [37]Amills M, Vidal O, Varona L, et al. Polymorphism of the pig 2,4-dienoyl CoA reductase 1 gene (DECRI) and its association with carcass and meat quality traits. Anim Sci.2005 Mar;83(3):493-8
    [38]Rosenvold, K., H. J. Anderson. Factors of significance for pork quality-A review. Meat Sci.2003,64:219-237
    [39]李梦云,陈代文,张克英,PRKAG3在猪组织器官中的表达差异及与胴体品质关系研究.畜牧兽医学报,2006,37(6),566-570
    [40]Hawley S.A., Davison M., Woods A., Davies S.P., Beri R.K., Carling D., Hardie D.G. Characterization of the AMP-activated protein kinase kinase from rat liver, and identification of threonine 172 as the major site at which it phosphorylates and activates AMPactivated protein kinase. J. Biol. Chem.,1996,271:27879-27887
    [41]Winder W.W. Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle. J. Appl. Physiol.,2001,91:1017-1028
    [42]Carling D. The AMP-activated protein kinase cascade—a unifying system for energy control. Trends Biochem Sci,2004,29:18-24
    [43]Blair E, Redwood C, Ashrafian H, Oliveira M, Broxholme J, et al. Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy:evidence for the central role of energy compromise in disease pathogenesis. Hum Mol Genet,2001,10:1215-1220
    [44]Arad M, Benson D W, Perez-Atayde AR, McKenna WJ, Sparks EA, et al. Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J Clin Invest,2002,109:357-362
    [45]Milan D., Jeon J.-T., Looft C, Amarger V., Robic A., Thelander M., Rogel-Gaillard C, Paul S., Iannuccelli N., Rask L., Ronne H., Lundstrom K., Reinsch N., Gellin J., Kalm E., Le Roy P., Chardon P., Andersson L. A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science,2000,288: 1248-1251
    [46]Ciobanu D., Bastiaansen J., Malek M., Helm J., Woollard J., Plastow G., Rothschild M. Evidence for new allcles in the protein kinase adenosine monophosphate-activated c3-subunit gene associated with low glycogen content in pig skeletal muscle and improved meat quality. Genetics,2001,159:1151-1162
    [47]Barnes BR, Marklund S, Steiler TL, Walter M, Hjalm G, et al. The 5(?)-AMP-activated protein kinase gamma3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle. J Biol Chem,2004,279:38441-38447
    [48]Cheung P.C.F., Salt I.P., Davies S.P., Hardie D.G., Carling D. Characterization of AMP-activated protein kinase c-subunit isoforms and their role in AMP binding. Biochem. J.,2000,346:659-669
    [49]Yu, S.L., Kim, J.E., Chung, H.J., Jung, K.C., Lee,Y.J., Yoon, D.H., Lee, S.H., Choi, I., Bottema,C.D.K. Molecular cloning and characterization of bovine PRKAG3 gene structure, expression and single nucleotide polymorphism detection.2005, J. Anim. Breed. Genet.,122:294-301
    [50]Brooker A J.The essence of SNPs, Gene,1999,234(2):177-186
    [51]张凤珍,翟静,蒋汉明,等,人类单核苷酸多态性及其应用,预防医学文献信息,2004,10(5):569-573
    [52]杨永强,王巍杰,徐长波,单核苷酸多态性研究进展,化学与生物工程,2009,26(8),19-21
    [53]李琳,杨德光,胡正,等,单核苷酸多态性检测方法研究概述及其应用,玉米科学,2009,17(3):142—145
    [54]Mandoiu Ⅱ, Prajes cu C. High-throughput SNP genotyping by SBE/SBH. IEEE Trans Nanobioscience,2007,6:28-35
    [55]Cunha BA, Esrick MD, Larusso M. Staphylococcus hominis native mitral valve bacterial endocarditis (SBE) in a patient with hyper2 trophic obstructive cardiomyopathy. Heart Lung,2007,36:380-382
    [56]Matsuzaki H, Dong S, Loi H, et al. Genotyping over 100,000 SNPs on a pair of oligonucleotide arrays. Nat Methods,2004,1:109-111
    [57]van Heek NT, Clayton SJ, Sturm PD, et al. Comparison of the novel quantitative ARMS assay and an enriched PCR-ASO assay for K-ras mutations with conventional cytology on endobiliary brush cytology from 312 consecutive extrahepatic biliary stenoses. J Clin Pathol,2005,58:1315-1320
    [58]王学敏,李碧侠,任守文,猪分子育种中的SNPs及其检测方法,猪业科学,2006,11:52-54
    [59]石磊,岳文斌,SNP的研究进展及其在家畜育种中的应用,畜禽业,2007,215:2-4
    [60]全国肉牛繁育协作组,肉牛屠宰试验试行方法, 《肉牛技术资料》,1987, 5:32
    [61]Reineccius G. Quality attributes and their measurement in meat.Flavor and Aroma Chemistry,1994,12:184-201
    [62]Alphey MS, Yu W, Byres E, et al. Structure and reactivity of human itochondrial 2,4-dienoyl-CoA reductase:enzyme-ligand interactions in a distinctive short-chain reductase active site. J Biol Chern,2005 Jan 28,280(4):3068-3077
    [63]Joseph J K, Wosanya B A, Adeniran A T, et al. The effects of end-point internal cooking temperatures on meat quality at-tributes of selected Nigerian poultry meat. Food Quality and Preference,1997(1):57-61
    [64]Baeza E, Dcssay C, Wacrenier N, et al. Effects of selection for improved body weight and composition on muscle and meat characteristics in Muscovy duck. Br Poult Sci,2002,43(4):560-568
    [65]Wang Wentao, Yang Xiuqin, He xinmiao, Liu Di, The development of the 2,4-dienoyl-CoA reductase 1 gene (DECR1) in pig. Journal of Northeast Agricultural University,2007,14 (3):241-244
    [66]黄生强,柳小春,猪DECRl基因的研究进展,Animal Biotechnology Bulletin, 2006,10,1:39-42
    [67]Matthieu Roux, Angelique Nizou, Lionel Forestier,et al. Transcripts and Polymorphisms of The Bovine PRKAG3 Gene. Msmmalian Genome,2006,7:83-92 [68] Gunilla Lindahl, Ann-Charlotte Enfalt, Gertud vonSeth, et al. A second mutant
    allele(V199I) at the PRKAG3 (RN) locus Ⅱ Effect on colour characteristics of pork loin. Meat Science,2004:621-627
    [69]G S Plastow, D Carron, et al. Quality perk genes and meat production.Meat Science,2005,70:409-421
    [70]李梦云,余冰,营养水平对PRKAG3基因表达量及对肉质影响的研究.畜牧兽医学报,2008,39(8):1056-1061

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700