镁合金表面复合镀层的制备及其耐腐蚀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁及镁合金具有密度低,比强度、比刚度、比弹性模量高,铸造性能和切削加工性好等特点而被广泛应用于航空航天、汽车制造和电子工业等领域,被誉为21世纪的“时代金属”。然而,镁是一种非常活泼的金属,具有极高的化学和电化学活性,极易被腐蚀,即便是将镁合金置于空气中,它的表面都会形成一层很薄的氧化膜,使其应用范围受到极大限制。因此,采用表面防护技术来提高镁合金的耐腐蚀性能对于扩展镁合金的应用有着重要的意义。
     常见金属表面的保护手段中,电镀方法操作简单,所得金属镀层具有装饰性、耐腐蚀性、可焊性、导电性和耐摩擦性等优点。但镁合金难于直接实施电镀,因为其在空气和水中易迅速生成MgO和Mg(OH)2,阻碍镀层的生成;镁的电位低,常规镀液易对其腐蚀;其结构的多相性会导致被镀金属沉积不均匀;易发生电偶腐蚀。因此,本文在综述了镁合金腐蚀机理及近年来表面防护方法的应用基础上,针对镁合金的特点,采用了不同的前处理方法,对其实施多种电镀工艺研究。对已成功制备出的多种防护性涂镀层的耐腐蚀性能及其耐腐蚀机理做了相应的研究,论文的主要研究内容及取得的科研成果如下:
     首先以环保、低成本工艺技术为前提,研究了AZ91D镁合金无铬前处理及镀锌层对其耐蚀保护作用。通过锡酸盐转化处理在AZ91D镁合金表面形成转化层,并以此作为前处理底层,再进行电镀锌,得到了耐蚀性良好的锌镀层。所获得锌镀层经过扫描电镜、X射线衍射表征可知,镀层表面是由不规则的多边形晶簇组成,其尺寸大小约为1-2μm,镀层的厚度大约为10μm。在3.5 wt.% NaCl中性溶液中的电化学极化和电化学阻抗谱测试结果表明,锌镀层的自腐蚀电位为-1.23 V,极化曲线有明显的钝化区,阻值也明显高于AZ91D镁合金裸基体,证明锌镀层为AZ91D镁合金提供了优良的耐蚀性能。
     为了进一步提高AZ91D镁合金表面防护层的耐蚀性能,本研究设计了以常见化学镀镍层作为中间过渡层,采用溶胶凝胶技术修补化学镀镍层的缺陷以达到增强对AZ91D镁合金保护性能的目的。实验结合各种表征手段揭示:以Si溶胶封孔的复合涂层表面均一,能够大幅度提高基体的耐蚀性能,在3.5 wt%NaCl腐蚀性溶液中浸泡时间长达120小时。其失效过程分为两部分,首先是外层溶胶层逐渐失效,最后是侵蚀性离子穿过化学镀层并达到镁合金基体进而诱发腐蚀。
     针对化学镀镍层的固有缺陷,文章选取耐蚀性能好的镀层金属镍,在AZ91D镁合金化学镀镍层上实施电镀镍层来进一步提高镁合金的耐蚀能力。研究结果表明,此工艺可操作性强,工艺合理;获得的镍镀层均匀致密、光亮,与基体结合力良好,基本无缺陷。电化学测试结果显示,该镀层在3.5 wt% NaCl溶液中持续浸泡达72小时。其呈现出的耐腐蚀性能与所报道的AZ91D镁合金其它防护处理的相比大大增强。
     以提高AZ91D镁合金的耐腐蚀及机械性能为研究目标,本文研究了在AZ91D镁合金表面的复合镀技术。利用纳米微粒特有的小尺寸效应,量子尺寸效应等,将其复合到金属镀层中将产生许多优异的物理、化学性能。因此,本文通过将纳米TiO2添加在镍镀液中对AZ91D镁合金实施电镀得到了Ni-TiO2保护镀层。研究结果显示该镀层不仅改善了基体的耐蚀性能,同时也增加了其耐摩擦性能且其表面显微硬度达到445HV。在3.5 wt% NaCl溶液中浸泡时间能够达到96小时。
Magnesium alloys, which are considered as time metal materials of 21 century, have unique characteristics of low density, the best strength-to-weight ratio of the commonly die-cast metals, generally a better machinability, and often a higher production rate, thus they are of great value for applications in theerospace, automotive industries and functional materials. However, its insufficient corrosion resistance as an actually usable metal for its relatively low standard potential and high reactive nature makes it easily oxidized in air, which strongly limited its applications. Thus, it is of great significance to make great efforts to increase the corrosion resistance of the magnesium alloys.
     In the conventional surface treatments, the electrochemical deposition is a promising method for the protection of magnesium alloys due to many pre-dominant performances such as decorative appearance, corrosion resistance, solderability, electrical conductivity, high microhardness and anti-wearing. While it is well known that magnesium alloys are "difficult to plate metal" for the oxide film with low electrical conductivity and bonding ability which is always present on the light metal surface, prevents the adhesion of the metallic coating. In addition, magnesium alloys are susceptible to be corroded in the deposition solution not containing chromate and fluoride. Furthermore, the coating has to be pore-free due to the potential difference between magnesium alloys substrate and metal coating which increases the difficultly of deposition. Therefore, based on the summary of corrosion mechanism and the currently surface protection technologies of magnesium alloy, several pretreatments were adopt to investigate the corrosion resistance technologies on AZ91D magnesium alloys, the main contents as follows.
     Firstly, considerning environment-friendly, low cost technology, a stannate chemical conversion process followed by an activation procedure was employed as the pre-treatment process for AZ91D magnesium alloy substrate. Zn was electroplated onto the pre-treated AZ91D magnesium alloy surface from pyrophosphate bath to improve the corrosion resistance and the solderability. The surface morphologies of conversion coating and zinc coating were examined with scanning electron microscope (SEM). The phase composition of conversion coating was investigated by X-ray diffraction (XRD).The zinc coating on top is even and filled with distorted polygonal which is 1-2μm in diameter and the coating thickness is about 10μm. The electrochemical corrosion behavior of the coatings in neutral 3.5 wt.% NaCl solution was investigated by potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). The experimental results showed that the corrosion resistance of the AZ91D substrate was improved by the zinc coating.
     To improve the corrosion resistance of AZ91D magnesium alloy, a protectivemultilayer coating, with electroless Ni coating as bottomlayer and sol-gel SiO2 film as top layer, was successfully prepared on AZ91D magnesium alloy by a combination of electroless and sol-gel techniques. The experiment tests showed that, surface of the composite coating was compact, and its corrosion resistance was also further improved compared with AZ91D magnesium substrate and electroless Ni coating. In the long-term immersion test, it was maintained in the corrosive electrolyte for 120 hours. Two steps were involved in the dregradation process, the top sol film failed and followed by the inner layer in long period of immersion in corrosive electrolyte.
     Due to the inhere limitation of the electroless Ni coating, a protectivemultilayer coating, with electroless Ni coating as bottomlayer and electrodeposited Ni coating as top layer, was successfully prepared on AZ91D magnesium alloy by a combination of electroless and electrodeposition techniques. The test results showed that, the process was exercisable and reasonable, the surface morphologies was uniformly and compact. The experimental results obtained by electrochemical behaviors showed that, the immersion test in neutral 3.5 wt.% NaCl solution last for 72 hours. The corrosion resistance of AZ91D magnesium substate was improved by the metal coating compared with other technologies.
     Electrodeposition of nanoparticles within metal matrix produces composite coatings with the attractive properties such as high wear resistance, corrosion resistance and electrocatalysis. Thus, TiO2 nanoparticles were codeposited with Ni matrix to obtain a Ni-TiO2 composite coating. A protectivemultilayer coating with electroless Ni coating as bottomlayer and electrodeposited Ni-TiO2 composite coating as top layer was successfully prepared on AZ91D magnesium alloy. The results showed that Ni-TiO2 composite coating could afford better corrosion and mechanical protection for the AZ91D magnesium alloy compared with single electroless Ni coating. The micro-hardness of the Ni-TiO2 composite coating improved more than 5 times than that of the AZ91D magnesium alloy. The immersion test of Ni-TiO2 composite coating in neutral 3.5 wt.% NaCl solution last for 96 hours.
引文
[1]Philip A. Schweitzer, P.E.,Encyclopedia of corrosion technology. New York, USA:Marcel Dekker, Inc.,2004.333.
    [2]张津,章宗和等.镁合金及应用.北京:化学工业出版社.2004.5-18.
    [3]曾荣昌,柯伟,徐永波,韩恩厚,朱自勇.Mg合金的最新发展及应用前景.金属学报.2010.7,37(7):673-685.
    [4]黄晓艳,周宏.21世纪绿色工程材料——Mg合金.南方金属.2004.6.138:4-9.
    [5]宋光铃.镁合金腐蚀与防护.化学工业出版社.2006.
    [6]J.E. Gray, B.Luan. Protective coatings on magnesium and its alloys-a critical review. Journal of Alloys and Compounds.2002.336:88-113.
    [7]L.A. Dobrza'nski, T.Ta'nski, L.(?) C i(?) zek, Z. Brytan. Structure and properties of magnesium cast alloys. Journal of Materials Processing Technology.2007.192-193:567-574.
    [8]张永君,严川伟,王福会,曹楚南.镁的应用及其腐蚀与防护.材料保护.2002.4.35(4):4-6.
    [9]E. Aghion, B.Bronfin, D. Eliezer. The role of the magnesium industry in protecting the environment. Journal of Materials Processing Technology.2001.17:381-385.
    [10]B.L. Mordike, T. Ebert, Mgnesium Properties-applications-potential. Material Science and Engineering A.2001.302:37-45.
    [11]蒋太富,刘静安.镁及镁合金材料的应用及市场开拓前景.铝加工.2007.2.174:5-10.
    [12]Kiyoshi Funatani.Emerging technology in surface modification of light metals. Surface and Coatings Technology.2000.133-134:264-272.
    [13]D.S. Mehta, S.H.Masood, W.Q. Song. Investigation of wear properties of magnesium and aluminum alloys for automotive applications. Journal of Materials Processing Technology 2004, 155-156:1526-1531.
    [14]姚路明,曲家慧,刘烨.镁合金及其在兵器装备中的应用探析.现代商贸工业.2008.12:366-367.
    [15]E. Schubert, M. Klassen, I.Zerner, C. Walz, G. Sepold. Light-weight structures produced by laser beam joining for future applications in automobile and aerospace industry. Journal of Materials Processing Technology.2001,115:2-8.
    [16]Jindan Du, Weijian Han, Yinghong Peng. Life cycle greenhouse gases, energy and cost assessment of automobiles using magnesium from Chinese Pidgeon process. Journal of Cleaner Production.2010.18:112-119.
    [17]李轶,程培元,华林.镁合金在汽车工业和3C产品中的应用.江西有色金属.2007.6.21(2):30-33.
    [18]王殊,师春生,赵乃勤,项忠霞.自行车车架材料以及镁合金的应用.材料导报.2006.8.20(8):87-89.
    [19]李青.镁的表面处理.功能材料.1996.27(3):281-287.
    [20]余刚,刘跃龙,李瑛,叶立元,郭小华,赵亮.Mg合金的腐蚀与防护.中国有色金属学报.2002.12(6):1087-1098.
    [21]G. Song, A. Atrens, D.Stjohn, J. Nairn, Y. Li. The electrochemical corrosion of pure magnesium in 1 N NaCl. Corrosion Science.1997,39:855-875.
    [22]L.J. Liu, M. Schlesinger. Corrosion of magnesium and its alloys. Corrosion Science,2009. 51:1733-1737.
    [23]Guangling Song, Birgir Johannesson, Sarath Hapugoda, David StJohn. Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc. Corrosion Science.2004.46:955-977.
    [24]Zhiming Shi, Guangling Song, Andrej Atrens, Influence of the β phase on the corrosion performance of anodised coatings on magnesium-aluminium alloys, Corrosion Science.2005.47: 2760-2777.
    [25]Tao Zhang, Ying Li, Fuhui Wang. Roles of β phase in the corrosion process of AZ91D magnesium alloy. Corrosion Science 2006.48:1249-1264.
    [26]徐卫军,马颖,吕维玲,郝远,镁合金腐蚀的影响因素.腐蚀与防护.2007.4 28(4):163-166.
    [27]周婉秋,单大勇,曾荣昌,韩恩厚,柯伟.镁合金的腐蚀行为与表面防护方法.材料保护.2002.7.35(7):1-3.
    [28]Rakel Lindstr€om,Lars-Gunnar Johansson,George E.Thompson,Peter Skeldon,Jan-Erik Svensson. Corrosion of magnesium in humid air. Corrosion Science.2004.46:1141-1158.
    [29]Gaia Ballerini, Ugo Bardi, Roberto Bignucolo, Giuseppe Ceraolo. About some corrosion mechanisms of AZ91D magnesium alloy. Corrosion Science.2005.47:2173-2184.
    [30]Guangling Song, David StJohn, Corrosion behaviour of magnesium in ethylene glycol. Corrosion Science,2004.46:1381-1399.
    [31]赵立新,顾云飞,邵忠财,魏守强.镁合金无铬化学转化膜的研究现状及发展趋势.电镀与涂饰.2009.1.28(1):33-35.
    [32]Fred W. Eppensteiner, Melvin R. Jenkins. Metal finishing.2000.1.98:497-509.
    [33]高瑾,涂运骅,李久青.镁合金涂装保护体系失效特性及铬酸盐转化膜的影响.腐蚀科学与 防护技术.2005.5.17(3):169-171.
    [34]Kwo Zong Chong, Teng Shih Shih. Conversion-coating treatment for magnesium alloys by a permanganate-phosphate solution. Materials Chemistry and Physics.2003.80:191-200.
    [35]Hua Zhang, Guangchun Yao, Shulan Wang, Yihan Liu, Hongjie Luo. A chrome-free conversion coating for magnesium-lithium alloy by a phosphate-permanganate solution. Surface & Coatings Technology 202 (2008) 1825-1830.
    [36]Wanqiu Zhou, Dayong Shan, En-Hou Han, Wei Ke. Structure and formation mechanism of phosphate conversion coating on die-cast AZ91D magnesium alloy. Corrosion Science.2008.50: 329-337
    [37]L.Y. Niu, Z.H. Jiang, G.Y. Li, C.D. Gu, J.S. Lian.. A study and application of zinc phosphate coating on AZ91D magnesium alloy. Surface & Coatings Technology.2006.200: 3021-3026.
    [38]G.Y. Li, J.S.Lian, L.Y. Niu, Z.H. Jiang, Q. Jiang. Growth of zinc phosphate coatings on AZ91D magnesium alloy. Surface & Coatings Technology.2006.201:1814-1820.
    [39]Xiaolan Liu, Tao Zhang, Yawei Shao, Guozhe Meng, Fuhui Wang. In-situ study of the formation process of stannate conversion coatings on AZ91D magnesium alloy using electrochemical noise. Corrosion Science.2010.52:892-900.
    [40]C.S.Lin, H.C. Lin, K.M. Lin, W.C. Lai. Formation and properties of stannate conversion coatings on AZ61 magnesium alloys. Corrosion Science.2006.48:93-109.
    [41]F. Zucchi, A. Frignani, V. Grassi, G. Trabanelli,C. Monticelli. Stannate and permanganate conversion coatings on AZ31 magnesium alloy. Corrosion Science.2007.49:4542-4552.
    [42]Amy L. Rudd, Carmel B.Breslin, Florian Mansfeld. The corrosion protection afforded by rare earth conversion coatings applied to magnesium. Corrosion Science.2000.42:275-288.
    [43]程玮璐,王桂香.镁合金表面有机物转化膜的研究进展.电镀与环保.2009.7.29(4):5-9.
    [44]L.J. Zhang, J.J. Fan, Z. Zhang, F.H. Cao, J.Q. Zhang, C.N. Cao. Study on the anodic film formation process of AZ91D magnesium alloy. Electrochimica Acta 2007.52:5325-5333.
    [45]李海先,安茂忠,李吉丹,杨培霞.镁合金环保型阳极氧化工艺进展.2008.1.28(1):4-8.
    [46]Wen C. Say, Chien Chon Chen, Sheng-Jen Hsieh. Electrochemical characterization of non-chromate surface treatments on AZ80 magnesium. Materials Characterization.2008.59: 1400-1406.
    [47]张道军,邵红红,蒋小燕.AM50镁合金表面直接化学镀研究.有色金属.2009.8.61(3):21-23.
    [48]宣天鹏.材料表面功能镀覆层及其应用.北京:机械工业出版社,2008.1:1-19.
    [49]曾华梁,吴仲达,陈钧武,吕佩仁,秦月文.电镀工艺手册.第二版.北京:机械工业出版社.2003,117-135.
    [50]廖宁,肖泽辉.镁合金激光表面处理技术的应用.表面技术.2008.6.37(3):68-69.
    [51]D.Dube',M. Fiset, A. Couture, I. Nakatsugawa. Characterization and performance of laser melted AZ91D and AM60B.Materials Science and Engineering A.2001.299:38-45.
    [52]Xu Yue, Li Sha. Corrosion Resistance of AZ91D Magnesium Alloy Modified by Rare Earths-Laser Surface Treatment.2007.7.25:201-203.
    [53]Fei Chen, Hai Zhou, Bin Yao, Zhen Qin, Qingfeng Zhang. Corrosion resistance property of the ceramic coating obtained through microarc oxidation on the AZ31 magnesium alloy surfaces Surface & Coatings Technology.2007.201:4905-4908.
    [54]Hongping Duan, Keqin Du, Chuanwei Yan, Fuhui Wang. Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D. Electrochimica Acta.2006.51:2898-2908.
    [55]Frank Hollstein, Renate Wiedemann, Jana Scholz. Characteristics of PVD-coatings on AZ31hp magnesium alloys. Surface and Coatings Technology.2003.162:261-268.
    [56]C.A. Huang, T.H.Wang, T. Weirich, V. Neubert. Electrodeposition of a protective copper/nickel deposit on the magnesium alloy (AZ31).Corrosion Science 50 (2008) 1385-1390.
    [57]Changdong Gu, Jianshe Lian, Jinguo He, Zhonghao Jiang, Qing Jiang. High corrosion-resistance nanocrystalline Ni coating on AZ91D magnesium alloy. Surface & Coatings Technology.2006.200:5413-5418.
    [58]C.A. Huang, T.H.Wang, T.Weirich, V. Neubert. A pretreatment with galvanostatic etching for copper electrodeposition on pure magnesium and magnesium alloys in an alkaline copper-sulfate bath. Electrochimica Acta.2008.53:7235-7241.
    [59]刘心峰.浅议镁合金电镀工艺的应用.电镀与环保.2008.5.28(3):13-15.
    [60]Y.W. Song, D.Y. Shan, E.H. Han. Corrosion behaviors of electroless plating Ni-P coatings deposited on magnesium alloys in artificial sweat solution. Electrochimica Acta.2007.53: 2009-2015.
    [61]S.Ishihara, H. Notoya, A. Okada, Z.Y. Nan, T. Goshima. Effect of electroless-Ni-plating on corrosion fatigue behavior of magnesium alloy Surface & Coatings Technology 202 (2008) 2085-2092.
    [62]Rajan Ambat, W. Zhou. Electroless nickel-plating on AZ91D magnesium alloy:effect of substrate microstructure and plating parameters. Surface and Coatings Technology.2004.179: 124-134.
    [63]Jianzhong Li, Yanwen Tian, Zhenqi Huang, Xin Zhang. Studies of the porosity in electroless nickel deposits on magnesium alloy. Applied Surface Science.2006.252:2839-2846.
    [64]W.X. Zhang, Z.H. Jiang, G.Y. Li, Q. Jiang, J.S. Lian. Electroless Ni-P/Ni-B duplex coatings for improving the hardness and the corrosion resistance of AZ91D magnesium alloy. Applied Surface Science.2008.254:4949-4955.
    [65]W.X. Zhang, N. Huang, J.G. He, Z.H.Jiang, Q. Jiang, J.S.Lian. Electroless deposition of Ni-W-P coating on AZ91D magnesium alloy. Applied Surface Science.2007.253:5116-5121.
    [66]马壮,王茺,李智超.镁合金化学镀Ni-Cu-P合金耐磨性研究.电镀与精饰.2008.5.30(5):4-6.
    [67]马壮,王茺,李智超.AZ91D镁合金Ni-Cu-P/纳米TiO2化学镀层的抗菌性能.材料保护.2009.6.42(6):7-10.
    [68]张颖,王晓轩,陶珍东,耿浩然,姜传勇.合金表面化学镀Ni-Co-P合金的研究.材料保护.2008.6.41(6):23-25.
    [69]W.X. Zhang, Z.H.Jiang, G.Y. Li, Q. Jiang, J.S.Lian. Electroless Ni-Sn-P coating on AZ91D magnesium alloy and its corrosion resistance. Surface & Coatings Technology.2008. 202:2570-2576.
    [70]Ivan A. Kenaga. Pany. Electroplating magnesium and alloys thereof. United States. US1801629A1.1931.4.21.
    [71]Willian S.Loose. Method of electroplating magnesium. United States. US2313756A1. 1946.3.16.
    [72]Kotanino Hidekatsu. Method for plating aluminum, aluminum alloy, magnesium, magnesium alloy, zinc or zinc alloy. Japan.. JP59050194.1984.3.23.
    [73]李亭举等.镁合金镀金工艺试验.航天工艺.1987.12.6:55-60.
    [74]Koehler. Process for pretreatment of light metals before galvanization.United States. US4221845.1980.9.9.
    [75]郭洪飞,安茂忠.镁及镁合金电镀与化学镀.电镀与环保.2004.3.24(2):1-5.
    [76]尹建军,李元东,梁卫东,郝远.镁合金表面电镀锌的预处理工艺研究.甘肃工业大学学报.2003.3.29(1):36-38.
    [77]胡丹,李明玥.AZ91D镁合金电镀铜工艺研究.吉林省教育学院学报.2009.6.25:143-144.
    [78]Ziping Zhang, Gang Yu, Yuejun Ouyang, Xiaomei He, Bonian Hu, Jun Zhang, Zhenjun Wu. Studies on influence of zinc immersion and fluoride on nickel electroplating on magnesium alloy AZ91D.Applied Surface Science.255 (2009) 7773-7779
    [79]Liqun Zhu, Weiping Li, Dandan Shan. Effects of low temperature thermal treatment on zinc and/or tin plated coatings of AZ91D magnesium alloy. Surface & Coatings Technology 201 (2006)2768-2775
    [80]Y.F. Jiang, C.Q. Zhai, L.F. Liu, Y.P. Zhu, W.J. Ding. Zn-Ni alloy coatings pulse-plated on magnesium alloy. Surface & Coatings Technology 191 (2005) 393-399.
    [81]Y.F. Jiang, L.F. Liu, C.Q. Zhai, Y.P.Zhu, W.J. Ding. Corrosion behavior of pulse-plated Zn-Ni alloy coatings on AZ91 magnesium alloy in alkaline solutions. Thin Solid Films 484 (2005)232-237.
    [82]V. Viswanathan, T. Laha, K. Balani, A. Agarwal, S. Seal. Challenges and advances in nanocomposite processing techniques. Materials Science and Engineering R.2006.54:255-268.
    [83]C.T.J. Low, R.G.A. Wills, F.C.Walsh. Electrodeposition of composite coatings containing nanoparticles in a metal deposit. Surface & Coatings Technology 201 (2006) 371-383.
    [84]Y.W. Song, D.Y. Shan, E.H.Han.High corrosion resistance of electroless composite plating coatings on AZ91D magnesium alloys. Electrochimica Acta 53 (2008) 2135-2143.
    [1]朱琳.扫描电子显微镜及其在材料科学中的应用.吉林化工学院学报.2007.4.24(2):81-84.
    [2]王英姿,侯宪钦.带能谱分析的扫描电子显微镜在材料分析中的应用.工艺与检测.2007.9:80-83.
    [3]马礼敦.X射线衍射在材料结构表征中的应用.理化检测-物理分册.2009.45(8):501-510.
    [4]田志宏,张秀华,田志广.X射线衍射技术在材料分析中的应用.工程与试验.2009.9.49(3):40-42.
    [5]刘粤慧,刘平安.X射线衍射分析原理与应用.第一版,北京.化学工业出版社.2003.10:39-42.
    [6]常建华,董绮功.波谱原理及解析.第二版.北京.科学出版社.2006.6.59-124.
    [7]余强,司云森,曾初升.交流阻抗技术及其在腐蚀科学中的应用.化学工程师.2005.9.120(9):35-36.
    [8]扈显琦,梁成浩.交流阻抗技术的发展与应用.腐蚀与防护.2004.2.25(2):57-60.
    [9]P. L. Bonora, F. Deflorian, L. Fedrizzi. Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion. Electtrochimica Acta.1996.41:1073-1082.
    [10]曹楚南,张鉴清.电化学阻抗普导论.第一版.北京.科学出版社.2005,1-41
    [1]Y.W. Song, D.Y. Shan, E.H. Han. High corrosion resistance of electroless composite plating coatings on AZ91D magnesium alloys. Electrochimica Acta.2008.53:2135-2143.
    [2]C.A. Huang, T.H. Wang, T. Weirich, V. Neubert. Electrodeposition of a protective copper/nickel deposit on the magnesium alloy (AZ31).Corrosion Science.2008.50:1385-1390.
    [3]C.A. Huang, T.H.Wang, T.Weirich, V. Neubert. A pretreatment with galvanostatic etching for copper electrodeposition on pure magnesium and magnesium alloys in an alkaline copper-sulfate bath. Electrochimica Acta.2008.53:7235-7241.
    [4]刘心峰.浅议镁合金电镀工艺的应用.电镀与环保.2008.5.28(3):13-15.
    [5]关晓洁,余刚,雷细平.镁合金摩托车零部件的电镀实践.电镀与涂饰.2009.8.28(8):37-39.
    [6]李瑛,余刚,刘跃龙,叶立元,郭小华.镁合金的表面处理及其发展趋势.表面技术.2003.4.32(2):1-5.
    [7]吴丹,杨湘杰,叶寒.预处理工艺对AZ91D镁合金锡酸盐转化膜的影响.机械工程材料.2008.12.32(12):15-18.
    [8]Hassan H.Elsentriecy, Kazuhisa Azumi, Hidetaka Konno. Improvement in stannate chemical conversion coatings on AZ91 D magnesium alloy using the potentiostatic technique. Electrochimica Acta.2007.53:1006-1012.
    [9]顾训雷,单玉桥,刘常升,于晓中.高速电镀锌的研究现状与发展方向.材料保护.2009.1.42(1):44-47.
    [10]王昕,张春丽.烧结型钕铁硼电镀锌工艺研究.表面技术.2003.8.32(4):40-43.
    [11]朱晓东,李宁,黎德育,刘伟华,李伟.高速电镀锌工艺对镀层粗糙度及微观形貌的影响.中国有色金属学报.2005.1.15(1):145-151.
    [12]R. Ramanauskas. Structural and corrosion characterization of pulse plated nanocrystalline zinc coatings. Electrochimica Acta.2007.53:1801-1810.
    [13]K. Raeissi, A. Saatchi, M. A. Golozar. Effect of nucleation mode on the morphology and texture of electrodeposited zinc. Journal of Applied Electrochemistry.2003.33:635-642.
    [14]施彦彦,张昭,张鉴清,曹楚南.锌及其合金的大气腐蚀研究现状.中国腐蚀与防护学报.2005.12.25(16):373-379.
    [15]韩夏云,郭忠诚,龙晋明,薛方勤,徐瑞东.镁及镁合金表面镀锌工艺.2002.11.35(11):31-33.
    [16]周婉秋,王晓民,韩恩厚.镁合金上二步法电镀锌的研究.材料保护.2008.1.41(1):31-33.
    [17]焦亮,王晓民,周婉秋,李华为.镁合金电镀锌工艺及其镀层性能研究.材料保护.2008.10.41(10):40-42.
    [18]尹建军,李元东,梁卫东,郝远.甘肃工业大学学报.2003.3.29(1):36-38.
    [19]Hassan H. Elsentriecy, Kazuhisa Azumi, Hidetaka Konno. Effect of surface pretreatment by acid pickling on the density of stannate conversion coatings formed on AZ91 D magnesium alloy. Surface & Coatings Technology.2007.202:532-537.
    [20]Hongwei Huo, Ying Li, Fuhui Wang. Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer. Corrosion Science.2004.46:1467-1477.
    [1]程英亮,陈振华,王慧敏,吴有伍.镁合金的腐蚀与防护研究进展.机械工程材料.2005.5.29(5):1-4.
    [2]胥钧耀,周上祺,杨晓芳.镁合金化学镀镍.材料导报.2005.11.19:406-409.
    [3]渠毓萍,李忠厚,秦妍梅.镁合金表面化学镀Ni-P合金研究.表面技术.2005.2.34(1):43-45.
    [4]N. El Mahallawy, A. Bakkar, M. Shoeib, H. Palkowski, V. Neubert. Electroless Ni-P coating of different magnesium alloys. Surface & Coatings Technology.2008.202:5151-5157.
    [5]W.X. Zhang, N. Huang, J.G He, Z.H. Jiang, Q. Jiang, J.S. Lian. Electroless deposition of Ni-W-P coating on AZ91D magnesium alloy. Applied Surface Science.2007.253:5116-5121.
    [6]Kh. M. Shartal. G J. Kipouros. Electroless Nickel Phosphorus Plating on AZ31.Metallurgical and materials transactions B.2009.4.40B:208-222.
    [7]Zhenmin Liu, Wei Gao. The effect of substrate on the electroless nickel plating of Mg and Mg alloys. Surface & Coatings Technology.2006.200:3553-3560.
    [8]刘新宽,向阳辉,胡文彬,丁文江.镁合金化学镀镍层的结合机理.中国腐蚀与防护学报.2002.8.22(4):233-236.
    [9]潘建平,彭开萍,陈文哲.溶胶-凝胶法制备薄膜涂层的技术与应用.腐蚀与防护.2001.8.22(8):339-342.
    [10]洪新华,李保国.溶胶-凝胶(Sol-Gel)方法的原理与应用.2001.3.21(3):5-8.
    [11]Massimo Guglielmi. Sol-Gel Coatings on Metals. Journal of Sol-Gel Science and Technology. 1997.8:443-449.
    [12]Tammy L. Metroke, Robert L. Parkhill, Edward T. Knobbe. Passivation of metal alloys using sol-gel-derived materials-a review. Progress in Organic Coatings.2001.41:233-238.
    [13]陈运法,金联明,张国昌,谢裕生.溶胶-凝胶制备无机-有机杂化材料.功能材料.1999.30(5):449-451.
    [14]刘京,胡吉明,张鉴清,曹楚南.金属表面硅烷化防护处理及其研究现状.中国腐蚀与防护学报.2006,26(1):59-64.
    [15]F. Beari, M. Brand, P.Jenkner. Organofunctional alkoxysilanes in dilute aqueoussolution:new accounts on the dynamic structural mutability. Journal of Organometallic Chemistry.2001,625(2): 208-216.
    [16]A.N. Khramov, V.N. Balbyshev, L.S. Kasten, R.A. Mantz. Sol-gel coatings with phosphonate functionalities for surface modification of magnesium alloys. Thin Solid Films.2006.514: 174-181.
    [17]A. ranquet, Le Pen C, Terryn H. Effect of bath concentration and curing time on the structure of non-functional thin organosilane layers on aluminium. Electrochimica Acta,2003,48(9): 1245-1255.
    [18]Junying Hu, Qing Li, Xiankang Zhong, Wei Kang. Novel anti-corrosion silicon dioxide coating prepared by sol-gel method for AZ91D magnesium alloy. Progress in Organic Coatings. 2008.63:13-17.
    [19]C.M. Bertelsen, F.J.Boerio. Linking mechanical properties of silanes to their chemical structure: an analytical study of y-GPS solutions and films. Progress in Organic Coatings.2001,41(4): 239-246.
    [20]曹楚南,张鉴清.电化学阻抗谱导论.第一版.北京:科学出版社.2002,26-27.
    [21]程英亮,吴海兰,李玲玲,陈振华,王慧敏,张昭,吴有伍.ZK60镁合金磷酸盐及锡酸盐化学转化膜.中国有色金属学报.2007,17(5):676-682
    [1]Hongwei Huo, Ying Li, Fuhui Wang. Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer. Corrosion Science.2004.46: 1467-1477.
    [2]Hongfei Guo, Maozhong An, Shen Xu, Huibin Huo. Microarc oxidation of corrosion resistant ceramic coating on a magnesium alloy. Materials Letters.2006.60:1538-1541.
    [3]Xiaoming Chen, Guangyu Li, Jianshe Lian, Qing Jiang. An organic chromium-free conversion coating on AZ91D magnesium alloy. Applied Surface Science.2008.255:2322-2328.
    [4]R. Gadow, D. Scherer. Composite coatings with dry lubrication ability on light metal substrates. Surface and Coatings Technology.2002.151-152:471-477.
    [5]高福麒,高斌,高翔.镁合金及其表面电镀技术.表面技术.2004.2.33(1):8-10.
    [6]宣天鹏.材料表面功能镀覆层及其应用.北京:机械工业出版社,2008.1:231-283.
    [7]Jianzhong Li, Zhongcai Shao, Xin Zhang, Yanwen Tian. The electroless nickel-plating on magnesium alloy using NiSO46H2O as the main salt. Surface & Coatings Technology.2006.200:3010-3015.
    [8]罗胜联,戴磊,周海晖,柴立元,旷亚非.镁合金新型电镀工艺研究.湖南大学学报(自然科学版).2006.6.33(3):106-109.
    [9]朱立群,山丹丹,金燕,黄兴.镁合金表面Zn/Sn叠层的低温热扩散研究.材料热处理学报.2006.4.27(2):108-113.
    [10]王赫莹,李德高.镁及镁合金表面电镀镍工艺的研究.表面技术.2004.10.33(5):48-49.
    [11]韩夏云,郭忠诚,龙晋明,薛方勤,徐瑞东.镁及镁合金表面镀锌工艺.2002.11.35(11):31-33.
    [12]Changdong Gu, Jianshe Lian, Guangyu Li, Liyuan Niu, Zhonghao Jiang. Electroless Ni-P plating on AZ91D magnesium alloy from a sulfate solution. Journal of Alloys and Compounds.2005.391:104-109.
    [13]F. El-Chiekh,M.T. El-Haty, H. Minoura, A.A. Montaser. Electrodeposition and characterization of Cu-Ni-Zn and Cu-Ni-Cd alloys. Electrochimica Acta.2005.50:2857-2864.
    [14]曾华梁,吴仲达,陈钧武,吕佩仁,秦月文.电镀工艺手册.第二版.北京:机械工业出版社.2003,188-205.
    [15]余刚,易祥榕,雷细平,张资平,胡波年,何晓梅.镁合金电沉积镍形成机理及电镀工艺的研究.电镀与环保.2009.1.29(1):21-25.
    [16]Changdong Gu, Jianshe Lian, Jinguo He, Zhonghao Jiang, Qing Jiang. High corrosion-resistance nanocrystalline Ni coating on AZ91D magnesium alloy. Surface & Coatings Technology.2006.200:5413-5418.
    [17]Liyuan Qin, Jianshe Lian, Qing Jiang. Effect of grain size on corrosion behavior of electrodeposited bulk nanocrystalline Ni.Transactions of Nonferrous Metals Society of China. 2010.20:82-89.
    [18]N.El Mahallawy, A. Bakkar, M. Shoeib, H.Palkowski, V. Neubert. Electroless Ni-P coating of different magnesium alloys. Surface & Coatings Technology.2008.202:5151-5157.
    [1]C.T.J. Low, R.G.A. Wills, F.C.Walsh. Electrodeposition of composite coatings containing nanoparticles in a metal deposit. Surface & Coatings Technology 201 (2006) 371-383.
    [2]V. Viswanathan, T. Laha, K. Balani, A. Agarwal, S.Seal. Challenges and advances in nanocomposite processing techniques. Materials Science and Engineering R.2006. 54:255-268.
    [3]郭鹤桐.复合镀层.第一版.天津:天津大学出版社.1991:1-12.
    [4]王清滨,田秋,宿辉,邹桂真,曹茂盛.纳米复合镀层的研究进展.材料工程.2004.6:45-48.
    [5]王为,郭鹤桐.纳米复合镀技术.化学通报.2003.3:178-183.
    [6]C.S. Lina, C.Y. Lee, C.F. Chang, C.H. Chang. Annealing behavior of electrodeposited Ni-TiO2 composite coatings. Surface & Coatings Technology.2006.200:3690-3697.
    [7]Lingzhong Du, Binshi Xu, Shiyun Dong, Hua Yang, Weiyi Tu. Study of tribological characteristics and wear mechanism of nano-particle strengthened nickel-based composite coatings under abrasive contaminant lubrication. Wear.2004.257:1058-1063.
    [8]P. Gyftou, M. Stroumbouli, E.A. Pavlatou, P. Asimidis, N. Spyrellis. Tribological study of Ni matrix composite coatings containing nano and micro SiC particles. Electrochimica Acta.2005. 50:4544-4550.
    [9]Bogdan Szczygiel, Malgorzata Kolodziej.Composite Ni/A12O3 coatings and their corrosion resistance. Electrochimica Acta.2005.50:4188-4195.
    [10]黄新民,钱利华,吴玉程,朱泓.纳米颗粒TiO2化学复合镀层的功能特性.金属功能材料.2004.4.11(2):16-19.
    [11]黄新民,张胡海,刘岩,何美清,吴玉程.化学复合镀Ni-P-TiO2纳米颗粒涂层功能特性.应用化学.2006.3.23(3):264-267.
    [12]J. Novakovic, P.Vassiliou, Kl. Samara, Th. Argyropoulos. Electroless NiP-TiO2 composite coatings:Their production and properties. Surface & Coatings Technology.2006.201:895-901.
    [13]A. Abdel Aal, Hanaa B.Hassan, M.A. Abdel Rahim. Nanostructured Ni-P-TiO2 composite coatings for electrocatalytic oxidation of small organic molecules. Journal of Electroanalytical Chemistry.2008.619-620:17-25.
    [14]赵芳霞,罗驹华,张振忠,陈传文.Ni-P-纳米TiO2复合镀层的耐蚀性研究.特种铸及有色合金.2005.25(5):262-264.
    [15]J. Novakovic, P. Vassiliou. Vacuum thermal treated electroless NiP-TiO2 composite coatings. Electrochimica Acta.2009.54:2499-2503.
    [16]马壮,王茺,李智超.AZ91D镁合金Ni-Cu-P/纳米TiO2化学镀层的抗菌性能.材料保护.2009.6.42(6):7-10.
    [17]宋影伟,单大勇,陈荣石,韩恩厚.AZ91D镁合金化学复合镀Ni-P-ZrO2的工艺与性能.中国有色金属学报.2006.4.16(4):625-630.
    [18]Y.W. Song, D.Y. Shan, E.H.Han. High corrosion resistance of electroless composite plating coatings on AZ91D magnesium alloys. Electrochimica Acta 53 (2008) 2135-2143.
    [19]王茂林,刘金海,李国禄,刘根生,赵雪勃.镁合金化学复合镀(Ni-P)-SiC纳米颗粒.有色金属(冶炼部分).2007.1:34-37.
    [20]王茂林,刘金海,李国禄,刘根生.镁合金(Ni-P)-SiC纳米颗粒化学复合镀层硬度及耐磨性的研究.化工机械.2005.32(4):199-202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700