纳米材料硫化镍和硫化铋的制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文旨在探索半导体纳米材料硫化铋、二硫化镍的制备方法,研究其微结构、生长机理和光学性质。利用阳极氧化铝(AAO)模板法控制合成了硫化铋、二硫化镍纳米管;同时采用热分解单源前驱体法和表面活性剂辅助回流法合成了硫化铋纳米花,并对其微结构、反应形成机理和光学性质进行了探讨。
     首先,采用二次阳极氧化法制备了多孔阳极氧化铝(AAO)模板,以高度有序的多孔阳极氧化铝为模板,采用直接渗入自组装方法制备了硫化铋、二硫化镍纳米管。用X-射线衍射(XRD)、能量分散光谱(EDS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和选区电子衍射(SAED)对样品的结构、成份和形貌进行了表征。结果显示,硫化铋、二硫化镍纳米管直径约40~50 nm、长约8~13μm。二硫化镍纳米管为立方相单晶结构,硫化铋纳米管则为多晶的正交晶系结构。
     其次,以硝酸铋和十二硫醇为原料,辛酸钠作相转移催化剂,在230℃和250℃热分解单源前驱体烷基硫醇铋,成功合成了Bi_2S_3纳米棒。所得样品用XRD、TEM、EDS、SAED、SEM以及紫外-可见吸收光谱(UV-Vis)进行了表征。结果表明,所得Bi_2S_3纳米棒长约0.4~5μm、直径约为50~110 nm,具正交晶相的单晶结构,与230℃制得的纳米棒相比,250℃制得的棒长径比更高、长度更长,但直径相当。其能带间隙由体相的1.3 eV分别增加到2.70、2.85 eV,显示出较强的量子尺寸效应。
     另外,以硝酸铋和硫脲为反应物,水为溶剂,分别添加PEG400、OP-10、TX-10、Triton X-100作表面活性剂,用回流的方法成功制备出了硫化铋纳米花。用XRD、SEM、TEM、EDS、UV-Vis及SAED等对所制备产物的结构和形貌进行了表征。实验结果表明硫化铋纳米花为正交相结构,晶胞参数为a = 0.382 4 nm,b = 1.232 8 nm,c = 1.118 5 nm。每朵纳米花由数十个直径50~150 nm、长度500~1200 nm的纳米花瓣自组装而成。表面活性剂对控制Bi_2S_3纳米花的形貌有重要的作用。
The dissertation focus on exploring new synthetic methods for nanoscaled semiconducting materials including Bi_2S_3 and NiS_2, on characterzing microstructures and on studying optical properties. Bi_2S_3 and NiS_2 nanotubes were successfully fabricated with controlled morphologies by porous anodic aluminum oxide (AAO) template method. Bi_2S_3 nanoflowers were fabricated via the thermolysis of the single-source precursors and refluxing in the presence of surfactant. Microstructure, growth mechanism and optical properties of all the synthesized nanostructures were studied and discussed.
     Firstly, porous anodic aluminum oxide (AAO) template was fabricated by two-step anodization. Bi_2S_3 and NiS_2 nanotubes were prepared via a directional infiltration self-assembly route within the nano-holes of the highly ordered AAO template. X-ray powder diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscope (SEM), transmission electron microscope (TEM) and selected area electron diffraction (SAED) were utilized to characterize the structure, compositions and morphology of the samples. The results indicate that the Bi_2S_3 and NiS_2 nanotubes with diameters of 40~50 nm and lenghs of 8~13μm are obtained. The as prepared NiS_2 nanotubes with single crystal structure are cubic phase and Bi_2S_3 nanotubes with polycrystalline structure are orthorhombic phase.
     Secondly, using Bi(NO_3)_3·5H_2O and C_(12)H_(25)SH as starting materials and NaOOC(CH_2)_6CH_3 as a phase transfer catalyst, Bi_2S_3 nanorods were successfully synthesized by the thermolysis of the single-source precursors bismuth alkylthiolate at 230℃and 250℃. The products were characterized by XRD, TEM, EDS, SAED, SEM, and UV-Vis. The results show that the prepared bismuth sulfide nanorods, with diameters in the range of 50~110 nm and lengths up of 0.4~5μm, are orthorhombic phase and single crystal structure. Compared with the nanorods prepared at 230℃, the nanorods prepared at 250℃have higher aspect ratio, larger lengths and almost same diameters. The band gap energy of Bi_2S_3 nanorods are shifted to higher energy of 2.70 and 2.85 eV compared to the typical direct band gap of 1.3 eV of the bulk Bi_2S_3, which exhibits strong quantum size effects.
     Otherwise, novel flowerlike nanostructures consisting of Bi_2S_3 nanopetals were successfully synthesized by the refluxing with Bi(NO_3)_3·5H_2O and (NH_2)_2CS as reactants and water as solvent in the presence of surfactant including PEG400、OP-10、TX-10、and Triton X-100. Analysis of TEM, SEM, XRD, UV-Vis and SAED shows that the bismuth sulfide nanoflowers are orthorhombic phase and the parameter of crystal cell is a = 0.382 4 nm, b = 1.232 8 nm, c = 1.118 5 nm. The nanoflower is formed by self-assembly of tens of Bi_2S_3 nanopetals with diameters of 50~150 nm and lengths of 500~1200 nm. It was found that the surfactants plays a key role in determining the morphology of bismuth sulfide nanostuctures.
引文
[1]袁爱华,汪萍,潘励,等.溶剂热法制备Bi2S3纳米材料[J].无机化学学报, 2006, 22(3):559-562.
    [2] Lou Wenjing, Chen Miao, Wang Xiaobo, et al. Novel single-source precursors approach to prepare highly uniform Bi2S3 and Sb2S3 nanorods via a solvothermal treatment[J]. Chem. Mater., 2007, 19(4):872-878.
    [3] Zhu Xiaoyi, Ma Junfeng, Wang Yongqiang, et al. Morphology-controlled synthesis and characterization of bismuth sulfide crystallites via a hydrothermal method[J]. Ceram. Int., 2008, 34(1):249-251.
    [4]张春丽,张晟卯,卢春,等.无溶剂热分解单源前驱体法制备有机单分子层表面修饰NiS纳米微粒[J].无机化学学报, 2006, 22(3):581-584.
    [5] Khiew P S, Huang N M, Radiman S, et al. Synthesis of NiS nanoparticles using a sugar-ester nonionic water-in-oil microemulsion[J]. Mater. Lett., 2004, 58(5):762-767.
    [6]耿新玲,袁伟.液相法制备Ni3S4纳米粉[J].无机材料学报, 2003, 18(1):149-155.
    [7] Han Qiaofeng, Chen Jian, Yang Xujie, et al. Preparation of uniform Bi2S3 Nanorods using xanthate complexes of bismuth (III)[J]. J. Phys. Chem. C, 2007, 111(38):14072-14077.
    [8] Shen Guozhen, Chen Di, Tang Kaibin, et al. Phase-controlled synthesis and characterization of nickel sulfides nanorods[J]. J. Solid State Chem., 2003, 173(1):227-231.
    [9]陈敬中,刘剑洪.纳米材料科学导论[M].北京:高等教育出版社, 2006.
    [10]克莱邦德K. J.纳米材料化学[M].陈建峰,译.北京:化学化工出版社, 2004: 9-11.
    [11]陈萌.低维硫化物纳米材料化学制备法的研究[博士学位论文].中国科学技术大学, 2001.
    [12]张璐,姚素薇,张卫国,等.氧化铝纳米线的制备及其形成机理[J].物理化学学报,2005,21(11):1254-1288.
    [13]李英品,周晓荃,周慧静,等.纳米结构MnO2的水热合成、晶型及形貌演化[J].高等学校化学学报, 2007, 28(7):1223-1226.
    [14] Wanger R S., Ellis W C. Vapor-liquid-solid mechanism of single crystal growth[J]. Appl. Phys. Lett., 1964, 4(5):89-90.
    [15] Wagner R S, Treuting. Morphology and growth mechanism of silicon ribbons[J]. J. Appl. Phys., 1961, 32:2490-4941.
    [16] Xia Younan, Yang Peidong, Sun Yugang, et al. One-dimensional nanostructure: synthesis, characterization, and applications[J]. Adv. Mater., 2003, 15(5):353-389.
    [17]朱永法.纳米材料的表征与测试技术[M].北京:化学工业出版社, 2006.
    [18]祁景玉. X射线结构分析[M].上海:同济大学出版社, 2003.
    [19]李必慧,唐一文,张新,等.水热法制备氧化锌阵列及其形貌控制[J].无机材料学报, 2007, 22(3):403-406.
    [20] Jiang Jie, Yu Shuhong, Yao Weitang, et al. Morphogenesis and crystallization of Bi2S3 nanostructures by an ionic liquid-assisted templating route: synthesis, formation mechanism, and properties[J]. Chem. Mater., 2005, 17(24):6094-6100.
    [21]赵荣祥,徐铸德,李赫,等.离子液介质中硫化铋单晶纳米棒制备与表征[J].无机化学学报, 2007, 23(5):839-843.
    [22] Zhu Gangqiang, Liu Peng, Zhou Jianping, et al. Effect of mixed solvent on the morphologies of nanostructured Bi2S3 prepared by solvothermal synthesis[J]. Mater. Lett., 2008, 62(15):2335-2338.
    [23] Ma Xiaoyong, Liu Lu, Mo Wenling, et al. Surfactant-assisted solvothermal synthesis of Bi2S3 nanorods[J]. J. Cryst. Growth, 2007, 306(1):159-165.
    [24] Li Wenhui. Synthesis and characterization of bismuth sulfide nanowires through microwave solvothermal technique[J]. Mater. Lett., 2008, 62(2):243-245.
    [25] Wang Debao, Shao Mingwang, Yu Dabin, et al. Polyol-mediated preparation of Bi2S3 nanorods[J]. J. Crystal Growth, 2002, 243(2):331-335.
    [26] Liu Zhaoping, Liang Jianbo, Li Shu, et al. Synthesis and Growth Mechanism of Bi2S3 Nanoribbons[J]. Chem. Eur. J., 2004, 10(3):634-640.
    [27] Yang Xiaohong, Wang Xiong, Zhang Zude. Facile solvothermal synthesis of single-crystallin Bi2S3 nanorods on a large scale[J]. Mater. Chem. Physics, 2006, 95(1):154-157.
    [28] Lu Juan, Han Qiaofeng, Yang Xujie, et al. Preparation of Bi2S3 nanorods via a hydrothermal approach[J]. Mater. Lett., 2007, 61(16):3425-3428.
    [29] Zhang Weixin, Yang Zeheng, Huang Xinmin, et al. Low temperature growth of bismuth sulfide nanorods by a hydrothermal method[J]. Solid State Commun., 2001, 119(3):143-146.
    [30] Xie Gang, Qiao Zhengping, Zeng Minghua, et al. A single-source approach to Bi2S3 and Sb2S3 nanorods via a hydrothermal treatment[J]. J. Phys. Chem. B, 2004, 4(3):513-516.
    [31] Jyotiranjan Ota, Suneel Kumar Srivastava. Polypyrrole coating of tartaric acid-assisted synthesized Bi2S3 nanorods[J]. J. Phys. Chem. C, 2007, 111(33):12260-12264.
    [32] Cao Xuebo, Li Lingyin, Xie Yi. Development of one-dimensional nanostructures through the crystallization of amorphous colloid[J]. J. Colloid Interface Sci., 2004, 273(1):175-180.
    [33]吴华强,邵名望,顾家山,等.微波辐射方式对CdS和Bi2S3纳米粒子结晶度的影响[J].无机化学学报, 2003, 19(1):107-110.
    [34] Liao Xuehong, Wang Hui, Zhu Junjie, et al. Preparation of Bi2S3 nanorods by microwave irradiation[J]. Mater. Res. Bull., 2001, 36(13-14):2339-2346.
    [35] Lu Juan, Han Qiaofeng, Yang Xujie, et al. Microwave-assisted synthesis and characterization of 3D flower-like Bi2S3 superstructures[J]. Mater. Lett., 2007, 61(14-15):2883-2886.
    [36] Jiang Ya, Zhu Yingjie, Xu Zili. Rapid synthesis of Bi2S3 nanocrystals with different morphologies by microwave heating[J]. Mater. Lett., 2006, 60(17-18):2294-2298.
    [37] An Changhua, Wang Shutao, Liu Yunqi. Controlled creation of self-supported patterns of radially aligned one-dimensional Bi2S3 nanostructures[J]. Mater. Lett., 2007, 61(11-12):2284-2287.
    [38] Michael B, Sigman J, Brian A K. Solventless synthesis of Bi2S3 (bismuthinite) nanorods, nanowires, and nanofabric[J]. Chem. Mater., 2005, 17(7): 1655-1660.
    [39] Ye Changhui, Meng Guowen, Jiang Zhi, et al. Rational growth of Bi2S3 nanotubes from quasi-two-dimensional precursors[J]. J. Am. Chem. Soc., 2002, 11(12):15180-15181.
    [40] Yu Xuelian, Cao Chuanbao, Zhu Hesun. Synthesis and photoluminescence properties of Bi2S3 nanowires via surfactant micelle-template inducing reaction[J]. Solid State Commun., 2005, 134(4):239-243.
    [41]张吉林,洪广言.利用AAO模板合成纳米材料[J].应用化学, 2004, 21(1):6-10.
    [42] Choi J, Kim S J, Lee J, et al. Controlled self-assembly of nanoporous alumina for the self-templating synthesis of polyaniline nanowires[J]. Electrochem. Commun., 2007, 9(5):971-975.
    [43] Shi Huaqiang, Zhou Xiaodong, Xun Fu, et al. Preparation of CdS nanowires and Bi2S3 nanorods by extraction–solvothermal method[J]. Mater. Lett., 2006, 60(15):1793-1795.
    [44]普志发,胡长文,孙根班.一维纳米结构材料的制备与组装[J].科技导报, 2005, 23(8):10-16.
    [45]蒋绪川.软模板法硫化物纳米材料的合成研究[博士学位论文].中国科学技术大学, 2001.
    [46] Masuda H, Fukuda K. Ordered metal nanohole array made by a two-step replication of honeycomb structures of anodic Alumina[J]. Sci., 1995, 268(5216):1466-1468.
    [47]朱祖芳.铝合金阳极氧化与表面处理技术[M].北京:化学工业出版社, 2004, 100-110.
    [48]涂平华.多孔氧化铝模板及其在硫化锌纳米结构制备中的应用[硕士学位论文].华中师范大学, 2006.
    [49] Yuan J H, He F Y, Sun D C, et al. A simple method for preparation of through-hole porous anodic alumina membrane[J]. Chem. Mater., 2004, 16(10):1841-1844.
    [50]任晓红,何天平,任君合,等.纳米氧化铝模板(AAO)的制备[J].化工时刊, 2006, 20(4):7-8.
    [51] Wang Wei, Wang Shengyue, Gao Youlu, et al. Nickel sulfide nanotubes formed by a directional infiltration self-assembly route in AAO templates[J]. Mater. Sci. Eng. B, 2006, 133(1-3):167-171.
    [52]洪建明,包建春,司玲. NiS纳米丝的制备和表征[J].电子显微学报, 2004, 23(4):382-382.
    [53] Khiew P S, Huang N M, Radiman S, et al. Synthesis of NiS nanoparticles using a sugar-ester nonionic water-in-oil microemulsion[J]. Mater. Lett., 2004, 58(5):762-767.
    [54]陈德良,高濂.水热微乳液法制备低维硫化镍纳米晶[J].高等学校化学学报, 2004, 25(8):1407-1412.
    [55]陈广大,褚海斌,李雪梅,等.溶剂热法制备硫化镍空心微球[J].化学学报, 2006, 64(1):85-88.
    [56] Olivas A, Cruz-Reyes J, Avalos M, et al. Effect of binder addition on the properties of unsupported gamma -Al2O3 membranes[J]. J. Vac. Sci. Technol., 1998, 16:3515-3520.
    [57] Pan Qingtao, Huang Kai, Ni Shibing. Synthesis of flower- and rod-like nickel sulfide nanostructures by an organic-free hydrothermal process[J]. Mater. Research Bulletin, 2008, 43(63):1440-1447.
    [58] Li Haibo, Chai Lanlan, Wang Xiaoqing, et al. Hydrothermal growth and morphology nodification ofβ-NiS three-dimensional flowerlike architectures[J]. Cryst. Growth Des., 2007, 7(9):1918-1922.
    [59] Anischik V M, Markevich M I, Piskunov F A, et al. Pulsed-laser-induced synthesis of nickel sulphides in sulphur-containing liquids[J]. Thin Solid Films, 1995, 261(1):183-185.
    [60]卞国柱,殷亚东,伏义路,等.γ辐照法制硫化镍纳米非晶及其晶化[J].物理化学学报, 2000, 16(1):55-59.
    [61] Kullerud G, Yund R A. The Ni-S system and related minerals[J]. J. Petrology, 1962, 3(1):126-127.
    [62]李彦,张庆敏,黄福至,等.模板法制备硫化物半导体纳米材料[J].无机化学学报, 2002, 18(1):79-82.
    [63] Hucko A. Template-based synthesis of nanomaterials[J]. Appl. Phys. A, 2000, 70(4):365-376.
    [64]温戈辉,任方星,邓永峰,等.钴纳米线的模板制备与磁性[J].高等学校化学学报, 2006, 27(9):1708-1710.
    [65] Zhi Yang, Yi Huang, Bin Dong, et al. Densely packed single-crystal Bi2Fe4O9 nanowires fabricated from a template-induced sol–gel route[J]. J. Solid State Chem., 2006, 179(11):3324-3329.
    [66]陈万平.钛酸锶和钛酸锶钡一维纳米材料的制备研究[硕士学位论文].湘潭大学, 2007, 36-37.
    [67] Holzinger M, Abraham J, Whelan P, et al. DNA polymerase-mediated DNA synthesis on a TNA template[J]. J. Am. Chem. Soc., 2003, 125(4):856-858.
    [68] Fernando K, Lin Y, Zhou B, et al. Poly(ethylene-co-vinyl alcohol) functionalized single-walled carbon nanotubes and related nanocomposites[J]. J. Nanosci. Nanotechnol., 2005, 5(7):1050-1056.
    [69]胡宏纹.有机化学[M].北京:高等教育出版社, 1990.
    [70] Redón R, Vázquez O A, Meta Z M, et al. Contact angle studies on anodic porous alumina[J]. J. Colloid Interface Sci., 2005, 287(2):664-669.
    [71] Wang Wei, Wang Shengyue, Wang Keyu, et al. A facile route to FeS nanowires via an infiltration process [J]. Solid State Commun. 2006, 140(7-8):325-328.
    [72] Wang Shufen, Gu Feng, Yang Zhongsen, et al. Facile synthesis of silica-coated Bi2S3 nanorods and hollow silica nanotubes[J]. J. Crystal Growth, 2005, 282(1-2):79-84.
    [73] Zhao Wenbo, Zhu Junjie, Zhao Yu, et al. Photochemical synthesis and characterization of Bi2S3 nanofibers[J]. Mater. Sci. Eng. B, 2004, 110(3):307-313.
    [74] Sonawane P S, Patil L A. Effect of nonstoichiometry on structural and optical properties of nanostructured Bi2S3 thin films prepared chemically at room temperature[J]. Mater. Chem. Phy., 2007, 105:157-161.
    [75] Zhu J M, Yang K, Zhu J J, et al. The microstructure studies of bismuth sulfide nanorods prepared by sonochemical method[J]. Optical Mater., 2003, 23(1-2):89-92.
    [76] Liu Wei. Low temperature synthesis of hexagonal phase ZnS nanocrystals by thermolysis of an air-stable single-source molecular precursor in air[J]. Mater. Lett., 2006, 60(4):551-554.
    [77] Elena Blanco, Juan M Ruso, Gerardo Prieto, et al. On relationships between surfactant type and globular proteins interactions in solution[J]. J. Colloid Interface Sci., 2007, 316(1):37-42.
    [78] Shao M W, Mo M S, Cui Y, et al. The effect of agitation states on hydrothermal synthesis of Bi2S3 nanorods[J]. J. Crystal Growth, 2001, 233(4):799-802.
    [79] Yan Chenglin, Xue Dongfeng. Morphosynthesis of hierarchical hydrozincite with tunable surface architectures and hollow zinc oxide[J]. J. Phys. Chem. B, 2006, 110(23):11076-11080.
    [80] Luo Yongsong, Li Suqin, Ren Qinfeng, et al. Facile synthesis of flowerlike Cu2O nanoarchitectures by a solution phase route[J]. Cryst. Growth Des., 2007, 7(1):87-92.
    [81] Zhao Wenbo, Zhu Junjie, Xu Jinzhong, et al. Photochemical synthesis of Bi2S3 nanoflowers on an alumina template[J]. Inorg. Chem. Commun., 2004, 7(7):847-850.
    [82]刘欢,翟锦,江雷.纳米材料的自组装研究进展[J].无机化学学报, 2006, 22(4):585-597.
    [83]吴强,胡征,王喜章,等.孔性氧化铝模板与一维纳米新材料的制备[J].无机化学学报, 2002, 18(7):647-653.
    [84] Yan Chenglin, Xue Dongfeng, Zou Longjiang. Fabrication of hexagonal MgO and its precursors by a homogeneous precipitation method[J]. Mater. Res. Bull., 2006, 41(12): 2341-2348.
    [85] Shen Guozhen, Chen Di, Tang Kaibin, et al. Large-scale synthesis of uniform urchin-like patterns of Bi2S3 nanorods through a rapid polyol process[J]. Chem. Phys. Lett., 2003, 370(3-4): 334-337.
    [86] Zhang Bin, Ye Xingchen, Hou Weiyi, et al. Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods[J]. J. Phys. Chem. B, 2006, 110(18): 8978-8985.
    [87]夏军保,徐铸德,陈卫祥,等.水热法合成MoS2/CNT同轴纳米管[J].化学学报, 2004, 62(20):2109-2112.
    [88] Gates Byron, Yin Yadong, Xia Younan. A solution-phase approach to the synthesis of uniform nanowires of crystalline selenium with lateral dimensions in the range of 10-30 nm[J]. J. Am. Chem. Soc., 2000, 122(50):12582-12583.
    [89]庄稼,迟燕华,王栋,等.表面活性剂对固相反应制备钴酸镍形貌影响的研究[J].无机材料学报, 2007, 22(1):40-44.
    [90] Chen Xiangying, Zhang Zhongjie, Qiu Zhiguo, et al. A facile biomolecule-assisted approach for fabricatingα-Fe2O3 nanowires in solution[J]. Solid State Commun., 2006, 140(6):267-269.
    [91]叶红勇,赖宏伟,吴淑杰,等.常温直接沉淀法制备ZnO纳米棒[J].高等学校化学学报, 2007, 28(2):312-315.
    [92] Zhao Xiufeng, Yu Jiaguo, Cheng Bei. Morphology control of lead sulfide particles in mixed systems of poly-(styrene-alt-maleic acid) and cetyltrimethylammonium bromide[J]. Mater. Chem. Phys., 2007, 101(2-3):379-382.
    [93]Yu Jiaguo, Zhao Xiufeng, Liu Suwei, et al. Poly(methacrylic acid)-mediated morphosynthesis of PbWO4 micro-crystals[J]. Appl. Phys. A, 2007, 87(1):113-120.
    [94] Yu Jiaguo, Guo Hongtao, Davis Sean A, et al. Fabrication of hollow inorganic microspheres by chemically induced self-transformation[J]. Adv. Funct. Mater., 2006, 16(15):2035-2041.
    [95]任崇桂,徐建,贾晏金,等.亚微米级多刺状星形氧化铜的制备[J].化学学报, 2007, 65(5):459-464.
    [96] Zhao Pingtang, Wang Jinmin, Cheng G.uoe, et al. Fabrication of symmetric hierarchical hollow PbS microcrystals via a facile solvothermal process[J]. J. Phys. Chem. B., 2006, 110(45):22400-22406.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700