AAO模板封装有机电致发光材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机电致发光器件(OLED)具有平板化、主动发光、高亮度、高对比度、响应速度快、驱动电压低等优点,成为目前新材料及平板显示技术领域的研究热点。要实现OLED的大规模产业化,目前亟待解决的首要问题是器件的高性能封装。本文以多孔铝阳极氧化膜(AAO)为模板封装OLED,利用AAO孔壁防止水汽和氧气渗入,可显著提高OLED的寿命和分辨率,促进平板微显示技术的发展。为此,本文通过电化学与吸附沉淀的方法依次在AAO模板内沉积聚苯胺(PANI)、8-羟基喹啉铝(Alq3)、Cu纳米线阵列,为组装器件结构为ITO/PANI/Alq3/Cu的OLED奠定基础。
     采用二次阳极氧化法,控制氧化电压60V,获得孔密度高、排布高度有序的多孔阳极氧化铝模板(AAO)。采用逆电剥离方法将氧化膜从铝基体上剥离,并用磷酸去除阻挡层,得到贯通的纳米孔,孔径约120nm。
     在此基础上,以AAO为模板,吸附沉淀法制备Alq3纳米线阵列。即将AAO模板浸泡在Alq3浓度不低于2g/L的丙酮溶液里,当溶液充满AAO纳米孔,然后取出干燥,可获得纳米线。利用SEM、红外光谱、XRD和荧光光谱对纳米线的形貌、结构和性能进行了表征,测试结果表明:AAO模板内沉积的为Alq3纳米线,直径约100nm;纳米级的Alq3粒子和Alq3线都具有光致发光特性,其荧光光谱峰值强度都高于Alq3的丙酮溶液,且纳米线的峰位发生蓝移;Alq3纳米线中的分子受到一维结构的限制,使有机小分子的转动减弱,使非辐射复合减少。
     以AAO为模板,控电位单槽法分别制备出PANI、Cu纳米线阵列;双槽法制备出PANI/Alq3、PANI/Cu多层纳米线阵列。采用SEM、TEM观测了纳米线阵列的形貌;红外光谱分析了PANI和PANI/Alq3纳米线的结构;XRD分析了PANI/Cu多层纳米线的结构。实验结果表明,可用多槽法将PANI、Alq3、Cu依次沉积在AAO模板的纳米孔内,获得结构为ITO/PANI/Alq3/Cu的有机电致发光器件。
Organic light-emitting diodes (OLEDs) are promising devices in the field of display because of active luminescence, low power consumption, wide viewing angle, good contrast, and quick response time. In order to relize industrialization of OLED presently, the high-powered encapsulation is mostly required to resolve. In this thesis, anodic aluminum oxide(AAO) is applied as the template to prepare the organic light-emitting device (OLED). Under the protection of AAO’s hole wall, the resolution and the life of OLED have been improved greatly. This will undoubtedly enhance the development of microform display devices. PANI、Alq3、Cu of nanowire arrays were prepared by electrochemical deposition and absorption into the nanoporous anodic alumina oxide (AAO) templates. These experiments will make great contributions to the encapsulation of OLEDs with structure of Cu/Alq3/PANI/ITO.
     The anodic aluminum oxide membranes were prepared by two-step oxidation in the solution of oxalic acid when the voltage is 60V, and stripped from the aluminum substrate adopting strip against electricity technique. The oxide barrier layer was chemically dissolved from bottom side of the film in phosphoric acid. The diameters of AAO’s holes are 120nm.
     The Alq3 nanowire arrays were prepared in the pores of the AAO membrane using absorption method: the AAO was dipped into the acetone solution (>2g/L) of Alq3 and after the pores of the AAO were filled enough, the Alq3 nanowires were prepared in AAO through dryness. The morphology, structure and optic properties of the nanowires were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Infra-red(IR) spectrometer, Fluorescence spectroscopy. Experiment results indicate that: the diameter of Alq3 nanowire is about 110nm; the peak of photoluminescence of the Alq3 nanowires and Alq3 nano-particles have exhibited a blue shift, compared with Alq3 dissolved in acetone solution.
     The nanowire arrays of PANI and Cu were deposited into AAO by single-bath method, moreover, the PANI/Alq3 and PANI/Cu multiplayer nanowires were prepared by dual-bath method using AAO templates. The morphology of nanowires were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM). The structures of PANI, PANI/Cu and PANI/Alq3 nanowires were studied by IR and XRD. It indicates that the multi-bath method is suit for the deposition of PANI, Alq3 and Cu successively. Then, the OLED with structure of ITO/PANI/Alq3/Cu can be prepared.
引文
[1] 樊美公等. 光化学基本原理与光子学材料科学[M]. 北京:科学出版社,2001
    [2] 吴世康. 高分子光化学导论-基础和应用[M]. 北京:科学出版社,2003
    [3] 苏班 P. 光化学原理. 陆志刚译[M]. 北京:人民教育出版社,1983
    [4] 孟瑞平,徐洪光等. 有机掺杂体系中的 F?rster 能量传递及其在电致发光中的应用, 功能材料[J]. 2003,5(34):577-579
    [5] Cowan D O, Drisko R L. Elements Organic Photochemistry[M]. Plenum Press, 1976
    [6] 滕枫,候延冰等. 有机电致发光材料及应用[M]. 北京:化学工业出版社,2006
    [7] 张芳辉,张麦霞,王秀峰.有机电致发光显示器件的最新发展[J].中国有线电视,2004,(11):86-90.
    [8] M.Pope, H.P.Kallmann, P.Magnante. Electroluminescence in organic crystals[J]. Chem. Phys., 1963, 38:2042-2044.
    [9] C. W. Tang, S. A. Vanslyke. Organic electroluminecsent diodes[J], Appl.phys.Lett., 1987, 51(12):21-25
    [10] 吴有智,郑新友,朱文清,等. 以 Liq 作为电子注入层的高效有机电致发光器件[J]. 发光化学, 2003,24(5):473-476
    [11] Y. Hamada, T. Sano, M. Fujita, et al. Organic Electroluminescent Devices with 8-Hydroxyquinoline Derivative Metal Complexes as an Emitter[J], Jpn. J. Appl. Phys. 1993, 32:514-515.
    [12] 华玉林,李永舫,王树国,等. 单一白色发光层的 OLED 制备与发光性能研究[J]. 天津理工大学学报,2005,21(1): 1-4
    [13] D. Braun and A. J. Heeger, Visible light emission from semiconducting polymer diodes[J], Apph Phys. Lett. 58 (18), 6 May 1991:1982-1984
    [14] Braun D, Heeger A J. Electroluminescence from light-emitting diodes fabricated from conducting polymers[J] Thin Solid Films, 1992, 216: 96-102
    [15] 印寿根,李晨曦等. 聚合物电致发光材料研究进展[J] 高分子通报,1997,2:95-101
    [16] Song S T, Jang M S, et al. Highly Efficient Light-Emitting Polymers Composed of Both Hole and Electron Affinity Units in the Conjugated Main Chain[J] Macromolecules, 1999, 32:1482-1487
    [17] Fukada M, Sawada K, Yoshino K. Synthesis of fusible and soluble conducting polyfluorene derivatives and their characteristics[J] J Polym Sci Polym Chem,1993,31:2465-2471
    [18] Chiang C L, Shu C F. Synthesis and Characterization of New Polyquinolines Containing 9, 9'- Spirobifluorene Units[J] Chem Mater, 2002,14:682-687
    [19] Baldo M. A, O'Brien D. F, Forrest S. R, et al. Highly efficient phosphorescent emission from organic electroluminescent devices[J]. Nature, 1998, 395(6698):151
    [20] 张国林,郭海清,啜玉涛,等. 一种新型红色三线态喹喔啉铱(Ⅲ)配合物的合成及发光性质[J]. 化学学报, 2005, 63 (2):143-147
    [21] G. Gustafsson, Y. Cao, A. J. Heeger, et al., Flexible light-emitting diodes made from soluble conducting polymers[J], Natuer, 1992, 357:447-479
    [22] Furong Zhu, Keran Zhang, Bee Ling Low, et al., Morphological and electrical properties of indium tin oxide films prepared at a low processing temperature for flexible organic light-emitting devices [J], Materials Science and Engineering 2001, 85: 114-117
    [23] T.P. Nguyen, P. Le Rendu, N.N. Dinh, et al., Thermal and chemical treatment of ITO substrates for improvement of OLED performance[J], Synthetic Metals , 2003, 138:229–232
    [24] 邱勇,段炼,王立铎,等. PEDOT 作为阳极的柔性有机电致发光器件[J]. 科技通报, 2002,47(15):1152~1155
    [25] 郑代顺,张旭,钱可元. 空穴缓冲层 CuPc 对有机电致发光器件特性的影响[J]. 半导体学报, 2005,26(1):78-83
    [26] 朱文清,郑新友,张步新等. 用 C60 为空穴缓冲层的高效率有机电致发光器件[J] 发光学报, 2002,23(3):269-272
    [27] Soon Moon Jeong, Won Hoi Koo, Sang Hun Choi, et al. Stability improvement of organic light-emitting diode with aluminum cathode deposited by ion beam assisted deposition method[J], Thin Solid Films, 2005, 475:227– 230
    [28] 赵海莹,高建荣,王淑英,等. 有机电致发光材料的研究[J]. 科技通报,2005, 21(3):347-355
    [29] C.W.Tang, S.A.Vanslyke, Organic electroluminecsent diodes[J], Appl.phys.Lett. 1987, 51:913
    [30] Jiang Xuezhong, Liu Sen, et al. Perfluorocyclobutane-Based Arylamine Hole-Transporting Materials for Organic and Polymer Light-emitting diodes[J] Adv. Funct. Mater, 2002, 12, 11-12:745
    [31] Mi Baoxiu, Wang Pengfei, et al. Synthesis, photoluminescence and electroluminescence of new 1H-pyrazolo [3, 4-b] quinoxaline[J] Chem. Mater., 2003, 15: 3148-3151
    [32] Sakamoto Y, Suzuki T, et al. Synthesis, Characterization, and Electron-Transport Property of Perfluorinated Phenylene Dendrimers[J] J. Am.Chem. Soc., 2000, 122: 1832
    [33] R. H. Friend, J. H. Burroughes, D. D. C.Bradley, et al. Light-emitting diodes based on conjugated polymers[J]. Nature, 1990, 347:539-541
    [34] K. E. Ziemelis, R. H. Friend et al., Optical spectroscopy of field-induced charge in poly(3-hexyl thienylene) metal-insulator-semiconductor structures: Evidence for polarons[J]. Phys. Rev. Lett., 1991, (61):2231-2234
    [35] G. Yu, A. J. Heeger. Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions[J], J. Appl. Phys, 1995, 78(7):4510-4515
    [36] Y. Yang, Q. Pei, A. J. Heeger. Efficient blue polymer light-emitting diodes from a series of soluble poly(paraphenylene)s[J], J. Appl. Phys., 1996,79(2):934-939
    [37] Brett D. Martin, Nikolay Nikolov, Steven K. Pollack, et al. Hydroxylated secondary dopants for surface resistance enhancement in transparent poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) thin films[J], Synthetic Metals 2004, 142:187-193
    [38] 黄卫东 王旭洪 盛玫等,有机发光器件的低温氮化硅薄膜封装[J] 功能材料与器件学报. 2003, 2: 179-184
    [39] SHK Park, J Oh, CS Hwang, JI Lee et al. Ultrathin Film Encapsulation of an OLED by ALD[J. Electrochemical and Solid-State Letters 2005, 8(2):H21-H23
    [40] K Yamashita, T Mori, T Mizutani Encapsulation of organic light-emitting diode using thermal chemical-vapour-deposition polymer film[J]. J. Phys. D: Appl. Phys s 2001, 34(5):740-743
    [41] GH Kim, J Oh, YS Yang, LM Do, KS Suh. Encapsulation of organic light-emitting devices by means of photopolymerized polyacrylate films[J] Polymer 2004, 45(6):1879-1883
    [42] Y W Wang, G Z Wang, S X Wang et al. Fabrication and magnetic properties of highly ordered CoAg alloy nanowires array[J], Appl. Phys. A, 2002, 74:577-580
    [43] X Y Yuan, G S Wu, T Xie, et al. Self-assembly synthesis and magnetic studies of Co-P alloy nanowires arrays[J], Nanotechnoloy, 2004, 15:59-61
    [44] C Z Wang, G W Meng, et al. Structure and magnetic property of Ni-Cu alloy nanowires electrodeposoted into the pores of anodic alumina membranes[J], J.Phys. D: Appl. Phys. Lett., 2002, 35:738-741
    [45] 迟广俊,冯钊永,等. 纳米金属多层膜与纳米线的电化学制备与表征[J]. 物理化学学报, 2003, 19(2):177-180
    [46] A Di Venere, G Mei, G Gilardi, et al.. Resolution of the heterogeneous fluorescence in multi-tryptophan proteins ascorbate oxidase[J]. European Journal of Biochemistry, 1998, 257:337-343
    [47] J Qiao, X Zhang, X Meng, et al.. Morphology-controllable preparation of 1 Dpoly (vinyl pyrrolidone) nanostructured arrays[J]. Nanotechnology, 2005, 16:433-436
    [48] 夏之宁. 光分析化学[M], 重庆, 重庆大学出版社, 2004
    [49] 董艳锋, 李清山. 多孔铝镶嵌 8-羟基喹啉铝荧光光谱研究[J], 物理化学学报, 2002, 7(51):1645-1648
    [50] 朱凌健,郭灿城.高纯 8-羟基喹啉铝的简便合成方法[J].化学试剂,2004,26(6):369—370.
    [51] Parthasarathy R V, Martin C R. Synthesis of polymeric microcapsule arrays and their use for enzyme immobilization[J]. Nature, 1994, 369:298-301
    [52] Genies E M, Boyle A, Lapkowski M, Tsintavis C. Polyaniline: a historical survey[J]. Synthetic Metals, 1990, 36:139-182
    [53] Cepak V M, Martin C R. Preparation of polymeric micro- and nanostructures using a template-based deposition method[J]. Chem. Mater., 1999, 11:1363-1367
    [54] Delvaux M, Duchet J, Stavaux P, Legras R, Demoustier-Champagne S. Chemical and electrochemical synthesis of polyaniline micro- and nano-tubules[J]. Synthetic Metals, 2000, 113:275-280
    [55] 邹勇, 刘吉平. 聚苯胺纳米管的制备及其导电性研究[J]. 北京理工大学学报, 2006, 5(25):454-457
    [56] Y. Konishi a,1, M. Motoyama b, H. Matsushima,et al.. Electrodeposition of Cu nanowire arrays with a template[J]. Journal of Electroanalytical Chemistry 2003, 559:149-153
    [57] Junxi Zhang , Lide Zhang, Changhui Ye, et al.. Polarization properties of ordered copper nanowire microarrays embedded in anodic alumina membrane[J]. Chemical Physics Letters, 2004, 400:158–162

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700