L-苯丙氨酸衍生物水性凝胶因子的合成及其超分子水凝胶研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
某些小分子有机化合物能在很低的浓度下(甚至低于1wt%)使大多数有机溶剂凝胶化,进而使整个体系形成类似粘弹性液体或固体的物质,称为超分子凝胶或超分子有机凝胶。这类小分子化合物被称为Gelator (暂译为凝胶因子)。特别地,如果凝胶因子能使水发生凝胶化,则称所形成的凝胶为超分子水凝胶。这类超分子凝胶是通过凝胶因子分子间氢键、π-π键、疏水力和范德华力等非共价键相互作用,在溶剂中自发地聚集、自组装成有序结构,进而使整个体系凝胶化而形成的物理凝胶,具有三维网络结构。
     本文通过分子设计,将酰胺基和长链烷烃及吡啶引入到L-苯丙氨酸分子中,成功地合成了水性凝胶因子NP18PB,这种L-苯丙氨酸衍生物凝胶因子在很低的浓度(1wt%)下使水发生凝胶化。
     FTIR、稳态荧光光谱和XRD研究发现,凝胶因子NP18PB是通过分子间氢键和烷烃链的疏水作用力而聚集、自组装形成超分子水凝胶的。通过偏光显微镜(POM)、场发射扫描电镜(FE-SEM)研究发现NP18PB在水中自组装形成纤维状的聚集体。
     以凝胶因子TC18PheBu在水中的自组装聚集体为模板,以钛酸四丁酯为钛源,钛酸四丁酯吸附在聚集体模板表面,通过溶胶-凝胶缩聚,然后经过高温煅烧得到了项链型的TiO2纳米线。利用场发射扫描电镜(FE-SEM)、X射线衍射(XRD)以及傅立叶红外光谱(FTIR)对所制备的项链型TiO2纳米粒进行表征,从而对项链型TiO2纳米粒的形成机理进行了合理解释。在TC18PheBu-TiO2中形成的纳米线是通过钛酸四丁酯水解形成的带负电的低聚物与季铵盐正离子的静电作用形成的。
Many solvents can be gelated by some compounds of low molecular weight at low concentrations (typically <1wt %) and form thermally-reversible viscoelastic liquidlike or solidlike materials that are called supramolecular gels or supramolecular organogels. Such low molecular-weight compounds are called“gelator”. The hydrogels forms when the water is gelated. The gelators can self-assemble into nanoscale superstructures through hydrogen bonding,π-πstacking, van der Waals, hydrophobic interactions to create three-dimensional networks.
     This paper presents novel L-phenylalanine derived hydrogelators NP18PB. The hydrogelator can make water gelated at a low concentration. It is found that hydrogen bonding and hydrophobic interactions play an important role on the formation of supramolecular hydrogel by FTIR, Fluorescence Spectrum and XRD. FE-SEM and POM showed that NP18PB self-assembled into fiber-like aggregates in the water.
     Using the fiber-like aggregates assembled by another hydrogelator TC18PheBu in water as templates, tetrabutyl titanate as precursors, tetrabutyl titanate adsorbed onto the surfaces of fiber-like aggregates, and then polymerized by sol-gel polymerization, Pearl-necklace-like TiO2 nanowires formed after calcinations. The possible mechanism of the formation of the Pearl-necklace-like TiO2 nanowires was discussed by FE-SEM, XRD and FTIR. The electrostatic interaction between cationic gelator and anionic metal oxide precursor plays an important role in the transferring process.
引文
[1] Hanabusa K, Hirata T, Inoue D, Kimura I, Shirai H, Formation of physical hydrogels with terpyridine-containing carboxylic acids, Colloid Surf.A 2000, 169(3), 307-316.
    [2] Menger F M, Caran K L, Anatomy of a Gel. Amino Acid Derivatives That Rigidify Water at Submillimolar Concentrations, J. Am. Chem. Soc. 2000, 122(47), 11679-11691.
    [3] Jung J H, John G, Masuda M, Yoshida K, Shinkai S, Shimizu T, Self-Assembly of a Suger-Based Gelator in Water: Its Remarkable Diversity in Gelation Ability and Aggregate Structure, Langmuir 2001, 17(23), 7229-7232.
    [4] Maitra U, Mukhopadhyay S, Sarkar A, Rao P, Indi S S, Hydrophobic Pockets in a Nonopolymeric Aqueous Gel: Observation of such a Gelation Process by Color Change, Angew. Chem. Int. Ed. Engl. 2001, 40, (12) 2281-2283
    [5] Nakashima T, Kimizuka N, Light-Harvesting Superamolecular Hydrogels Assembled from Short-Legged Cationic L-Glutamate Derivatives and Anionic Fluorophores, Adv. Mater. 2002, 14(16), 1113-1116.
    [6] Iwaura R, Yoshida K, Masuda M, YoshidaM, Shimizu T, Oligonucleotide-Templated Self-Assembly of Nucleotide Bolaamphiphilies: DNA-Like Nanotibers Edged by a Double-Helical Arrangement of A-T Bade Pairs, Angew. Chem. Int. Ed. Engl. 2003, 42(9), 1009-1012.
    [7] Kobayashi H, Friggeri A, Koumoto K, Amaike M, Shinkai S, Reinhoudt D N, Molecular Design of“super”Hydrogelators: Understanding the Gelation Process of Azobenzene-Based Sugar Derivatives in Water, Org. Lett. 2002, 4(9), 1423-1426
    [8] Hanabusa K, Yamada M, Kimura M, Shirai H, Prominent Gelation and Chiral Aggregation of Alkylamides Derived from trans-1,2-Diaminocyclohexance, Angew.Chem. Int. Ed. Engl. 1996, 35(17), 1949-1951
    [9] Iwaura R, Yoshida K, Masuda M, Yase K, Shimizu T, Spontaneous Fiber Formation and Hydrogelation of Nucleotide Bolaamphiphiles, Chem. Mater. 2002, 4(7), 3047-3053.
    [10] Pochan D J, Pakstis L, Ozbas B, Nowak A P, Deming T J, SANS and Cryo-TEM Study of Self-Assembled Diblock Copolypeptide Hydrogels with Rich Nano-through Microscale Morphology, Macromolecules 2002, 35(14), 5358-5360
    [11] Fukuda H, Goto A, Imae T, Structure Determination of Helical Fibers by Numerical Simulation for Small-Angle Neutron Scattering, Langmuir 2002, 18(19), 7107-7114.
    [12] Wang X F, Shen Y Z, Pan Y, Liang Y Q, Bolaamphiphilic Single-Chain Bis-Schiff Base Derivatives: Aggregation and Thermal Behavior in Aqueous Solution, Langmuir 2001, 17(11), 3162-3167.
    [13] Pang S F, Zhu D B, Pronounced hydrogel formation by the self-assembled aggregate of semifluorinated fatty acid, Chem. Phys. Lett. 2002, 358(5), 479-483.
    [14] Estroff L A, Leiserowitz L, Addadi L, Weiner S, Hamilton A D, Characterization of an Oganic Hydrlgel: A Cryo-Transmission Electron Microscopy and X-ray Diffraction Study, Adv. Mater. 2003, 15(1), 38-42.
    [15] de Loos M, Feringa B L, van Esch J H, Design and Application of Self-Assembled Low Molecular Weight Hydrogels, Eur. J.Org.Chem.2005, 3615-3631.
    [16] Kunitake T, Okahata Y, Shimomura M, Yasunami S, Takarabe K, Formation of stable bilayer assemblies in water from single-chain amphiphiles. Relationship between the amphiphilie structure and the aggregate morphology, J. Am. Chem. Soc. 1981, 103(18), 5401-5413.
    [17] Boettcher C, Stark H, van Heel M, Stacked bilayer helices: a new structural organization of amphiphilic molecules, Ultramicroscopy 1996, 62(1-2), 133-139.
    [18] Fuhrhop J H, Schnieder P, Rosenberg J, Boekema E, The chiral bilayer effectstabilizes micellar fibers, J. Am. Chem. Soc. 1987, 109(11), 3387-3390.
    [19] Boettcher C, Schade B, Fuhrhop J H, Comparative Cryo-Electron Microscopy of Noncovalent N-Dodecanoyl-(D-andL-)serine Assemblier in Vitreous Toluene and Water, Langmuir 2001, 17(3), 873-877.
    [20] Imae T, Takahashi Y, Muramatsu H, Formation of fibrous molecular assemblies by amino acid surfactants in water, J. Am. Chem. Soc. 1992, 114(9), 3414-3419.
    [21] Suzuki M, Yumoto M, Kimura M, Shirai H, Hanabusa K, A Family of Low-Molecular-Weight Hydrogelators Baded on L-Lysine Derivatives with a Positively Charged Terminal Group, Chem. Eur. J. 2003, 9(1), 348-354.
    [22] Estroff L A, Hamilton A D, Water Gelation by Small Organic Molecules, Chemical Reviews, 2004,104(3), 1201-1217。
    [23] Nakazawa I, Masuda M, Okada Y, Hanada T, Yase K, Asai M, Shimizu T, Spontaneous Formation of Helically Twisted Fibers from 2-Glucosamide Bolaamphiphiles:Energy-Filtering Transmission Electron Microscopic Observation and Even-Odd Effect of Connecting Bridge, Langmuir 1999, 15(14), 4757-4764.
    [24] Shimizu T, Masuda M, Srereochemical Effect of Even-Odd Connecting Links on Supramolecular Assemblies Made of 1-Glucosamide Bolaamphiphilis, J. Am. Chem. Soc. 1997, 119(12), 2812-2818.
    [25] Menger F M, Keiper J S, Gemini Surfactants, Angew. Chem. Int. Ed. Engl. 2000, 39(11), 1906-1920.
    [26] Menger F M, Zhang H, Caran K L, Seredyuk V A, Apkarian R P, Gemini-Induced Columnar Jointing in Vitreous Ice. Cryo-HRSEM as a Tool for Discovering New Colloidal Morphologies, J. Am. Chem. Soc. 2002, 124(7), 1140-1141
    [27] Menger F M, Seredyuk V A, Apkarian R P, Wright E R, Colloidal Assemblies of Branched Geminis Studied by Cryo-etch-HRSEM, J. Am. Chem. Soc. 2002, 124(42), 12408-12409.
    [28] Berthier D, Buffeteau T, Leger J M, Oda R, Huc I, From Chiral Counterions toTwisted Membranes, J. Am. Chem. Soc. 2002, 124(45), 13486-13494.
    [29] Oda R, Huc I, Candau S J, Gemini Surgactants as New, Low Molecular Weight Gelators of Organic Solvents and Water, Angew. Chem. Int. Ed. Engl. 1998, 37(19), 2689-2691.
    [30] Gronwald O, Shinkai S, Suger-Integrates Gelators of Organic Solvents, Chem. Eur. J. 2001, 7(20), 4328-4334.
    [31] Yoza K, Amanokura N, Ono Y, Akao T, Shinmori H, Takeuchi M, Shinkai S, Reinhoudt D, Sugar-Integrates Gelators of Organic Solvents-Their Remarkable Diversity in Gelation Ability and Aggregate Structure, Chem. Eur. J. 1999, 5(9), 2722-2729.
    [32] Kiyonaka S, Shinkai S, Hamachi I, Combinatorial Library of Low Molecular-Weight Organo-and Hydrlgelators Based on Glycosylated Amino Acid Derivatives by Solid-Phase Synthesis, Chem. Eur. J. 2003, 9(4), 976-983
    [33]黄月文,罗宣干,卓仁禧,包埋在温度及pH值敏感水凝胶中的阿司匹林的控制释放研究,高分子材料科学与工程, 1998,14(6),141-147
    [34] Osada Y, Ukuzaki H, Hori H A, polymer gel with electrically driven motility, Nature 1992, 355,242-244
    [35] Beebe D J, Moore J S, Bauer J M, et al Functional hydrogel structures for autonomous flow control inside microfluidic channels, Nature 2000, 404,588-510.
    [36] Friggeri A, Feringa B L, van Esch J, Entrapment and release of quinoline derivatives using a hydrogel of a low molecular weight gelator, Journal of Controlled Release 2004,97,241-248
    [37] Hanabusa K, Yang Y G, Suzuki M, et al Preparation of Helical Mesoprous Silica and Hybrid Silica Nanofibers Using Hydrogelator, Chem.Mater.2006,18, 1324-1329
    [38]曾永飞,王秀丽,卜显和,模板法合成纳米结构材料,化学通报,2005,(10),723-730
    [39] Jong H K, Yoshiyuki O, Seiji S, Sol-gel Polycondensation of Tetraethoxysilanein a Cholesterol-Based Organogel System Results in Chiral Spiral Silica, Angew. Chem. Int. Ed. 2000, 39(10), 1862-1865
    [40] Jong H K, Yoshiyuki O, Seiji S, Novel Preparation method for Multi-layered, Tubular Silica Using an Azacrown-appended Cholesterol as Template and Metal-depositon into the Interlayer Space, J. Chem. Soc. 1999,2, 1289-1291
    [41] Satoshi K, Kenji H, Nobuhiro H, Mutsumi K, Hirofusa S, Preparation of TiO2 Hollow-Fibers Using Supramolecular Assemblies, Chem. Mater. 2000, 12, 1523-1525
    [42] Jong H J, Yoshiyuki O, Seiji S, Sol-gel Polycondensation in a Cyclohexane-Based Organogel System in Helical Silica: Creation of Both Right- and Left-Handed Silica Structures by Helical Organogel Fibers, Chem. Eur. J. 2000, 6(24),4552-4557
    [43] Jong H J,Yoshiyuki O, Kenji H, Seiji S, Creation of Both Right-Handed and Left-Handed Silica Structures by Sol-gel Transcription of Organogel Fibers Comprised of Chiral Diaminocyclohexane Derivatives, J. Am. Chem. Soc. 2000, 122: 5008-5009
    [44] Jong H J, Hideki K, Kjeld J C, Van Bommel, Seiji S, Toshimi S, Creation of Novel Helical Ribbon and Double-Layered Nanotube TiO2 Structures Using an Organogel Template, Chem. Mater. 2002, 14, 1445-1447
    [45] Zhan C L, Wang J B, Yuan J, Gong H F, Lin Y H, Liu M H, Synthesis of Right- and Left-Handed Silver Nanohelices with a Racemic Gelator, Langmuir 2003, 19, 9440-9445
    [46] Jung J H, Shinkai S J, Shimizu T, Nanometer-Level Sol-Gel Transcription of Cholesterol Assemblies into Monodisperse Inner Helical Hollows of the Silica, Chem. Mater.2003, 15, 2141-2145
    [47]鞠维刚,张晓宏,吴世康,以凝胶子聚集体为模板制备TiO2纳米材料及其性质研究,高等学校化学学报,2004,25,2308-2311
    [48]苏丽红,薛鹏冲,张萍,卢然等,基于紫精衍生物的有机凝胶为模板合成SiO2纳米管,吉林大学学报(理学版),2005,43(6),839-841
    [49] Hanabusa K J, Numazawa T, Kobayashi M, Suzuki M, Shirai H, Preparation of Metal Oxide Nanotubes Using Gelators as Structure-Directing Agents, Macromol. Symp. 2006, 235, 52-56
    [50]谭昌会,苏丽红,卢然,薛鹏冲等,水凝胶体系中CuS纳米纤维的模板合成,吉林大学学报(理学版),2006,44(1),126-129
    [51]谭昌会吉林大学博士学位论文中国优秀博硕士学位论文全文数据库2005.10
    [52] Gao P, Zhan C L, Liu M H, Controlled Synthesis of Double- and Multiwall Silver Nanotubes with Template Organogel from a Bolaamphiphile, Langmuir 2006, 22, 775-779
    [53] Kalyanikutty K P, Nikhila M., Maitra U, Rao C N R, Hydrogel-assisted synthesis of nanotubes and nanorods of CdS, ZnS and CuS, showing some evidence for oriented attachment, Chemical Physics Letters 2006,432,190-194
    [54] Suzuki M, Yumoto M, Kimura M, Shirai H, Supramolecular hydrogels containing inorganic salts and acids, Tetrahedron Letters 2004, 45, 2947-2950
    [55] Suzuki M, Sato T, Kurose A, Shirai H, Hanabusa K, New low-molecular weight gelators based on L-valine and L-isoleucine with various terminal groups, Tetrahedron Letters 2005, 46, 2741-2745
    [56] Bhuniya S, Park S M, Kim B H, Biotin-Amino Acid Conjugates: An Approach Toward Self-Assembles Hydrogelation, Organic Letters. 2005, 7(9), 1741-1744
    [57] Li Y G, Wang T Y, Liu M H. Ultrasound induced formation of organogel from a glutamic dendron, Tetrahedron. 2007, 2, 70-71
    [58] Hanabusa K, Okui K, Karaki K, Kimura M, Shirai H, Organogels Formed by N-Benzyloxycarbonyl-L-alanine 4-Hexadecanoyl-2-nitrophenyl Ester and Related Compounds, J. Colloid Interface Sci.1997,195(1),86-93
    [59] Van E J, Schoonbeekde F, Loos M, et al Cyclic Bis-Urea Compounds as Gelators for Organic Solvents, Chem.Eur. J. 1999, 5(3), 937-950
    [60] Bromberg L, Barr D P, Aggregation phenomena in aqueous solutions of hydrophobically modified polyelectrolytes. A probe solubilization study, Macromol, 1999, 32, 3649-3657.
    [61] Beinhoff M, Weigel W, Rettig W, Bruedgam I, Hartl H, Schlueter A D, Phenylene Alkylene Dendrons with Site-Specific Incorporated Fluorescent Pyrene Probes, J. Org. Chem. 2005, 70(17), 6583-6591
    [62] George M, Tan G, John V T, Wieiss R G, Urea and Thiourea Derivatives as Low Molecular-Mass Organogelators, Chem.Eur.J. 2005, 11(11), 3243-3254
    [63]郑金玉,丘坤元,危岩,有机小分子模板法合成二氧化钛中孔材料高等学校化学学报,2000,21(4),647~649。
    [64]Chang X L, Wang L, Yang Y J et al. Bis-(4-stearoylaminophenyl)methane assembles in organic solvents and used as templates for preparation of SiO2 nanowires Materials Chemistry and Physics 2006, 99(1),61-65
    [65]付新建华中科技大学博士学位论文华中科技大学图书馆in press
    [66]陆军,高新蕾,纳米级二氧化钛的制备,武汉工业学院学报, 2006,25(1), 62-64
    [67] Kjeld J C, van Bommel, Shinkai S J, Silica Transcription in the Absence of a Solution Catalyst:The Surface Mechanism, Langmuir 2002, 18, 4544-4548
    [68] Zhu Y L , Lu R, Xue P C , Bao C Y , Liu X L, Fei Z P , Zhao Z P, Synthesis of copper sulfide nanotube in the hydrogel system, Changhui Tan , Materials Chemistry and Physics 2005,91, 44-47
    [69] Terech P, Weiss R G, Low Molecular Mass Gelator of Organic Liquids and the Properties of Their Gels, Chem.Rev.1997, 97(8), 3133-3160
    [70]闫鹏飞,周得瑞,王建强,et al,水热法制备掺杂铁离子的TiO2纳米离子及其光催化反应研究,高等学校化学学报,2002, 23(12), 2317-2321

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700