一维SnO_2和Ag/SnO_2纳米结构的制备及其电输运性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有金红石型结构的SnO_2是一种宽带隙n型半导体材料,其室温禁带宽度为3.6eV(300K)。由于其独特的光电性质及稳定的化学性质,已被广泛的应用在光电器件以及还原性气体检漏的气敏元件等领域。一维的SnO_2纳米结构由于具有大的比表面积和量子尺寸效应,在气敏传感器、太阳能电池、透明导电电极、催化剂载体等方面有着潜在的应用。本文通过热蒸发SnO_2粉末方法制备SnO_2纳米带,然后采用浸泡的方法合成Ag/SnO_2纳米带的复合结构。同时结合电场组装的方法和表面光电压技术分别对SnO_2纳米带复合前后的光电特性进行了研究。
     在第二章我们采用热蒸发的方法制备出了SnO_2纳米带,通过SEM、TEM、SAED和XRD对样品进行表征,并对样品的荧光特性进行了分析。
     第三章我们将纳米带超声分散在无水乙醇溶液中,运用电场组装的方法将单根SnO_2纳米带搭接在Au电极上,然后我们对组装成功的SnO_2纳米带的光电性质进行了测量和分析,发现SnO_2纳米带的I-V特性曲线在暗态下表现为非对称的非线性特性,加光后电流有明显的增大。对非对称非线性I-V特性进行分析,认为非线性的I-V曲线是SnO_2纳米带与Au电极之间形成了两个背靠背的肖特基势垒,通过具体的计算和光照实验证明了在电场组装过程中表面态所引起的势垒高度差的不同导致电学性质的非对称。
     第四章把制备好的SnO_2纳米带浸泡在Ag胶体溶液里,采用简单的浸泡法合成Ag/SnO_2纳米带的复合结构,然后利用电场组装的方法将单根的Ag/SnO_2纳米带搭接在Pt电极上,对其电输运性质进行了研究,发现SnO_2纳米带复合上Ag粒子后,跟纯的SnO_2纳米带相比电流很小,原因可能是由于局域的肖特基结在Ag粒子附近的SnO_2纳米带表面形成耗尽层,减小了纳米线的有效传导通道,电流减小。然后通过表面光电压技术(SPV)研究Ag粒子是如何来影响SnO_2纳米带的表面光电性质,对纯的和复合Ag纳米粒子的SnO_2纳米带进行SPV测试,结果表明由于Ag纳米粒子的存在使得复合后的SPV响应减小,对减小的原因进行了分析。
As an important wide band n-type semiconductor, SnO_2 possesses many unique optical and electrical properties which have been widely used in optoelectronic devices and the reduction of gas leak detection gas sensors. One dimensional (1D) SnO_2 nanowires or nanobelts have been reported to have some different characteristics from the bulk crystal due to its large surface-to-volume ratio which make them very important for its potential applications in gas sensors, dye-based solar cells, transparent conducting electrodes, and catalyst supports. In this paper, SnO_2 nanobelts were synthesized by thermal evaporation of SnO_2 powder. As-prepared SnO_2 nanobelts were immerged into the Ag colloid and obtained the Ag/SnO_2 nanobelts. Single SnO_2 nanobelt or Ag/SnO_2 nanobelt is aligned onto the paired Pt electrodes using AC electric field assembly, and its optoelectric and transport properties were studied. In addition, we also studied the Surface photovoltage (SPV) of SnO_2 nanobelts and Ag/SnO_2 nanobelts, respectively.
     In Chapter 2, SnO_2 nanobelts were synthesized by thermal evaporation of SnO_2 powder. The morphology and structure of the products were characterized by SEM、TEM、SAED and XRD. The room temperature photoluminescence spectra were studied.
     In Chapter 3, the as-synthesized SnO_2 nanobelts were placed in ethanol and ultrasonicated to disperse the bundles into individual nanobelts. A single SnO_2 nanobelt was assembled on a pair of Au electrodes by dielectrophoresis, and the I-V curves were showed nonlinear and asymmetry under dark condition and the current increased under UV illumination. The nonlinear electrical transport behavior indicates that the back-to-back Schottky barriers structure is formed. Through measurement of the I-V curve and the calculation of barrier height difference under illumination, it is found that the electrical asymmetry results from the asymmetric barrier height of the two Schottky barriers, which are dominated by the surface states of NB caused by O_2 adsorption in the electric assembling process.
     In Chapter 4, as-prepared SnO_2 nanobelts were immerged into the Ag colloid and obtained the Ag/SnO_2 nanobelts. The as-synthesized samples were characterized by SEM, EDS, TEM and XPS. Single Ag/SnO_2 nanobelt is aligned onto the paired Pt electrodes using AC electric field assembly and its transport properties were studied. The results demonstrated that the formation of Schottky junction lead to the current decreased. The Surface photovoltage (SPV) of SnO_2 nanobelts and Ag/SnO_2 nanobelts were also studied.
引文
[1].张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [2]薛增泉,刘惟敏.纳米电子学[M].北京:电子工业出版,2003.
    [3].Y.Li,G.W.Meng,L.D.Zhang,F.Phillipp.Appl.Phys.Lett,2000,76,2011.
    [4].G.S.Wua,b,T.Xiea,X.Y.Yuana.Solid State Communications,2005,134,485.
    [5].Y.C.Wang,I.C.Leu,M.H.Hon.Journal of Crystal Growth,2002,237.
    [6].M.J.Zheng a,b,L.D.Zhang b,G.H.Li b,W.Z.Shen.Chemi.Phys.Lett,2002,363,123.
    [7].Z.W.Pan,Z.R.Dai,Z.L.Wang.Science,2001,291,1947.
    [8]J.Y.Park,D.E.Song,S.S.Kim.Nanotechnology,2008,19,105503.
    [9].S.Chakrabarti,S.Chaudhuri.Mater.Chem.Phys.2004,87,196.
    [10].J.Y.Lao,J.Y.Huang,D.Z.Wang,Z.F.Ren.Nano.lett.2003,3,235.
    [11].P.X.Gao,Y.Ding,W.Mai,W.L.Hughes,C.S.Lao,Z.L.Wang.Science,2005,309,1700.
    [12].X.D.Wang,J.H.Song,Z.L.Wang.Chem.Phys.Lett.2006,424,86.
    [13].L.F.Xu,Y.Guo,Q.Liao,J.P.Zhang,D.S.Xu.J.Phys.Chem.B 2005,109,13519.
    [14].D.F.Liu,Y.J.Xiang,Q.Liao,J.P.Zhang,X.C.Wu,Z.X.Zhang,L.F.Liu,W.J.Ma,J.Shen,W.Y.Zhou,S.S.Xie.Nanotechnology 2007,18,405303.
    [15].D.F.zhang,L.D.Sun,C.H.Yan.Chem.Phys.Lett.2006,422,46.
    [16].E.R.Leite,I.T.Weber,E.Longo,J.A.Varela.Adv.Mater,2000,12,13.
    [17]S.Lijima Helical microtubes of graphi ccarbon.Nature,1991,354,56.
    [18]R.Saito,M.Fujita,G.Dresselhaus,and M.S.Dresselhaus.Appl.Phys.Lett.1992,60,2204.
    [19]Yingkai Liu,Changlin Zheng,Wenzhong Wang,Chunrong Yin,and Guanghou Wang.Adv.Mater.2001,13,24.
    [20]Y.Chen.Chem.Phys.Lett.2003,369,16.
    [21]J.X.Wang.Solid State Cornmunieations.2004,130,89.
    [22]Y.J.Chen.Appl.phys.Lett.2004,85,5682.
    [23]Z.L.Wang.Material today,June 2004,27.
    [24]K.Suenaga,C.Colliex,N.Demoncy.Science,1997,278,653.
    [25]蔡哗.化工生产与技术.1997,2,29.
    [26]彭国贤.真空电子技术.2005,1,28.
    [27]C.Li,D.Zhang,S.Han.Adv.Mater.2003,15,143.
    [28]M.H.Huang,S,Mao H.N.Feick.Science,2001,292,1897.
    [29]Z.R.Dai,J.L.Gole,J.D.Stout,Z.L.Wang.J.Phys.Chem.B,2002,106,1274.
    [30]X.Liu,C.Li,S,Han.Appl.Phys.Lett,2003,82,1950.
    [31]X.Jiang,T.Hetticks,Y.Xia.Nano.Lett.2002,2,1333.
    [32]P.Camagni,G.Faglia,G.Sberveglieri.Sens.Actuators.B,1996,31,99.
    [33]E.Comini,G.Faglia,G.Sberveglieri.Sens.Actuators.B,2001,78,73.
    [34]N.Amin,T.Isaka,A.Yamada.Sol.Energy.Mater.Sol.Cells.2001,67,195.
    [35]M.Law,H.Kiind,B.Messer.Angew.Chem.Int.Ed.2002,41,2405.
    [36]Y.Zhang,A.Kolmakov,Y.Lilach,M.Moskovits.J.Phys.Chem.B,2005 139,1923.
    [37]电气化学国际学会(EeS)上演讲稿 2004 Joint Intemational Meeting.
    [38]Z.R.Dai,J.L.Gole,J.D.Stout,Z.L.Wang.J.Phys.Chem.B 2002,106,1274.
    [39]Elisabetta Comini,Vincenzo Guidi,Cesare Malagu,Giuliano Martinelli,Z.Pan,GiorgioSberveglieri,Zhong L.Wang.J.Phys.Chem.B 2004,108,1882.
    [40]Qin Kuang,Changshi Lao,Zhong Lin Wang,Zhaoxiong Xie,Lansun Zheng.J.Am.Chem.Soc 2007.
    [41]Zuqin Liu,Daihua Zhang,Chongwu Zhu.Adv.Mater,2003.
    [42]L.L.Fields and J.P.Zhen.Appl.Phys.Lett.2006,88,263102.
    [43]Eric N.Dattoli,Qing Wan,Wei Guo,Yanbin Chen,Xiaoqing Pan,Wei Lu Nano.Lett.2007,7,82463.
    [44]F.Hernandez-Ramirez,A.Tarancon,O.Casals,E.Pellicer,J.Rodriguez,S.Barth,and S.Mathur Phy.Rev.B,2007,76,085429.
    [45]王毓德等,掺杂SnO_2氨气敏感材料研究,功能材料,1998.2,1.
    [46]Zhang Tiann shu.Sensors and Actuators B.1999,60.
    [47]易惠中等,气敏功能材料的开发和应用,功能材料,1991,22,5.
    [48]Yujin Chen,Chunling Zhu,Maosheng Cao,Taihong Wang.Nanotechnology.2007,18,285502
    [49]Suresh Gubbala,Vidhya Chakrapani,Ⅵ-Vekanand Kumar,Mahendra K.Sunkara.Adv.Funct.Mater.2008,18,2411.
    [50]Q.H.Li,Y.J.Chen,Q.Wan,T.H.Wang.Appl.Phys.Lett.2004,85,1805.
    [51]Y.Zhang,A.Kolmakov,Y.Lilach,M.Moskovits.J.Phys.Chem.B.2005,109,1923.
    [52]Qin Kuang,Chang-Shi Lao,Zhou Li,Yu Zi Liu,Zhao-Xiong Xie,Lan-Sun Zheng,Zhong Lin Wang.J.Phys.Chem.C.2008,ⅹⅹⅹ,000.
    [53]L.H.Qian,K.Wang,H.T.Fang,Y.Lia,X.L.Ma.Mater.Chem.Phys.2007,103,132.
    [54]A.Kolmakov,D.O.Klenov,Y.Lilach,S.Stemmer,M.Moskovits.Nano.Lett.2005,5,667.
    [55]X.H.Chen,M.Moskovits.Nano Lett.2007,7,807.
    [56]叶良修 半导体物理学(上册)高等教育出版社,1983.
    [1]S.Lijima Helical microtubes of graphi carbon.Nature,1991,354,56.
    [2]王玉恒,马瑾,计峰,余旭浒,张锡健,马洪磊.物理学报,2005,54,1731.
    [3]匡安龙,刘兴种,路忠林,任尚坤,刘存业,张凤鸣.物理学报,2005,54,2934.
    [4]Sun.S.H,Meng.G.W,Wang.Y.W,Gao.T,Zhang.M.G,Tian.Y.T,Peng.X.S,Zhang,L.D.Appl.Phys.A,2003,76,287.
    [5]Lijun Li,Fujian Zong,Xiaodong Cui,Honglei Ma,Xiaohui Wu,Quande Zhang,Yongli Wang,Fan Yang,Jianzhi Zhao Mater.Lett.2007,61,4152.
    [6]S.Thanasanvorakun,P.Mangkorntong,S.Choopun,N.Mangkorntong Ceramics International 2007.
    [7]R.S.Wagner,W.C.Ellis.Appl.Phys.Lett.1964,4,89.
    [8]Y.Wu,P.Yang.J.Am.Chem.Soc.2001,123,3165.
    [9]F.M.Ross,J.Tersoff,M.C.Reuter,Phys.Rev.Lett.2005,95,146104.
    [10]H.J.Fan,F.Bertram,A.Dadgar,J.Christen,A.Krost,M.Zacharias.Nanotechnology 2004,15,1401.
    [11]S.M.Zhou,Y.S.Feng,L.D.Zhang,Chem.Phys.Lett.2003,369,610.
    [12]A.Aoki,H.Sasakura,Jpn,J.Appl.Phys.1970,9.582.
    [13]C.Tatsuyama,S.Ichimura.Jpn.J.Appl.Phys.1976,15,843.
    [14]Junqing Hu,Yoshio Bando,Quanlin Liu,and Dmitri Golberg.Adv.Func.Materials.2003,13,6.
    [1] Young-Jin Choi, In-Sung Hwang, Jae-Gwan Park,Kyoung Jin Choi, Jae-Hwan Park and Jong-Heun Lee Nanotechnology 2008,19,095508.
    [2] Yujin Chen, Chunling Zhu, Maosheng Cao and Taihong Wang Nanotechnology 2007 18,285502.
    [3] Trentler T J, Hickman K M, Buhro W E. Science, 1995,270,1791.
    [4] Dai H J,Wong E W, Lieber C M. Nature, 1995, 375,769.
    [5] Han W Q, Fan S S, Li Q Q. Science,1997,277,1287.
    [6] Fasol G. Science, 1998, 280,545.
    [7] Zhang Y, Suenaga K, Colliex C. Science, 1998,281,973.
    [8] 张立德,牟季美.纳米材料与纳米结构.北京: 科学出版社, 2001,27.
    [9] Pan Z W, Dai Z R, Wang Z L. Science,2001,291,1947.
    [10] Bockrath M, Cobden D H, Smalley R E. Science, 1997,275,1922.
    [11] Lee R S, K H J, Smalley R E. Nature, 1997,388,255.
    [12] Y. Cui, X.F. Duan, J.T. Hu, CM. Lieber, J. Phys.Chem.B, 2000, 104, 5213.
    [13] Y. Cui, and CM. Lieber, Science, 2001, 291, 851-853.
    [14] Y. Huang, X.F. Duan, Y. Cui, L.J. Laubon, K.H. Kim, CM. Lieber, Science, 2001, 294, 1313.
    [15] J.R. Kim, H.M. So, J.W. Park, and J.J. Kim, J.H. Kim, C.J. Lee, and S.C. Lyu, Appl. Phys. Lett. 2002, 80, 3548. [16] E. Comini, G. Faglia, G. Sberveglieri, Z.W. Pan, and Z.L. Wang, Appl. Phys. Lett., 2002, 81,1869.
    [17] Joo J, Park K T, Kim B H et al., Synth. Met, 2003, 7, 135. [18] MacDiarmid A G, Jones W E, Norris I D. Synth. Met. 2001, 119, 27. [19] G.T. Kim, M. Burghard, D.S. Suh et al. Synth. Met. 1999, 105, 207; Park J G, Kim G T, Krstic V. Synth. Met. 2001, 119,53.
    [20] Sung-Wook Chung, Jae-Young Yu and James R. Appl. Phys. Lett, 2000, 76,2068. [21] T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio, Nature, 1996, 382, 54. [22] B. Wei, R. Spolenak, P. Kohler-Redlich, M. Ruhle, E. Arzt, Appl. Phys. Lett, 1999, 74, 3149. [23] Long Y Z, Chen Z J, Wang N L. Appl. Phys. Lett. 2003, 83, 1863. [24] Long Y Z, Zhang L J, Ma Y J. Rapid Commun. 2003, 24, 938. [25] Long Y Z, Chen Z J, Ma Y J . Appl. Phys. Lett., 2004, 84, 2205. [26] Yongjun Ma, Feng Zhou, Li Lu, Ze Zhang, Soli.Stat.Comm. 2004, 130, 313. [27] Duan X F, Huang Y, Cui Y. Nature, 2001, 409, 66. [28] Duan X F, Liber C M. J. Am. Chen. Soc. 2000, 122, 188.
    [29] Duan X F, Wang J F and Liber C M. Appl. Phys. Lell. 2000, 76, 1116.
    [30] Cui Y, Liber C M. Science, 2001,219, 851.
    [31] Tanase M, Bauer L A, Meyer G J. Nano LettOO 1,1,1082.
    [32] Kim F, Kwan S and Yang P D. J. Am. Chem. Soc. 2001, 123, 4360.
    [33] Y.Huang, X. Duan, Q. Wei, C. M. Lieber, Science. 2001, 219,630.
    [34] Susuki.S, Yamanashi. T, Tazawa. S, Kurosawa. O, Washizu. M, IEEE Trans, lnd. Appl. 1998, 34,75.
    [35] Zhuo Chen, Yanlian Yang, and Zhongfan Liu. J. Phys. Chem. B 2005, 109, 5473.
    [36] Larry A. Nagahara, and Raymond K. Tsuib Appl. Phys. Lett. 2002, 80.
    [37] OII-Ver Harnack, and Jurina M. Wessels. Nano Lett. 2003, 3, 8.
    [38] Li Shi, Qing Hao, and Choongho Yu. Appl. Phys. Lett. 2004, 84, 14.
    [39] Peter A. Smith, Christopher D. Nordquist, Appl. Phys. Lett. 2000, 77, 9.
    [40] Lifeng Dong, Jocelyn Bush, Vachara Chirayos, Raj Solanki, Jun Jiao. Nano Lett. 2005.5.10.
    [41] Cheng. Shi. Lao, Jin Liu,Puxian Gao, Liyuan Zhang, Dragomir Davidovic, Rao Tummala, Zhong L. Wang. Nano Lett.2006,6,263.
    [42] D. W. Wang, J. G. Lu, C. J. Often, W. E. Buhro. Appl. Phys. Lett.2003,83,5280.
    [43] Z.Y. Fan, D. W. Wang, P. C. Chang, W. Y. Tseng, J. G. Lu. Appl. Phys. Lett.2004,85,5923.
    [44] Y. W. Heo, L. C. Tien, D. P. Norton, and S. J. Pearton, B. S. Kang, F. Ren, J. R. LaRoche. Appl. Phys. Lett. 2004,85, 3107.
    [45] Z. Y. Zhang, C. H. JinX. L. Liang, Q. Chen, L. M. Peng. Appl. Phys. Lett.2006,88,073102.
    [46] X. L. Liang, Q. Chen, and L. M. Peng. Appl. Phys. Lett. 2006 88, 073102.
    [47] Z.Y. Zhang, K.Yao, Y. Liu, C.H. Jin, X.L. Liang, Q. Chen, L. M. Peng. Adv. Funct. Mater.2007,17,2478.
    [48] E. H. Rhoderick and R.H. Williams, Metal-Semiconductor contact (1988,Clarenoon, Oxford).
    [49] K. Ip, Y. W. Heo, K. H. Baik, D. P. Norton, S. J. Pearton, Appl. Phys. Lett.2004,84,2835.
    [50] Oll-Ver Harnack, Claudia Pacholski, Horst Weller, Akio Yasuda, Jurina M. Wessels. Nano Lett.2003,3,8.
    [51] Gang Cheng, Shujie Wang, Ke Cheng, Xiaohong Jiang, Lixiang Wang, Linsong Li, Zuliang Du.Guangtian Zou. Appl. Phys. Lett.2008,92,223116.
    [52] X. H. Chen, and M. Moskovits. Nano Lett.,2007,7, 807.
    [53] H.Kind, H.Q. Yan, B. Messer, M. Law, P.D Yang. Adv. Mater.2002,14,158.
    [54] K. Cheng, G.Cheng, S.J. Wang, L.S. Li, S.X. Dai, X.T. Zhang, B.S. Zou Z.L. Du. New Journal of Physics. 2007,9,214.
    [1] E. Comini, G. Faglia, G. Sberveglieri, Zh. Pan, Z.L. Wang. Appl. Phys. Lett.2002,81,1869.
    [2] M. Law, H. Kind, B. Messer, F. Kim, P. Yang. Angew. Chem. Int. Ed.2002,41,2405.
    [3] D. Zhang, Z. Liu, Ch. Li, T. Tang, X. Liu, S. Han, B. Lei, Ch. Zhou. Nano Lett. 2004,4,1919.
    [4] A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits. Nano Lett.2005,5,667.
    [5] A. Bismuto, S. Lettieri, P. Maddalena, C. Baratto, E. Comini, G. Faglia, GSberveglieri, L. Zanotti. J. Opt. A: Pure Appl. Opt.2006,8,585.
    [6] Qin Kuang, Chang-Shi Lao, Zhou Li, Yu-Zi Liu, Zhao-Xiong Xie, Lan-Sun Zheng, Zhong Lin Wang. J. Phys. Chem. C. 2008, xxx,000
    [7] L. H. Qian; K. Wang; H. T. Fang; Y. Lia; X. L. Ma. Materials Chemistry and Physics. 2007, 103,132
    [8] X. H. Chen; M. Moskovits. Nano Lett,2007, 7,807.
    [9] L.H. Qian, K. Wanga, Y. Lia, H.T. Fang, Q.H. Lua, X.L. Maa. Mater. Chem. Phys,2006,100,82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700