苏云金芽胞杆菌的筛选鉴定及新型cry基因克隆、表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苏云金芽胞杆菌(Bacillus thuringiensis,简称Bt)作为一种高效、安全、无污染的昆虫病原微生物,在害虫的生物防治中得到了广泛的应用,已发展成为全球产量最大、应用面积最广的微生物杀虫剂。因此,对Bt的研究越来越受到世界各国的重视,对Bt资源的调查也在逐渐扩大。我国地域辽阔,生态环境复杂多样,深入发掘我国丰富的苏云金芽胞杆菌资源,筛选高毒力菌株、分离克隆新的高效广谱杀虫基因,对构建高效广谱工程菌及培育转基因抗虫植物具有深远意义。
     本研究对黑龙江省不同类型土壤采集的土样及四川省5个地区采集的土样进行了苏云金芽胞杆菌的分离、鉴定,并进行了新型cry基因的克隆和表达研究。结果如下:
     1.从黑龙江省不同类型土壤中采集372份土样,共分离出Bt菌株41株,出菌率为11.02%。黑土与暗棕壤Bt出菌率较高,分别为15.53%及13.95%,黄沙土出菌率最低仅为5.88%,在采集的17份盐碱土中未分离出Bt菌,说明Bt分布的丰度与土壤类型有很大关系。采用PCR-RFLP方法,对41株菌株进行了基因型鉴定。结果表明:32株含有cry1型基因(其中有两株菌株的酶切图谱中含有新的特异性条带,推测含有新的未知基因),13株含有cry2型基因,12株含有crylI型基因,另有9株菌株未鉴定出已知基因。
     2.从四川省采集的207份土样中,共分离出26株Bt野生菌株,平均出菌率为12.56%。26株Bt分离株伴胞晶体的形态有球形、方形、菱形、及不规则形,且多数菌株都同时含有多种形态的伴胞晶体,充分体现了四川省Bt菌株资源的多样性。基因型的鉴定结果也可看出四川生态条件下Bt菌株多样性的特点,26株菌株共含有cryl、cry2、cry1I及cry9四种基因型,其中21株含有cry1型基因,8株含有crylI型基因,11株含有cry2型基因,13株含有cry9型基因,5株菌株未鉴定出已知基因。多数菌株都同时含有多种类型的基因组合,以crylAa、cry1Ac、crylIb、cry2Ab、cry9Ba基因型最丰富。
     3.对两省分离的67株Bt菌的SDS-PAGE分析表明:多数菌株表达了130kD的蛋白,少数菌株表达了60、120和140kD的蛋白,在个别菌株中还发现有45kD、70kD和90kD的蛋白表达,可以推测,在这些菌株中可能含有新型的杀虫基因,另有2株菌株未发现有任何蛋白表达,其原因有待于进一步研究。
     4.系统地研究了Bt菌株BF-4和NJ-1的生物学特性。BF-4的10项生理生化反应结果与标准菌株猝倒亚种反应一致,NJ-1与蜡螟亚种一致;BF-4主要形成菱形、方形、球形晶体,NJ-1则形成菱形、球形和不规则形晶体;两株菌都表达140kD的蛋白,BF-4还同时表达了60kD的蛋白;BF-4含有3个大小不同的质粒,含有crylAa、cry1Ac、cry1Ib、cry2Ab和cry9Ba5种基因;菌株NJ-1含有2个大小不同的质粒,含有crylAa、cry1Ia和cry9Ba共3种基因。两株菌株的基因均定位于大质粒上。
     5.从菌株BF-4中克隆了cry2Ab和cryllb两种基因。基因的核苷酸序列已经在GenBank中注册,Accession number分别为HM037126和HM051227,并经国际Bt杀虫晶体蛋白基因命名委员会分别正式命名为cry2Ab15和cryllb4o cry2Abl5的编码区为1905bps,编码634个氨基酸的蛋白,蛋白分子量为70.8kDa; cryllb4的编码区为2160bps,编码的蛋白质由719个氨基酸组成,该蛋白质的分子量为81.2kDa,等电点为6.71,为弱酸性蛋白质。序列分析结果表明cry2Ab15和cryllb4与已发表的基因在氨基酸序列上均有不同程度的差异,属于新的cry基因。
     6.从菌株NJ-1中克隆了cry9Ba2。该基因的编码框由3495bp组成,所编码的蛋白质由1164个氨基酸组成,分子量为131.6kDa,pI=4.92,为弱酸性蛋白质。该基因序列与已报道的cry9Bal同源性最高达98%,该基因已在GenBank中注册,Accession number为GU299522,并经国际Bt杀虫晶体蛋白基因命名委员会正式命名为cry9Ba2。
     7. cry2Abl5和cryllb4均在大肠杆菌中获得了高效表达,cry2Ab15的表达产物对小菜蛾和棉铃虫均有很高的杀虫活性,3d的校正死亡率分别为100%和90.8%;Cry1Ib4对小菜蛾具有较好的活性,对大猿叶虫的毒力一般,96h的校正死亡率分别为82.5%和46.6%。
Bacillus thuringiensis (Abbreviation, Bt) as an efficient, safe, pollution-free insect pathogenic microorganisms has been widely used in the biological control of pests. It has been produced largest as a microbial pesticides and widely applied in most area in global. So the study on Bacillus thuringiensis was paid more and more attention by the countries in the world, and the investigation of Bt resources are gradually expanding. Because of the extensive terrain and diversity of environment in our country, it is very significant and necessary to explore the rich Bt resources, screen Bt isolates with high toxicity and clone the novel insecticidal toxin genes for construction of genetically engineered bacteria and transgenic plants. In this study, we described a screening and identification of Bacillus thuringiensis from different sort of soils of Hei Long Jiang Province and Sichuan province, Several novel insecticidal crystal protein genes were cloned and expressed.The concrete results are as follows:
     1. Three hundred and seventy two soils samples were collected from Hei Long Jiang Province, and 41 strains of native Bacillus thuringiensis were isolated from the samples. The percentage of Bt strains isolation is 11.02%. The most high percentage of Bt isolation from black soil is 15.53% and yellow sand's is lowest as 5.88%, however none Bt strains were isolated from the seventeen saline-alkali soil. So the abundance of Bt distribution have relationship with the Soil kinds. The genotypes of 41 Bt isolates were identified by PCR-RFLP. The results show that 32 isolates harbored cry1 genes(Among them, two strains' restriction map contained a new specific band, speculated that there were unknown genes with them),13 isolates harbored cry2 genes,12 isolates harbored cry1I genes, the known genes were not identified in another nine strains.
     2. Two hundred and seven soils samples were collected from Sichuan Province, and 26 strains of native Bacillus thuringiensis were isolated from the samples. The percentage of Bt strains isolation is 12.56%. The parasporal crystal shapes of Bacillus thuringiensis were pyramid, cuboidal, round and abnormity, furthermore most of them there were a variety of forms parasporal crystal in one strain.which showed the diversity of Bt resources in Sichuan province.The Identification results of genotype can also display the diversity of Bt strains under the ecological conditions in Sichuan. 26 strains contain cryl, cry2, cry1I and cry9 four genotypes,21 isolates harbored cry1 genes, 8 isolates harbored crylI genes,11 isolates harbored cry2 genes,13 isolates harbored cry9 genes, the known genes were not identified in another five strains. most of them contain a variety of parasporal crystal in one strain. Most of them are crylAa, crylAc, cryllb, cry2Ab and cry9Ba.
     3. The SDS-PAGE analysis of 67 strains showed that most strains expressed 130kDa protein, and part of them expressed 60,120 and 140kDa protein, a few of them expressed 45,70 and 90kDa protein. Suggesting that they may contain potential novel Cry toxins. There were no proteins expressed in another two strains, the reasons need to be further studied.
     4. The biological characteristics of Bt strains BF-4 and NJ-1 were studied systematically in this paper. Biochemical reaction indicated that BF-4 was identical with Bt subsp.sotto,while NJ-1 was the same as Bt subsp.galleriae. Crystal shape of BF-4 was bipyramidal, cuboidal and round, but in NJ-1 bipyramidal, spherical and irregular shapes were observed.140kDa ICP was encoded in the two strains, but 60kD ICPs were encoded in BF-4. Three different plasmids were detected from BF-4, there were crylAa、cry1Ac、cryllb、cry2Ab and cry9Ba in the strain. Two different plasmids were detected from NJ-1, there were crylAa, cry1Ia and cry9Ba in the strain..and all genes of these two strains were located on its plasmids seperately.
     5. Two cry genes cry2Ab and cryllb were coloned from BF-4 successively.They had been registered in GenBank, The accession number is HM037126 and HM051227 respectively, The gene had been named cry2Ab15 and cryllb4 by Btδ-endotoxin gene Nomenclature Committee respectively. Cry2Ab15,70.8kD protein, was composed of 634 amino acids deduced from 1905bps nucletide sequence.Cry1Ib4,81.2kD protein, was composed of 719 amino acids deduced from 2160bps DNA sequences. Isoelectric point of the protein is 6.71, so it is a weak acid protein.Sequence analysis showed that cry2Ab and cryllb are different from the genes published in GenBank.They should be new cry genes.
     6. cry9Ba2 was coloned from NJ-1.The encoding sequence is made up of 3495 bps, Cry9Ba2,131.6kD protein, was composed of 1164 amino acids. The amino acid sequences deduced from its DNA fragment as 98% homologous with Cry9Ba1. The gene sequence had been registered in GenBank, The accession number is GU299522. The gene had been named cry9Ba2 by Bt 8-endotoxin gene Nomenclature Committee.
     7. cry2Abl5 and cryllb4 were expressed efficiently in E.coli. Cry2Ab15was highly toxic to the larvae of Plutella xylostella and Helicoverpa armigera, LC50 is 5.7μg/ml and 4.3μg/g respectively. Cry1Ib4 has higer toxic to Plutell axylostella L, but not higher to Colaphellus bowringi L.The Corrected mortality is 82.5% and 46.6% respectively.
引文
戴经元,王波等.1994.从土壤中分离的410株苏云金芽抱杆菌的鉴定[J].华中农业大学学报.13(2):144-152.
    戴莲韵, 王学聘.1997.苏云金芽胞杆菌研究进展.科学出版社。
    戴莲韵,王学聘等.1994.中国八个自然保护区森林土壤中苏云金芽胞杆菌的分布[J].林业科学30(2):117-121.
    戴顺英,高梅影,李小刚等.1996.我国南北方土壤中苏云金芽胞杆菌的分布及杀虫特性.[J].微生物学报.36(4):295-302.
    郭三堆,崔洪志,夏兰芹等.1999.双价抗虫转基因棉花的研究.中国农业科学.32(3):1-7.
    郭三堆.1992.Bt鲇泽变种7.29杀虫蛋白质结构基因的改造和表达[J].微生物学报.32(3):167-175.
    何献君,’宋沽等.2002.一株苏云金芽胞杆菌的分离鉴定[J].四川师范大学学报.25(3):301-303.
    黄大防,林敏.2001.农业微生物基因工程.科学出版社。
    李海涛,姚江,郭巍等.2005.苏云金芽饱杆菌cry2Aa基因的克隆、表达与活性农业生物技术学报.3(6):789-791.
    李建洪,万秋英等.2000.韩国土壤中苏云金芽胞杆菌的分离和鉴定[J].湖南农业大学学报26(4):293-295.
    李荣森, 陈涛, 邓海凡等.1983.几种苏云金杆菌晶体的超微结构[J].微生物学报.23(4):343-346。
    李荣森, 陈涛.1981几种苏云金杆菌晶体的毒力及形态结构,微生物学报[J],21(3):311~317。
    刘旭光,宋福平等.2004.苏云金芽胞杆菌cry基因芯片检测方法的研究.中国农业科学.37(7):957-992.
    蒲蛰龙.1992.昆虫病理学.广东科技出版社。
    饶志明,张荣珍等.2003.基因芯片技术在微生物学研究中的应用.中国生物工程杂志.23(8):61-65.
    任改新,李克田,杨明华等1975.昆虫病原菌苏云金芽胞杆菌群(Bacillus thuringiensis Group)的分类[J].微生物学报.15(4):292-301。
    任改新,冯喜昌,冯维熊.1983.苏云金杆菌伴胞晶体的形态及抗原特性[J].微生物学报.23(1):57-62。
    闰新甫.2001.全球转基因作物种植概况.世界农业.4:22-23.
    萨姆布鲁克J,弗里奇EF,曼尼阿蒂斯T.2002.分子克隆(第三版)[M].北京:科学出版社.
    宋福平,张杰,韩岚岚,高继国,黄大防.2003.对鳞翅目害虫有活性的cry1C基 因的克隆和表达[J].植物保护学报.30(2):162-165
    苏旭东.2005.苏云金芽胞杆菌菌株的分离和cry基因的鉴定.河北农业大学.[硕士学位论文]
    檀建新,张杰,宋福平等.2002.苏云金芽抱杆菌cry1Ab13基因的克隆及表达研究[J].微生物学报.42(1):40-44
    汤慕瑾,袁美奸,陈建武,师永霞,曾少灵,余健秀,庞义.2003.苏云金杆菌辅助蛋白P20对杀虫晶体蛋白crylAb表达的影响[J].生物工程学报.19(5):567-571
    王仁祥.2001.中国转基因抗虫棉的发展和应用.作物研究.24(2):6-9.
    夏关玉.2008. Bt PP61 cryllb2基因的克隆表达及其表达的蛋白对柑橘凤蝶的生物活性研究.福建农林大学.[硕士学位论文]
    谢柳,张文飞,全嘉新.2009.广西大王岭和大明山自然保护区苏云金芽胞杆菌收集与鉴定基因组学与应用生物学.[J].28(1):62-68
    谢月霞,杜立新,李瑞军等.2008.河北省不同生态区的苏云金芽胞杆菌cry基因的多样性研究.[J].中国农学通报.24(12):407-409
    杨自文,吴宏文.2000.从土壤中高效分离苏云金芽抱杆菌的方法[J].中国生物防治.16(1):26-30.
    喻子牛,孙明等.1996.苏云金芽胞杆菌的分类及生物活性蛋白基因.中国生物防治.12(2):85-89。
    喻子牛.1983.苏云金芽胞杆菌的脂酶型.华中农学院学报.(4):55~63。
    喻子牛.苏云金杆菌.科学出版社,1990
    张杰,宋福平.1995.PCR技术与ICP基因的鉴定.植物保护21世纪展望.中国科学技术出版社,118-120.
    张杰,宋福平,左雅慧等.2000.31株苏云金芽抱杆菌杀虫晶体蛋白基因型鉴定及表达产物研究.微生物学报.40(4):372-377.
    张令要,袁平,张用梅等.2001.神农架原始森林高毒力苏云金芽胞杆菌菌株分离鉴定研[J].中国媒介生物学及控制杂志.12(4):271-274.
    赵荣敏,范云六,石西四等.1995.获得高抗虫转基因棉花研究.生物工程学报.11(1):1-5.
    周德庆.1993.微生物学教程[M].高等教育出版社.
    邹宗亮,王升启.2000.基因芯片置备方法研究进展.生物技术通报.1:7-10.
    Analia A, Eduardo G, Virla L, et al.2009.Characterization of native Bacillus thuringiensis strains and selection of an isolate active against Spodoptera frugiperda and Peridroma saucia. Biotechnol Lett.31:1899-1903.
    Anwar H M, Ahmed S, Hoque S.1997. Abundance and distribution of Bacillus thuringiensis in the agricultural of Bangladesh. J. Invertebr. Pathol.70:221-225.
    Arango J A, Romero M, Orduz S.2002.Diversity of Bacillus thuringiensis strains from Colombia with insecticidal activity against Spodoptera frugiperda (Lepidoptera:Noctuidae) [J]. J.Appl. Microbiol.92(3):466-74.
    Armengol G, Escobar MC, Maldonado ME, Orduz S.2007. Diversity of Colombian strains of Bacillus thuringiensis with insecticidal activity against dipteran and lepidopteran insects. J Appl Microbiol.102(1):77-88.
    Arrieta G, Espinoza AM.2006. Characterization of a Bacillus thuringiensis strain collection isolated from diverse Costa Rican natural ecosystems. Rev Biol Trop. 54(1):13-27
    Baljac H D, Frachon E.1990. Classification of Bacillus thuringiensis strains.Entomophaga.35(2):233-240.
    Barton KA, Whiteley HR, Yang NS.1987. Bacillus thuringiensis section sign-Endotoxin Expressed in Transgenic Nicotiana tabacum Provides Resistance to Lepidopteran Insects. Plant Physiol.85(4):1103-1109.
    Baum J A, Kakefuda M, Gawron-Burke C..1996. Engineering Bacillus thuringiensis bioinsecticides with an indigenous site-specific recombination system. Appl Environ Microbiol.62(12):4367-73.
    Baum J A, Malvar, T.1995.Regulation of insecticidal crystal protein production in Bacillus thuringiensis. Mol Microbiol.18:1-12.
    Ben-Dov E, Wang Q, Zaritsky A, et al.1999. Multiplex PCR screening to detect cry genes in Bacillus thuringiensis strains. Appl. Environ. Microbiol.65(8):3714-3716.
    Berliner E.Berliner E.Uber die1911 Schlaffsucht der mehlmottenraupe [J] Zeitschrift fur dasgesamte Getre idewesen.(2):29-56.
    Boonserm P, Davis P, Ellar D J. et al.2005. Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications J Mol Biol. Apr 29;348(2):363-82.
    Bradley D, Harkey M A, Kim M K. et al.1995. The insecticidal CryIB crystal protein of Bacillus thuringiensis ssp. thuringiensis has dual specificity to coleopteran and lepidopteran larvae. J Invertebr Pathol.65(2):162-73.
    Bravo A, Sarabia S, LoPez L.1998.Characterization of cry genes in a Mexica Bacillus thuringiensis strain collection. Applied and Environmental Microbiology.64(12):4965-4972.
    Cannon R J C.1996.Bacillus thuringiensis use in Agriculture:A molecular perspective. Biol Rev.71:561-636.
    Carozzi N B, Kramer V C, Warren G W, et al.1993. Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product Profiles. Appl. Environ. Microbiol.59(5):1683-1687.
    Ceron J, Ortiz A, Quintero R, et al.1999.Specific PCR primer directed to identify cryl and cry3 genes with in a Bacillus thuringiensis strain collection. Appl. Environ. Microbiol.61(11):3826-3831.
    Changlong Shu et al.2009.Characterization of a novel cry8 gene specific to Melolonthidae pests:Holotrichia oblita and Holotrichia parallela. Appl Microbiol Biotechnol 84:701-707
    Chen X J, Lee M K, Dean D H.1993. Site-directed mutations in a highly conserved region of Bacillus thuringiensis δ-endotoxin affect inhibition of short circuit current across Bombyx Mori midguts. Proc. Natl. Acad. Sci. USA.90:9041-9045.
    Chen Y, Ren G, Wu W et al.2002.Characterization of cry gene and broad spectrum against Lepidopteran of Bacillus thuringiensis subsp.colmeri 15A3.Wei Sheng Wu Xue Bao,42(2): 169-74.
    Cheng-Wei Liu et al.2009. Expression of a Bacillus thuringiensis toxin (cry1Ab) gene in cabbage (Brassica oleracea L. var.capitata L.) chloroplasts confers high insecticidal efficacy against Plutella xylostellaTheor Appl Genet,117:75-88
    Choi S K, Shin B S, Kong E M, et al. Cloning of a new Bacillus thuringiensis cry1Ⅰ-type crystal protein gene [J] Curr Microbiol.2000,41(1):65-69.
    Crawford I T, Greis K D, Parks L, et al.1987.Facile autoplast generation and transformation in Bacillus thuringiensis subsp. Kurstaki[J]. J. Bacteriol. 169(12):5423-5428.
    Crickmore N, Zeigler D R, Feitelson J. et al.1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Mol. Boil. Rev.62:807-813.
    Crickmore N, Zeigler D R., Schnepf H E.et al.2001.Bacillus thuringiensis toxin nomenclature.
    Donovan W P, Gonzalez J M J, Gilbert M, P Dankoesik C.1988.Isolation and characterization of EG2158, a new strain of Bacillus thuringiensis toxic to Colepo, eran larvae, and nueleotide sequence of the toxin gene [J], Mol.Gen.Genet.214(3):365-72.
    Dulmage H T.1970. Insecticidal activity of HD-1, a new isolate of Bacillus thuringiensis [J] Invertebr Pathol.(15):232-239.
    Edwadrs D L , Payne J, Soares G.1988. Novel isolates of Bacillus thuringiensis having activity against Nematodes [J]. Europ Patent Appl.303-426
    Edyta Konecka, Adam Kaznowski, Jadwiga Ziemnicka, et al.2007. Analysis of cry gene profiles in Bacillus thuringiensis strains isolated during Epizootics in Cydia pomonella L. Current Micro Biology Vol.55:217-222
    Ejiofor A O, Johnson T.2002. Physiological and molecular detection of crystalliferous Bacillus thuringiensis strains from habitats in the South Central United States. [J]. J. Ind. Microbiol. Biotechnol.28(5):284-90.
    Faust R M, Abe K, Held G. A. et al.1983. Evidence for plasmid-associated crystal toxin production in Bacillus thuringiensis subsp.israelensis. Plasmid.9:98-103.
    Federici BA, Bauer LS..1998. Cyt1Aa protein of Bacillus thuringiensis is toxic to the cottonwood leaf beetle, chrysomela scripta, and suppresses high levels of resistance to Cry3Aa.Appl Environ Microbiol.64(11):4368-4371.
    Feitelson J S.1993. The Bacillus thuringiensis familytree.In:Kim, L.(Ed.) Advanced Engineered Pesticides.Marcel Dekker.NewYork, NY.63-72.
    Galitsky N, Cody V, Wojtczak A. et al.2001 Structure of the insecticidal bacterial delta-endotoxin Cry3Bb1 of Bacillus thuringiensis. Acta Crystallogr D Biol Crystallogr.57(Pt 8):1101-1109
    Galushka F P, Azizbekyrcen R R.1977. Investigation of Plasmids different varians of Bacillus thurigiensis.Dokl.Skad.Nauk(USSR).236:1233-1235.
    Gaviria Rivera A M, Priest F G..2003. Molecular typing of Bacillus thuringiensis serovars by RAPD-PCR.Syst Appl Microbiol.26(2):254-261.
    Ge A Z, Pfister R M, Dean D H.1990. Hyperexpression of a Bacillus thuringiensis delta-endotoxin-encoding gene in Escherichia coli:properties of the product. Gene.93(1):49-54.
    Goldberg L, Margalit J.1977. Bacterial spore demonstrating rapid larvicial activity against Anopheles sergentii, Uranotaenia; Culex univittatus, Aedes aegypti and Culex pipiens.Mosq [J].News, (37):355-358
    Gonzalez J M, Brown B J, Carlton B C.1982. Transfer of Bacillus thuringiensis plasmids encoding for 8-endotoxin among strains of B.thuringiensis and B.cereus.Proc. Natl. Acad. Sei. USA.79:6951-6955.
    Griffitts J S, Haslam S M,Yang T, et al.2005.Glycolipids as receptors from Bacillus thuringiensis crystal toxin. Science.307(5711):922-5.
    Grochulski P, Masson L, Borisova S.et al.1995. Bacillus thuringiensis CryIA(a) insecticidal toxin:crystal structure and channel formation. J Mol Biol.254(3):447-64.
    Haider MZ, Knowles BH, Ellar DJ.1986. Specificity of Bacillus thuringiensis var. colmeri insecticidal delta-endotoxin is determined by differential proteolytic processing of the protoxin by larval gut proteases. Eur J Biochem.156(3):531-540.
    Hannay C L, Fitz-Jame P C.1955. The protein crystals of Bacillus thuringiensis Berliner.Can. J. Microbiol. (1):694-710.
    Hannay, C.L.1953.Crystalline inclusion in aerobic sporeforming bacteria.Nature.172:1004.
    Held G A, Bulla L A, Ferrarie, et al.1982.Cloning and localization of the lepidopteran protoxin gene of Bacillus thuringiensis subsp. kurstaki. Proc Natl Acad USA. 79:6065-6069. Wong H C, Schnepf, H E, Whiteley H R.1983. Transcriptional and translational start sites for the Bacillus thuringiensis crystal protein gene. J Biol Chem. 258:1960-1967
    Hernandez C S, Andrew R, Bel Y, et al.2005.Isolation and toxicity of Bacillus thuringiensis from potato-growing areas in Bolivia J. Invertebr Pathol,88(1):8-16.
    Hoffmann A, Thimm T, Droge M, Moore E R B, Munch J C and Tebbe C C. 1998.Intergeneric transfer of conjugative and mobilizable plasmids harbored by Escherichia coli in the gut of the soil microarthropod Folsomia candida(Collembola)[J].Appl.Envir.M icrobial.64:2652-2659.
    Hofte H, Whiteley H R.1989. Insecticidal crystal protein of Bacillus thuringiensis. Microbiol Rev.53:242-255.
    http://www.biols.susx..ac.uk/home/Neil_Crickmore/Bt/index.htm.2010
    Ibarra JE, del Rincon MC, Orduz S, et al.2003. Diversity of Bacillus thuringiensis strains from Latin America with insecticidal activity against different mosquito species. Appl Environ Microbiol.69(9):5269-74.
    Ichimatsu T, Mizuki E, Nishimura K,et al.2000. Occurrence of Bacillus thuringiensis in fresh waters of Japan. Curr. Microbial.40(4):217-220.
    Ishiwata S.On a kind of severe flacherie (sotto disease).1901. [J] Dainihon Sanshi Kaiho.114:1-5.
    James C.2001. Global review of commercialized transgenic crops:2001.ISAAA Briefs
    Jara S,Maduell P, Orduz S.2006. Diversity of Bacillus thuringiensis strains in the maize and bean phylloplane and their respective soils in Colombia. J Appl Microbiol.101(1):117-24.
    Jouzani GS, Abad AP, Seifinejad A, et al.2008. Distribution and diversity of Dipteran-specific cry and cyt genes in native Bacillus thuringiensis strains obtained from different ecosystems of Iran. J Ind Microbiol Biotechnol.35(2):83-94.
    Juarezperez V M, Ferrandis M D, Frutos R..1997. PCR-based approach for detection of novel Bacillus thuringiensis cry genes. Appl. Environ. Microbiol. 63(8):2997-3002.
    K Edyta, K Adam, Z Jadwiga.2007. Analysis of cry Gene Profiles in Bacillus Thuringiensis Strains Isolated During Epizootics in Cydia pomonella L.Current Microbiology.55 (2).217-222
    Kronstad J M, Schnepf H E, Whiteley H R.1983. Diversity of locations for Bacillus thuringiensis crystal protein genes. J.Bacteriol.154:419-428.
    Kuo W S, Chak K F.1996. Identification of novel cry-type genes from Bacillus thuringiensis strains on the basis of restriction fragment length polymorphism of the PCR-amplified DNA. Appl. Environ. Microbiol.62(4):1369-1377.
    Leckie S E, Prescott C.E, Grayston S J. et al.2004. Characterization of humus microbial communities in adjacent forest types that differ in nitrogen availability. Microb.Ecol.48(1):29-40.
    Lenin K, Mariam M A, Udayasuriyan V, Expression of a cry2Aa gene in an acrystalliferous Bacillus thuringiensis strain and toxicity of Cry2Aa against Helicoverpa armigera.World Journal of Microbiology and Biotechnology,2001,17: 273-278.
    Li JD, Carroll J, Ellar DJ. et al.1991. Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature.31; 353(6347):815-21.
    Liang Y, Dean D H.1994.Location of a lepidopteran specificity region in insecticidal crystal protein CryⅡA from Bacillus thuringiensis. Molecular Microbiology.13(4):569-755.
    Limpanawat S, Promdonkoy B, Boonserm P.2009. The C-terminal domain of BinA is responsible for Bacillus sphaericus binary toxin BinA-BinB interaction. Curr Microbiol.:59(5):509-513.
    Liu Y J, Wang G Y.2003.The inheritance and expression of Cry1A gene in transgenic maize. Acta Botan Sin.45:253-256
    Maduell P,Callejas R, Cabrera KR, et al.2002. Distribution and characterization of Bacillus thuringiensis on the phylloplane of species of piper (Piperaceae) in three altitudinal levels. Microb Ecol.44(2):144-53.
    Maeda M, Mizuki E, Nakamura Y, et al.2000. Recovery of Bacillus thuringiensis from marine sediments of Japan. Curri Microbial.40(6):418-422.
    Martins ES, Aguiar R.W.S, Monnerat R.G. et al.2006. CrylBa Protein is Toxic to Cotton Boll Weevil(Anthonomus grandis Boheman). Direct Submisson, Bacillus thuringiensis Toxin Nomenclature. http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt.
    Martins ES, Aguiar RW, Martins NF. et al.2008. Recombinant Cry1Ia protein is highly toxic to cotton boll weevil (Anthonomus grandis Boheman) and fall armyworm (Spodoptera frugiperda). J Appl Microbiol.104(5):1363-71.
    Masson L, Erlandson M, Puzstai-Carey M. et al.1998. A holistic approach for determining the entomopathogenic potential of Bacillus thuringiensis strains. Appl. Environ. Microbiol.64(2):4782-4788.
    Merdan B A, Labib I.2003. Soil characteristics as factors governing the existence, recycling and persistence of Bacillus thuringiensis in Egypt. [J]. J. Egypt. Soc. Parasitol. 33(2):331-340.
    Naimov S, Boncheva R, Karlova R,.et al.2008. Solubilization, activation, and insecticidal activity of Bacillus thuringiensis serovar thompsoni HD542 crystal proteins. Appl Environ Microbiol. (23):7145-51.
    Naimov S, Weemen-Hendriks M, Dukiandjiev S et al.2001. Bacillus thuringiensis delta-endotoxin Cryl hybrid proteins with increased activity against the Colorado potato beetle. Appl Environ Microbiol.67(11):5328-5330.
    Nazarian A, Jahangiri R, Jouzani GS, et al.2009.Coleopteran-specific and putative novel cry genes in Iranian native Bacillus thuringiensis collection. J Invertebr Pathol.102(2):101-9.
    Ohba M, Shisa N, Thaithanun S, et al.2002. A unique feature of Bacillus thuringiensis H-serotype flora in soils of a volcanic island of Japan. Appl Microbial. 48(4):233-235.
    PangYi, Yujianxiu, Tanle, et al.1999. Molecular Chaperone p21genes from Bacillus thuringiensis.In:Biotehnology of Bacillus thuringiensis YuZiniu, SunMing and LiuZiduo ed.Beijing.Science Press, (3):99-100.
    Pattanayak D, Chakrabarti S K, Kumar P A.et al.2001. Characterization of genetic diversity of some serovars of Bacillus thuringiensis by RAPD. Indian J Exp Biol. 39(9):897-901.
    Pinio L M, Azambuja A O, Diehl E and Fiuza L M.2003.Pathogenicity of Bacillus thuringiensis isolated from two species of Acromyrmex (Hymenoptera, Formicidae) [J].B raz.J.Biol..63(2):301-416
    Porcar M, Juarez-Perez V.2003. PCR-based identification of Bacillus thuringiensis pesticidal crystal genes. FEMS Microbiol.Rev.26(5):419-432.
    Pornwiroon W, Katzenmeier G, Panyim S. etal.2004. Aromaticity of Tyr-202 in the alpha4-alpha5 loop is essential for toxicity of the Bacillus thuringiensis Cry4A toxin.J. Biochem. Mol. Biol..31;37(3):292-297.
    Rowell B, Bunsong N, Satthaporn K, Phithamma S, Doungsa-Ard C. 2005.Hymenopteran parasitoids of diamondback moth (LepidopteraPeunomutidae) in northern Thailand [J]. J. Econ. Entomol.98(2):449-456
    Sanchis V, Gohar M, Chaufaux J.et al.1999. Development and field performance of a broad-spectrum nonviable asporogenic recombinant strain of Bacillus thuringiensis with greater potency and UV resistance. Appl Environ Microbio.165(9):4032-4039.
    Sankaranarayanan R, Sekar K, Banerjee R.et al.1996. A novel mode of carbohydrate recognition in jacalin, a Moraceae plant lectin with a beta-prism fold. Nat Struct Biol.3(7):596-603.
    Schnepf H E, Crickmore N J, Van Rie Lereclus. et al.1998. Bacillus thuringiensis and its pesticidal Crystal protein. Microbiol. And Molecular Biology Review. 62:3775-3806.
    Schnepf H E, Wong H C, Whilteley H R.1985. The amino acid sequence of a crystal protein from Bacillus thuringiensis deduced from the DNA base sequence. J. biol. Chem,260:6264-6272.
    Schnepf E., Whiteley H R.1981. Clonning and expression of the Bacillus thuringiensis crystal protein gene in E.coli. Proceed.Nat.Acad.Scien.78:2893-2897.
    Schnepf N, Crickmore J, Van Rie Lereclus D.1998. Bacillus thuringiensis and its pesticidal crystal protein. Microbiol.And Molecular Biology Review.62 (3):775-806.
    Schwartz J L, Juteau M P.1997. Restriction of intramolecular movements within the Cry1Aa toxin molecule of Bacillus thuringiensis through diulfide bond engineering.FEBS Lett.410:397-402.
    Shin B S, et al.1995. Distribution of cryV-type insecticidal protein genes in Bacillus thuringiensis and cloning of cryV-type genes from Bacillus thuringiensis subsp.kurstaki and Bacillus thuringiensis subsp.entomocidus. Appl Environ Microbiol.61(6):2402
    Slatin S.L, English L.1992.Mode of action of delta-endotoxins from Bacillus thuringiensis a comparison with other bacterial toxins.Insect Biol...22(1):1-7.
    Song F P, Huang D, Zhang J, et al. Identification of cry gene from Bacillus thuringiensis by PCR-RFLP system.30th Annual society for invertebrate pathology.
    Sudakin D L.2003. BioPestieides.ToxieolRev.22(2):83-90.
    Tailor R, et al.1992. Identification and characterization of a novel Bacillus thuringiensis delta-endotoxin entomocidal to coleopteran and lepidopteran larvae. MolMierobiol.6:1211
    Tailor R, Tippett J, Gibb G, Pells S, Pike D, Jordan L and Ely S. 1992.characterization of a nobel Bacillus thuringiensis delta-endotoxion Identification and entomocedal to Coleopteran and Lepidopteran larvae [J].Mol.Microbial.6(9):1211-1217
    Tinghui Liu et al,2009 Biological characteristics of Bacillus thuringiensis strain Bt11 and identification of its cry-type genesFront. Agric. China,3(2):159-163
    Toja A., Aizawa. K.1983.Dissolution and degradation of Bacillus thuringiensis δ-endotoxin by gut juiceprotease of the silkworm Bombyx mori. Appl. Environ. Microbial.45:576-580.
    Tuntitippawan T, Boonserm P, Katzenmeier G et al.2005.Targeted mutagenesis of loop residues in the receptor-binding domain of the Bacillus thuringiensis Cry4Ba toxin affects larvicidal activity. FEMS Microbiol.Lett,242(2):325-332.
    Uribe D, Martinez W, Ceron J.2003. Distribution and diversity of cry genes in native strains of Bacillus thuringiensis obtained from different ecosystems from Colombia. [J]. J. Invertebr. Pathol.82(2):119-127
    Vidal-Quist JC, Castanera P, Gonzalez-Cabrera J.2009. Diversity of Bacillus thuringiensis strains isolated from citrus orchards in spain and evaluation of their insecticidal activity against Ceratitis capitata. J Microbiol Biotechnol.19(8):749-59.
    Vilas-Boas G T, Lemos M V.2004. Diversity of cry genes and genetic characterization of Bacillus thuringiensis isolated from Brazil. [J]. Can. J. Microbiol. 50(8):605-613.
    Wang J, Boets A, Van RJ, et al. Characterization of cry1, cry2, and cry9 genes in Bacillus thuringiensis isolates from China J. Invertebr Pathol,2003,82(1):63-71.
    Wirth M C, Delecluse, Walton W E.2004.Laboratory selection for resistance to Bacillus thuringiensis subsp jegathesan or a compoment toxin, Cry11B, in Culex quinquejasciatus (Diptera:Culicidae).J. Med. Entomol.,41(3):435-41.
    Wirth M C, Park H W, Walton W E et al.2005.Cytl A of Bacillus thuringiensis delays evolution of resistance to CryllA in the mosquito Culex quinquejasciarus.Appl.Environ.Microbiol, 71(1):185-189.
    Wolfersberger M G, Chen X J, Dean D H.1996. Site-directed mutations in the third domain of Bacillus thuringiensis δ-endotoxin CrylAa affect its ability to increase the permeability of Bombyx mori midgut brush borde rmembrane vesicles. Appl. Environ. Microbiol..62:279-282.
    Zhao C, Luo Y, Song C, et al.2007. Identification of three Zwittermicin A biosynthesis-related genes from Bacillus thuringiensis subsp. kurstaki strain YBT-1520.Arch Microbiol. Apr; 187(4):313-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700