MIMO系统中迭代检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
未来移动通信对于高速数据的传输业务的需求更加紧迫。为此B3G乃至4G中多输入多输出(MIMO),正交频分复用(OFDM),信道编码及迭代检测等技术成为解决一系列相关问题的关键技术。MIMO技术可以在不占用额外带宽的情况下提高系统的频谱效率;迭代检测技术结合了检测与译码,通过迭代在降低复杂度的同时有效保证了系统性能。本文主要针对MIMO系统中的迭代检测问题进行了研究。本文的主要内容和成果如下:
     1.提出了一种应用于MIMO系统的基于QR分解算法的新型低复杂度迭代接收机。接收端首先通过对信道矩阵QR分解对接收信号进行变换,根据QR分解变换后的上三角形式采用分层检测,对不同层分组并进行部分并行干扰抵消可以同时抵消掉多层信号,组内采用MAP联合检测输出软信息。通过交织解交织器将软入软出检测器与Turbo迭代译码器级联起来,经过迭代有效的消除了多天线间的干扰。与传统基于QR分解的串行干扰抵消迭代接收机相比性能有了极大提高,并且受信噪比估计误差的影响较小。
     2.基于QR分解的最优排序无法直接获得,需要通过改变排序顺序搜索获得。针对最优排序复杂的问题提出了一种低复杂度的基于QR分解的BLAST险测算法。该算法避免了传统分层空时检测算法中对信道矩阵求逆的过程,减小了运算复杂度,同时克服了排序QR分解检测复杂度高的问题。在采用次优排序的基础上通过串行干扰抵消逐层去除最小错误概率的信号,减小了抵消过程中误差传播的概率,提高了系统的误比特性能。该算法性能优于传统的分层空时检测算法以及次优排序QR分解检测算法。将该算法应用到迭代系统可以有效提高检测输出比特外信息的互信息。
     3.通过结合HBLAST与VBLAST系统的特点以及Turbo编码的结构提出了一种新的应用于MIMO系统的BLAST收发系统TLBLAST,实现了高速数据传输,在保证分集增益的同时每根天线可以采用不同的编码方式对数据实行不同等级的保护。接收端将软输入软输出检测器与迭代译码级联起来,经过迭代有效的提高了系统性能,并且与已有的VBLAST系统迭代接收结构复杂程度相当。此外针对基于串行抵消结构的迭代接收算法的特点提出了非规则调制的MIMO系统,在保证总的传输速率一致的前提下对每根天线上分配不同的调制方案,通过仿真表明采用非规则编码调制使系统误码性能得到了极大的提高。
     4.研究了MIMO系统在接收端所知信道信息非理想情况下的性能并提出了改进方案。针对非理想信道信息提出了一种应用于多输入多输出(MIMO)系统的新的迫零接收机。在接收端已知信道信息估计值的情况下,通过引入信道误差的统计信息,修正了传统迫零接收的滤波系数。当接收端无法获取正确的信道信息,该接收机受信道信息误差的影响较传统的迫零接收机小,具有较好的鲁棒性。
     5.对基于线性滤波结构的迭代系统和带干扰抵消的迭代系统在收端非理想信道信息下性能进行了分析。为了获得最佳的迭代性能,通常采用迭代系统采用特殊的符号映射方式如反格雷映射,然而此类映射方式只有在迭代通道打开的前提下才有效。当信道信息存在误差时,采用此类映射很容易失效。通过分析得出采用格雷映射的迭代系统更加健壮,当估计的信道信息的偏差较大时,采用格雷映射的迭代系统反而性能更好。基于此提出了实际情况下根据信道估计质量改变映射的自适应系统,通过切换映射方式或采用混合映射使系统迭代过程中输出的外信息更可靠,从而非理想信道信息下更加健壮,有效提升系统性能。此外改进了非理想信道信息下SIC-MMSE迭代算法,通过修正信号估值的方差的计算,使得输出的外信息更为可靠,仿真表明采用修正的算法系统性能得到改进,优于传统算法。
There is an urgent need for the service of high data rate transmission in the future mobile communication systems. For solving relative problem,Multiple Input Multiple Output (MIMO),Orthogonal Frequency Division Multiplexing(OFDM), channel coding and iterative detection technologies are taken as the key technologies in B3G and 4G. Wireless communication systems with MIMO have the potential of vastly improving spectral efficiency without expanding the bandwidth. The detection and decoding are considered in iterative detection technology. By iteration, the performance of system is improved with low complexity. In this thesis, the iterative detection in MIMO is studied. The main research results of this dissertation are as follows:
     1. A novel low-complexity iterative receiver based on QR decomposition in Multiple Input Multiple Output (MIMO) system is presented. In the receiver, the channel matrix is decomposed and the received signal is processed. According to the upper triangular matrix after QR decomposition, the signal is detected layer by layer. Partial parallel interference cancellation based on QR decomposition is used, in which different layers are grouped and jointly detected by MAP. The interference between different antennas is cancelled effectively through serially concatenating a soft input soft output (SISO) detector and Turbo decoder by iterative process. Three dimension extrinsic information transfer characteristics (3D EXIT charts) are used to analysis the processes of iterative. Compared with traditional QR based serial interference cancellation iterative receiver, the performance of the proposed receiver is improved greatly. And it is not sensitivity to the mismatched SNR.
     2. To find the optimal order of QR-decomposition, the columns of channel matrix should be permutated and it can only be obtained by search method. An improved QR based detection algorithm is proposed for use in the Bell Labs Layered Space-Time (BLAST) systems. It doesn't require pseudo inverse of matrix, then has less computational load in contrast to the standard detection algorithm with inverse of matrix. It has less computational complexity than ordered QR-based detection .The probability of error propagation is reduced through serial interference canceling; The signal of minimum error probability is removed layer by layer. Simulation shows that it outperforms the classic V-BLAST and ordered, suboptimal ordered QR based detection algorithms. Combined with the iterative decoding, the extrinsic information delivered by detector will be improved further.
     3. A novel BLAST transceiver named Turbo-Like BLAST (TLBLAST) for MIMO communications is proposed, which combines the characteristics of HBLAST and VBLAST with the structure of Turbo encoder. The high data rate transmission can be implemented and in each transmitted antenna, different encode schemes can be used to supply different protection levels. The system performance is improved effectively through serially concatenating a soft input soft output (SISO) detector and decoder by iterative process with comparable complexity of VBLAST. Simulation results show that the performance of TLBLAST is better than HBLAST and VBLAST in Rayleigh flat fading channels. Aimed at the iterative receiver based on serial cancellation, an irregular modulation scheme in MIMO is proposed. In each antenna, different modulation is assigned with the same transmission rate. Simulation shows that the bit error rate is improved greatly with the irregular modulation scheme.
     4 The performance of MIMO system under imperfect channel information is analyzed and the improved scheme is proposed. A robust zero-forcing receiver in Multiple Input Multiple Output (MIMO) channel with channel estimation error is presented. By considering the statistic of channel estimation error, the coefficient of zero-forcing filter is modified with the estimated channel information. The presented receiver is more robust than traditional ZF receiver in the presence of inaccurate channel information in the receiver.
     5. The performance of iterative receivers based on linear filter and interference cancellation in the present of imperfect channel information are analyzed. To achieve the best performance by iteration, the special mapping is used, such as anti-gray map-ping. It can only take effect when the tunnel of iteration is open, and it will be useless easily when the channel state information is mismatched. By analyzing, iterative sys-tem with gray mapping is more robust under imperfect channel information, and the better performance than anti-gray mapping will be achieved when the channel esti-mation error is large. An adaptive transmission system is presented, whose mapping scheme is switched based on channel estimation quality. It is shown that the output extrinsic information is more reliable by switching the mapping scheme or adopting mixed mapping scheme and the performance of system is improved. It is more robust with the imperfect channel information. Additionally, the improved sic-mmse iterative algorithm is proposed, the more reliable extrinsic information will be output with the modified variance of estimated signal. It is shown that the modified algorithm is better than traditional algorithm.
引文
[1]李建东,杨家玮.个人通信.人民邮电出版社,2002.
    [2]T. S.Rappaport, A. Annamalai, R.M.Buehere, and W. H.Tranter. Wireless commu-nications:past events and a future perspective. IEEE Communications Magazine, 40(5):148-161,2002.
    [3]郭梯云,杨家玮,李建东.数字移动通信.人民邮电出版社,2001.
    [4]H. Ekstrom, A. Furuskar, and J. Karlsson etal. Technical solutions for the 3g long-term evolution. IEEE Communications Magazine,44(3):38-45,2006.
    [5]沈嘉.中国imt-advanced研究进展.现代电信科技,1:19-24,1月2007.
    [6]XiaoHu Yu, Guoan Chen, Ming Chen, and Xiqi Gao. Toward beyond 3g:the future project in china. IEEE Communications Magazine, pages 70-75, Jan 2005.
    [7]Dongning Guo, S.Shamai, and S. Verdu. Mutual information and mmse in gaussian channels. ISIT, page 349, June-July 2004.
    [8]J. Govil. An empirical feasibility study of 4g's key technologies. pages 267-270, May 2008.
    [9]Ping Zhang and Lihua Li. Research and demonstration on beyond 3g systems. volume 2, pages 1919-1923 vol.2, Sept.2003.
    [10]C.E.Shannon. A mathematical theory of communication. Bell Labs. Tech,27:379-423, July 1948.
    [11]I.E.Telatar. Capacity of multi-antenna gaussian channels. Europ. Trans. Telecomm., 10:585-595, Nov./Dec.1999.
    [12]G. J.Foschini and M. J.Gans. On limits of wireless communications in a fading environ-ment when using multiple antennas. Wireless Personal Communications,6(3):311-335, march 1998.
    [13]G.J.Foschirii. Layered space-time arvhitecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs. Tech, 1(2):41-59,1996.
    [14]P.W. Wolniansky, G.J. Foschini, G.D. Golden, and R.A. Valenzuela. V-blast:an architecture for realizing very high data rates over the rich-scattering wireless channel. IEEE Proc. ISSSE-98, Pisa, Italy, pages 295-300, September 1998.
    [15]V.tarokh, N.Seshadri, and A.R.Calderbank. Space-time codes for high data rate wire-less communications:performance criterion and code construction. IEEE Transactions on Information Theory,44(2):744-765, May 1998.
    [16]S.M.Alamouti. A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications,16(8):1451-1458, Oct.1998.
    [17]G.G. Raleigh and J.M. Cioffi. Spatio-temporal coding for wireless communication. IEEE Transactions on Communications,46(3):357-366, Mar 1998.
    [18]D. Gesbert, M. Shafi, Da shan Shiu, P.J. Smith, and A. Naguib. From theory to practice:an overview of mimo space-time coded wireless systems. IEEE Journal on Selected Areas in Communications,21(3):281-302, Apr 2003.
    [19]Hsuan-Jung Su and E. Geraniotis. Space time turbo codes with full antenna diver-sity. IEEE Transactions on Communications,49(1):47-57, Jan.2001.
    [20]WeiZhang, Xiang-Gen Xia, and P.C.Ching. High-rate full-diversity space-time-frequency codes for mimo multipath block-fading channels. IEEE Globecom 2005, 3:1587-1591,2005.
    [21]G.J.Foschini, D.Chizhik, and M.J.Gans. Analysis and performance of some ba-sic space-time architecture. IEEE Journal on Selected Areas in Communications, 21(3):303-320, Apr.2003.
    [22]L.A. Dalton and C.N. Georghiades. A full-rate, full-diversity four-antenna quasi-orthogonal space-time block code. IEEE Transactions on Wireless Communications, 4(2):363-366, March 2005.
    [23]G.J.Foschini, G.D.Golden, and R.A.Valenzuela. Simplified processing for high spec-tral efficiency wureless communication employing multi-element arrays. IEEE Journal on Selected Areas in Communications,17(11):1841-1852, Nov.1999.
    [24]L.Zheng and D.Tse. Diversity and multiplexing:a fundamental tradeoff in multiple-antenna channels. IEEE Transactions on Information Theory,49:1073-1096, May 2003.
    [25]A. Stamoulis, Zhiqiang Liu, and G. B. Giannakis. Space-time block-coded ofdma with linear precoding for multirate services. IEEE Transactions on Signal Processing, 50(1):119-129, Jan.2002.
    [26]Lai-U Choi and R. D. Murch. A transmit preprocessing technique for multiuser mimo systems using a decomposition approach. IEEE Transactions on Wireless Communi-cations,3(1):20-24, Jan.2004.
    [27]吕卓.Mimo信道参数估计技术的研究.西安电子科技大学博士论文,2007.
    [28]佟学俭,罗涛.OFDM移动通信技术原理与应用.人民邮电出版社,2003.
    [29]T.Pollet, M.V.Bladel, and M.Moeneclaey. Ber sensitivity of ofdm system to carrier frequency offset and wiener phase noise. IEEE Transaction on Communications, 43(2/3/4):191-193, Feb./Mar./Apr.1995.
    [30]R. van Nee and A. de Wild. Reducing the peak-to-average power ration of ofdm. IEEE Vehicular Technology Conference VTC 98.,3:2072-2076, May 1998.
    [31]R.W.Bauml, R.F.H.Fischer, and J.B.Huber. Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping. Electronics Letters,32:2056-2057,1996.
    [32]Kyung Won Park and Yong Soo Cho. An mimo-ofdm technique for high-speed mobile channels. IEEE Communications Letters,9(7):604-606, July 2005.
    [33]H. Bolcskei and E. Zurich. Mimo-ofdm wireless systems:basic,perspectives,and chal-lenges. IEEE Wireless Communications,13(4):31-37, Aug.2006.
    [34]G. L. Stuber, J. R. Barry, S. W. Mclsughlin, Ye (Geoffrey) Li, M. A. Ingram, and T. G. Pratt. Broadband mimo-ofdm wireless communications. Proceedings of the IEEE, 92(2):271-294, Feb.2004.
    [35]H.Yaghoobi. Scalable ofdma physical layer in ieee 802.16 wirelessman. Intel Technol. J.,8:201-212, Aug.2004.
    [36]Junqiang Li, K.B. Letaief, and Zhigang Cao. Adaptive cochannel interference cancel-lation in space-time coded communication systems. IEEE Transactions on Commu-nications,50(10):1580-1583, Oct 2002.
    [37]V. Mahinthan, B. Kannan, and A. Nallanathan. Adaptive channel estimation and interference suppression in space-time coded multiuser systems, volume 1, pages 439-442 vol.1, Nov.2002.
    [38]Qingwen Liu, Shengli Zhou, and G.B. Giannakis. Cross-layer combining of adaptive modulation and coding with truncated arq over wireless links. IEEE Transactions on Wireless Communications,3(5):1746-1755, Sept.2004.
    [39]Dalei Wu and Song Ci. Cross-layer design for combining adaptive modulation and coding with hybrid arq to enhance spectral efficiency. pages 1-6, Oct.2006.
    [40]S. Catreux, V. Erceg, D. Gesbert, and Jr. Heath, R.W. Adaptive modulation and mimo coding for broadband wireless data networks. IEEE Communications Magazine, 40(6):108-115, Jun 2002.
    [41]杨小牛,楼才义,徐建良.软件无线电原理与应用.北京:电子工业出版社,2001.
    [42]J.Mitola. Cognitive radio:making software radios more personal. IEEE Personal Communication,6(4):13-18, Aug.1999.
    [43]陈颉,吴非.认知无线电标准化进程.中兴通讯技术,13(3):9-11,6 2007.
    [44]K. M.Chugg, A. Anastasopoulos, and Xiaopeng Chen. Iterative detection:adaptivity, complexity reduction, and applications. Kluwer Academic Publisher,2001.
    [45]S. Verdu. Multiuser Detection. Cambridge University Press,1998.
    [46]P.H. Siegel, D. Divsalar, E. Eleftheriou, J. Hagenauer, D. Rowitch, and W.H. Tranter. Guest editorial the turbo principle:from theory to practice. IEEE Journal on Selected Areas in Communications,19(5):793-799, May 2001.
    [47]C. Berrou, A.Glavieux, and P. Thitimajshima. Near shannon limit error-correcting coding and decoding:turbo codes. IEEE International Conference on Communica-tions, pages 1064-1070,5 1993.
    [48]刘东华.Turbo码原理与应用技术.北京:电子工业出版社,2004.
    [49]S. ten Brink. Rate one-half code for approaching the shannon limit by 0.1 db. Elec-tronics Letters,36(15):1293-1294, July 2000.
    [50]J. Hagenauer, E. Offer, and L. Papke. Iterative decoding of binary block and con-volutional codes. IEEE Transactions on Information Theory,42(2):429-445, Mar 1996.
    [51]P. Thitimajshima. Recursive systematic convolutional codes and application to par-allel concatenation. volume 3, pages 2267-2272 vol.3, Nov 1995.
    [52]S. Benedetto, R. Garello, and G. Montorsi. A search for good convolutional codes to be used in the construction of turbo codes. IEEE Transactions on Communications, 46(9):1101-1105, Sept.1998.
    [53]S. Benedetto and G. Montorsi. Unveiling turbo codes:some results on parallel con-catenated coding schemes. IEEE Transactions on Information Theory,42(2):409-428, Mar 1996.
    [54]S. Benedetto, D. Divsalar, and J. Hagenauer. Guest editorial concatenated coding techniques and iterative decoding:Sailing toward channel capacity. IEEE Journal on Selected Areas in Communications,16(2):137-139, Feb.1998.
    [55]S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara. Serial concatenation of inter-leaved codes:performance analysis,design, and iterative decoding. IEEE Transactions on Information Theory,44(3):909-926, May 1998.
    [56]Changlong Xu, Ying-Chang Liang, and Wing Seng Leon. A low complexity decod-ing algorithm for extended turbo product codes. IEEE Transactions on Wireless Communications,7(1):42-47, Jan.2008.
    [57]Yi Wu, Shi-Dong Zhou, and Yan Yao. Low complexity decision-aided decoder for turbo dpsk. Electronics Letters,36(25):2079-2081, Dec.2000.
    [58]M. Martina, M. Nicola, and G. Masera. Hardware design of a low complexity, parallel interleaver for wimax duo-binary turbo decoding. IEEE Communications Letters, 12(11):846-848, Nov.2008.
    [59]D. Bokolamulla and T. Aulin. Reduced complexity iterative decoding for concatenated coding schemes. IEEE International Conference on Communications,2003. ICC'03., 5:3135-3139, May 2003.
    [60]T. K. Lee and Ba-zhong Shen. A flexible memory-mapping scheme for parallel turbo decoders with periodic interleavers. pages 651-654, June 2007.
    [61]Yang Sun, Yuming Zhu, M. Goel, and J.R. Cavallaro. Configurable and scalable high throughput turbo decoder architecture for multiple 4g wireless standards. pages 209-214, July 2008.
    [62]J. G. Harrison. Implementation of a 3gpp turbo decoder on a programmable dsp core. 3DSP White Paper,2001.
    [63]R.G.Gallager. Information Theory and Reliable Communication. NY:Wiley,1968.
    [64]A. Sanderovich, M. Peleg, and S. Shamai (Shiz). Ldpc coded mimo multiple access with iterative joint decoding. IEEE Transactions on Information Theory,51 (4):1437-1450, Apr.2005.
    [65]Ben Lu, Guosen Yue, and Xiaodong Wang. Performance analysis and design opti-mization of ldpc-coded mimo ofdm system. IEEE Transactions on Signal Processing, 52(2):348-361, Feb.2004.
    [66]K.S. Kim, Y.H. Kim, and J.Y. Ahn. Efficient adaptive transmission technique for ldpc coded ofdm cellular systems using multiple antennas. Electronics Letters,40(6):396-397, March 2004.
    [67]C. Douillard. Iterative correction of intersymbol interference:Turbo equalization. Eur. Trans. Telecomm.,6:507-511, Oct./Sept.1995.
    [68]A.Picart, P.Didier, and A.Glavieux. Turbo-detection:a new approach to combat chan-nel frequency selectivity. IEEE ICC1997,3:1498-1502,1997.
    [69]F. Vogelbruch, R. Zukunft, and S. Haar.16-qam turbo equalization based on minimum mean squared error linear equalization. volume 2, pages 1943-1947 vol.2, Nov.2002.
    [70]A. Dejonghe and L. Vandendorpe. Turbo-equalization for multilevel modulation:an efficient low-complexity scheme. IEEE International Conference on Communications, 2002. ICC 2002.,3:1863-1867, Apr.-May 2002.
    [71]M. Koca and B. C. Levy. Turbo1 space ‖-time equalization of tcm for broadband wireless channels. IEEE Transactions on Wireless Communications,3(1):50-59, Jan. 2004.
    [72]L. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal decoding of linear codes for minimizing symbol error rate. IEEE Transactions on Information Theory,20(2):284-287, Mar.1974.
    [73]R. Koetter, A.C. Singer, and M. Tuchler. Turbo equalization. IEEE Signal Processing Magazine,21(1):67-80, Jan.2004.
    [74]J.G.Proakis. Digital Communications. NY:McGraw-Hill,4thedition edition,2001.
    [75]M. Tuchler, A.C. Singer, and R. Koetter. Minimum mean squared error equalization using a priori information. IEEE Transactions on Signal Processing,50(3):673-683, Mar 2002.
    [76]F. Vogelbruch and S. Haar. Low complexity turbo equalization based on soft feedback interference cancelation. IEEE Communications Letters,9(7):586-588, July 2005.
    [77]J. Moon and F. R. Rad. Turbo equalization via constrained-delay app estimation with decision feedback. IEEE Transactions on Communications,53(12):2102-2107, Dec. 2005.
    [78]M. Tuchler, R. Koetter, and A.C. Singer. Turbo equalization:principles and new results. IEEE Transactions on Communications,50(5):754-767, May 2002.
    [79]Yakun Sun, V. Tripathi, and M. L. Honig. Adaptive turbo reduced-rank equalization for mimo channels. IEEE Transactions on Wireless Communications,4(6):2789-2800, Nov.2005.
    [80]V. D. Trajkovic, P. B. Rapajic, and R. A. Kennedy. On the feedback error in adaptive turbo equalization. AusCTW2005, pages 236-241,2005.
    [81]T. Abe and T. Matsumoto. Space-time turbo equalization in frequency-selective mimo channels. IEEE Transaction on Vehicular Technology,52(3):469-475, May 2003.
    [82]G. Bauch and N. Al-Dhahir. Reduced-complexity space ‖-time turbo-equalization for frequency-selective mimo channels. IEEE Transactions on Wireless Communications, 1(4):819-828, Oct.2002.
    [83]M.A.S. Hassan, B.S. Sharif, Wai Lok Woo, and A.M. Hmidat. Iterative channel esti-mation and equalization for stbc mc-cdma system over time-and frequency-selective fading channels. Information and Communication Technologies,2006. ICTTA '06. 2nd,2:2549-2553,2006.
    [84]Husheng Li and H.V. Poor. Reduced complexity joint iterative equalization and multiuser detection in dispersive ds-cdma channels. IEEE Transactions on Wireless Communications,4(3):1234-1243, May 2005.
    [85]H.V. Poor. Iterative multiuser detection. IEEE Signal Processing Magazine,21(1):81-88, Jan.2004.
    [86]H.V. Poor. Turbo multiuser detection:an overview. volume 2, pages 583-587 vol.2, 2000.
    [87]M.Moher. An iterative multiuser decoder for near-capacity communications. IEEE Transactions on Communications,46(7):870-880, July 1998.
    [88]A.D. Damnjanovic and B.R.Vojcic. Iterative multiuser detection/decoding for turbo coded cdma systems. IEEE International Symposium on Spread Spectrum Techniques and Applications, pages 603-607, Sept.2000.
    [89]A.A. AlRustamani, A.D. Damnjanovic, and B.R. Vojcic. Turbo greedy multiuser detection. IEEE Journal on Selected Areas in Communications,19(8):1638-1645, Aug 2001.
    [90]Wei Zhang, C. D'Amours, and A. Yongacoglu. Soft-input soft-output decorrelating detectors for coded multiuser systems. IEEE Transactions on Signal Processing, 53(8):2957-2960, Aug.2005.
    [91]P.D.Alexander, M.C.Reed, J.A.Asenstorfer, and C.B.Schlegel. Iterative multiuser interference reduction:turbo cdma. IEEE Transactions on Communications,47:1008-1014, July 1999.
    [92]A. Nordio, M. Hernandez, and G. Caire. Design and performance of a low-complexity iterative multiuser joint decoder based on viterbi decoding and parallel interference cancellation. IEEE International Conference on Communications,2002. ICC 2002., 1:298-302,2002.
    [93]Xiaodong Wang and H.V. Poor. Iterative(turbo) soft interference cancellation and de-coding for coded cdma. IEEE Transaction on Wireless Communications,47(7):1046-1061,1999.
    [94]M. Sellathurai and S. Haykin. Turbo-blast for wireless communications:theory and experiments. IEEE Transactions on Signal Processing,50(10):2538-2546, Oct.2002.
    [95]A.J. Paulraj, D.A. Gore, R.U. Nabar, and H. Bolcskei. An overview of mimo communications-a key to gigabit wireless. Proceedings of the IEEE,92(2):198-218, 2004.
    [96]Ben Lu and Xiaodong Wang. Iterative receivers for multiuser space-tima coding systems. IEEE Journal on Selected Areas in Communications Letters,18(11):2322-2335,2000.
    [97]F. Jelinek. A fast sequential decoding algorithm using a stack. IBM Journal of Research and Development,13:675-685,1969.
    [98]Y. L. C. de Jong and T. J. Willink. Iterative tree search detection for mimo wireless systems. IEEE Transactions on Communications,53(6):930-935, June 2005.
    [99]J. Hagenauer and C. Kuhn. The list-sequential (liss) algorithm and its application. IEEE Transactions on Communications,55(5):918-928, May 2007.
    [100]S. Haykin, M.Sellathurai, Y. de Jong, and T. Willink. Turbo-mimo for wireless com-munications. IEEE Communications Magazine,42(10):48-53, Oct.2004.
    [101]R. D. Souza, Javier Garcia-Frias, and A. M. Haimovich. Semiblind em-based itera-tive receivers for space ‖-time-coded modulation and quasi-static frequency-selective fading channels. IEEE Transactions on Vehicular Technology,55(4):1259-1268, July 2006.
    [102]M. R. G. Butler and I. B. Collings. A zero-forcing approximate log-likelihood receiver for mimo bit-interleaved coded modulation. IEEE Communication Letters,8(2):105-107, Feb.2004.
    [103]Huiqiang Zhou, Shidong Zhou, and Jing Wang. A novel sic-pic iterative detector with turbo code under multipath rayleigh fading mimo channel. volume 3, pages 1592-1596 Vol.3, Sept.2004.
    [104]H. Lee, B. Lee, and I. Lee. Iterative detection and decoding with an improved v-blast for mimo-ofdm systems. IEEE Journal on Selected Areas in Communications, 24(3):504-513, March 2006.
    [105]Dongming Wang, Xiqi Gao, and Xiaohu You. Low complexity turbo receiver for multi-user stbc block transmission systems. IEEE Transactions on Wireless Commu-nications,5(10):2625-2632, Oct.2006.
    [106]Yang Hu, Changchuan Yin, and Guangxin Yue. Turbo-mimo-ofdm multiuser de-tection with uplink precoding in frequency-selective fading channels. International Conference on Communications, Circuits and Systems,,1:189-193,2005.
    [107]T. Ratnarajah and M. Sellathurai. Turbo-mimo transceiver for frequency-selective wireless channels, volume 2, pages 878-881 Vol.2, May-1 June 2005.
    [108]T. Abe and T. Matsumoto. Space-time turbo equalization and symbol detection in frequencyselective mimo channels. Vehicular Technology Conference,2001. VTC 2001 Fall. IEEE VTS 54th,2:1230-1234,2001.
    [109]T. Ait-Idir and S. Saoudi. Reduced complexity iterative channel estimation with turbo equalization for multiuser space-time bicm signaling. IEEE Vehicular Technology Conference,2007. VTC2007-Spring., pages 1622-1627, Apr.2007.
    [110]J. Hagenauer and P. Hoeher. Concatenated viterbi decoding. Proceedings of the Fourth Joint Swedish-Soviet International Workshop on Information Theory, pages 29-33, Sept.1989.
    [111]M. T " uchler, S. ten Brink, and J. Hagenauer. Measures for tracing convergence of iterative decoding algorithms. in Proc.4th IEEE/ITG Conf. on Source and Channel Coding, Berlin, Germany, pages 53-56, Jan.2002.
    [112]B. W. Zarikoff and J. K. Cavers. Exit analysis of a soft-input/soft-output iterative multiuser detector. IEEE International Conference on Communications,Singapore, 11:4965-4970, June 2006.
    [113]Kai Li and Xiaodong Wang. Exit chart analysis of turbo multiuser detection. IEEE Transactions on Wireless Communications,4(1):300-311, Jan.2005.
    [114]R. Tee, R.G. Maunder, and L. Hanzo. Exit-chart aided near-capacity irregular bit-interleaved coded modulation design. IEEE Transactions on Wireless Communica-tions,8(1):32-37, Jan.2009.
    [115]K. Bhattad and K. R. Narayanan. An mse-based transfer chart for analyzing iterative decoding schemes using a gaussian approximation. IEEE Transactions on Information Theory,53(1):22-38, Jan.2007.
    [116]M. Fu. Stochastic analysis of turbo decoding. IEEE Transactions on Information Theory,51(1):81-100, Jan.2005.
    [117]V. Ramon, C. Herzet, and L. Vandendorpe. A semi-analytical method for predicting the performance and convergence behavior of a multiuser turbo-equalizer/demapper. IEEE Transactions on Signal Processing,55(3):1104-1117, Mar.2007.
    [118]K. Kansanen and T. Matsumoto. An analytical method for mmse mimo turbo equalizer exit chart computation. IEEE Transactions on Wireless Communications, 6(1):59-63, Jan.2007.
    [119]Junqiang Li, K.B. Letaief, and Zhigang Cao. A reduced-complexity maximum-likelihood method for multiuser detection. IEEE Transactions on Communications, 52(2):289-295, Feb.2004.
    [120]L. Brunel. Multiuser detection techniques using maximum likelihood sphere decod-ing in multicarrier cdma systems. IEEE Transactions on Wireless Communications, 3(3):949-957, May 2004.
    [121]M. R.McKay and I. B.Collings. Capacity and performance of mimo-bicm with zero-forcing receiverd. IEEE Transactions on Communications,53(1):74-83,2005.
    [122]Huaiyu Dai, A.F. Molisch, and H.V. Poor. Downlink capacity of interference-limited mimo systems with joint detection. IEEE Transactions on Wireless Communications, 3(2):442-453, March 2004.
    [123]A. Elkhazin, K. N. Plataniotis, and S. Pasupathy. Reduced-dimension map turbo-blast detection. IEEE Transactions on Communications,54(1):108-118, Jan.2006.
    [124]Jiandong Li, Fei Fei Cao, and Jiawei Yang. Low-complexity algorithm for near-optimum detection of v-blast systems. IEEE Signal Processing Letters,14(9):593-596, Sep.2007.
    [125]孙艳华,吴伟陵.基于qr分解v-blast检测算法研究和比较.无线电工程,36(12):27-29,2006.
    [126]M.O. Damen, K. Abed-Meraim, and S. Burykh. Iterative qr detection for blast. Wireless Personal Communications,19(3):179-191,12 2001.
    [127]A. A. Rontogiannis and S. Theodoridis. New fast qr decomposition least squares adaptive algorithms. IEEE Transactions on Signal Processing,46(8):2113-2121, Aug. 1998.
    [128]Jinho Choi. Nulling and cancellation detector for mimo channels and its applica-tion to multistage receiver for coded signals:Performance and optimization. IEEE Transactions on Wireless Communications,5(5):1207-1216,2006.
    [129]A. Benjebbour, H. Murata, and S. Yoshida. Comparison of ordered successive receivers for space-time transmission. volume 4, pages 2053-2057 vol.4,2001.
    [130]Sang Wu Kim and Kyeong Pyo Kim. Log-likelihood-ratio-based detection ordering in v-blast. IEEE Transactions on Communications,54(2):302-307, Feb 2006.
    [131]B.W. Zarikoff and J.K. Cavers. An iterative groupwise multiuser detector with soft output. volume 4, pages 2920-2924 Vol.4, Sept.2004.
    [132]M. Arar and A. Yongacoglu. Efficient detection algorithm for 2nx2n mimo systems using alamouti code and qr decomposition. IEEE Communication Letters,10(12):819-821, December 2006.
    [133]M.A. Khalighi. Effect of mismatched snr on the performance of log-map turbo detec-tor. IEEE Transactions on Vehicular Technology,52(5):1386-1397, Sept.2003.
    [134]S. ten Brink. Convergence behavior of iteratively decoded parallel concatenated codes. IEEE Transactions on Communications,49(10):1727-1737, Oct 2001.
    [135]丁子哲,张贤达.基于串行干扰抵消的v-blast检测.电子学报,35(6A):19-24,2007.
    [136]郭志恒,李立华,陶小峰.快速v-blast排序检测方法.北京邮电大学学报,30(4):83-86.2007.
    [137]D. Wubben, R. Bohnke, and et al J. Rinas. Efficient algorithm for decoding layered space-time codes. Electronics Letters,37(22):1348-1350,2001.
    [138]B. Hassibi. An efficient square-root algorithm for blast. IEEE Intl. Conf. Acoustic, Speech, Signal Processing, Turkey,2:737-740, June 2000.
    [139]W. Wang, R. Jin, and J. Geng. Improved partial parallel multistage detection for v-blast system. Electronics Letters,43(1):43-44,2007.
    [140]X. Li, H. Huang, G.J. Foschini, and R.A. Valenzuela. Effects of iterative detection and decoding on the performance of blast. volume 2, pages 1061-1066 vol.2,2000.
    [141]M. Sellathurai and S. Haykin. Turbo-blast for high-speed wireless communications. Wireless Communications and Networking Conference,1:315-320,2000.
    [142]A. Stefanov and T.M. Duman. Turbo-coded modulation for systems with transmit and receive antenna diversity over block fading channels:system model, decoding approaches, and practical considerations. IEEE Journal on Selected Areas in Com-munications,19(5):958-968, May 2001.
    [143]M. Sellathurai and S.Haykin. Turbo-blast:performance evaluation in correlated rayleigh fading environment. IEEE Journal on Selected Areas in Communications, 21(3):340-349,2003.
    [144]常永宇,付景兴,杨大成.V-blast与turbo码结合的系统性能研究.电子与信息学报,27(1):150-152,2005.
    [145]G. Caire, G. Taricco, and E. Biglieri. Bit-interleaved coded modulation. IEEE Trans-actions on Information Theory,44(3):927-946, May 1998.
    [146]胡肠,尹长川,乐光新.双迭代级联译码的;urbo v-blast结构.电子与信息学报,28(9):1623-1625,2006.
    [147]M.Tuchler and J.Hagenauer. Exit charts of irregular codes.2002 Conference on Information Sciences and Systems, pages 20-22, Mar.2002.
    [148]Taesang Yoo and A. Goldsmith. Capacity of fading mimo channels with channel estimation error. IEEE International Conference on Communications,2:808-813, 2004.
    [149]R. Narasimhan. Error propagation analysis of v-blast with channel-estimation errors. IEEE Transactions on Communications,53(1):27-31, Jan.2005.
    [150]S. Takaoka, H. Gacanin, and F. Adachi. Impact of imperfect channel estimation on ofdm/tdm performance. IEEE 61st Vehicular Technology Conference. VTC 2005-Spring,1:442-446, May-June 2005.
    [151]M. Torabi, M.R. Soleymani, and S. Aissa. On the performance of mimo-ofdm systems with imperfect channel information. International Conference on Wireless Networks, Communications and Mobile Computing,1:600-605, June 2005.
    [152]Yuheng Huang and J.A. Ritcey.16-qam bicm-id in fading channels with imper-fect channel state information. IEEE Transactions on Wireless Communications, 2(5):1000-1007, Sept.2003.
    [153]Yuheng Huang and J. A. Ritcey. Exit chart analysis of bicm-id with imperfect channel state information. IEEE Communications Letters,9(7):434-436, Sep.2003.
    [154]李建东,曹菲菲,杨家玮V-blast系统中使用估计信道状态信息的ic-mmse迭代检测算法.电子学报,35(6A):54-59, June 2007.
    [155]Cheng Wang, E.K.S. Au, R.D. Murch, Wai Ho Mow, R.S. Cheng, and V. Lau. On the performance of the mimo zero-forcing receiver in the presence of channel estimation error. IEEE Transactions on Wireless Communications,6(3):805-810, March 2007.
    [156]R. J. Muirhsand. Aspects of Multivariate Statistical Theory. New York:Wiley,1982.
    [157]M.R. McKay and I.B. Collings. Error performance of mimo-bicm with zero-forcing receivers in spatially-correlated rayleigh channels. IEEE Transactions on Wireless Communications,6(3):787-792, March 2007.
    [158]S. Ahmed, T. Ratnarajah, M. Sellathurai, and C.F.N. Cowan. Performance of iterative map receiver for mimo-ofdm channels with anti-gray mapping. pages 719-723, May 2008.
    [159]宫丰奎,葛建华,李兵兵,刘鹏.比特交织编码及迭代译码系统的标识映射设计及性能分析.吉林大学学报(工学版),36(2):247-252,Mar.2006.
    [160]段中兴,张德运.无线网络中的链路自适应算法.计算机工程,33(15):29-32,8 2007.
    [161]Jun Wang and Shaoqian Li. Soft-output mimo mmse osic detector under mmse chan-nel estimation. Third International Conference on Communications and Networking in China., pages 1117-1121, Aug.2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700