微小卫星综合电子系统及其关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以“十一五”国防预先研究项目为背景,针对微小卫星对星上综合电子系统高可靠性、高性能和智能化的要求,论文研究了适合微小卫星平台的星上综合电子系统总体及其关键技术,研制了原理样机。
     我国微小卫星近年来发展迅速,星上综合电子系统的研制水平也日益提高,但相对于国际先进的综合电子技术还有一定的差距。论文从集成度、处理性能、可靠性、快速响应性和智能化程度等方面对国内外现有卫星综合电子系统进行了分析,提出研究高可靠性、高度模块化以及具有高智能控制水平的微小卫星综合电子系统,确定了研究内容、总体目标和关键技术。
     论文提出了基于动态互联网络的星载并行计算机的设计方案,提高了星载计算机的处理能力和可靠性。方案以桥接器作为纽带实现主从单机的互联,并在此基础上研究了基于双通道动态互联网络的总线拓扑结构,实现基于检查点技术的数据存储和故障诊断及恢复机制,使星载并行计算机系统的资源利用率、并行度和可靠性得到提高。
     论文提出了基于即插即用技术的综合电子系统模块化设计方案,来满足微小卫星模块化设计和空间任务快速响应的需求。设计实现了综合电子即插即用平台和以分系统电子数据单为核心的即插即用分系统,并在此基础上完成应用于微小卫星的综合电子即插即用通信协议。
     研究了微小卫星星务管理软件的智能控制方案。按照组织级、协调级和执行级三级递阶的控制模式设计了典型配置下的微小卫星智能星务管理软件平台,并针对星载并行计算机的并行处理的特点,研究了星务管理软件平台的并行化方案。
     论文最后研制了微小卫星综合电子实验系统。系统由星载并行计算机和即插即用模块组成,基于该系统完成了综合电子基础性能测试、并行性能测试、故障诊断和恢复实验以及综合电子即插即用实验,对星上综合电子总体及关键技术进行了验证。
This thesis is based on the background of‘The Eleventh Five-Year Plan’National Defense Advanced Research Key Project. According to micro-satellite’s demand for an onboard integrated electronic system of high-reliability, high-performance and intelligence, the general and key techniques of the integrated electronic system are studied in this thesis. A prototype of a micro-satellite’s integrated electronic system is developed.
     In recent years, with the development of micro-satellite in China, the development of integrated electronic system in micro-satellite is making a rapid progress. However, compared with the advanced international technology of integrated electronic system, there is still a certain gap. In this thesis, at the aspects of integration, processing capacity, reliability, rapid-response ability and intelligence, the existing domestic and abroad integrated electronic systems are compared and the necessity to research the micro-satellite’s integrated electronic system, which is of high reliability, highly modularity and high level of intelligent control, is analyzed. After that, the research content, the general objectives and key techniques of the study is proposed.
     In order to enhance the processing capacity and reliability of the satellite-borne computer, a design of parallel computer based on dynamic interconnecting network is presented. In this design, the master computer and the slave computer are interconnected through a bridge. Based on that, the bus topological structure of dual-channel dynamic interconnecting network is studied. The checkpoint-based data storage technology and the fault diagnosis and recovery mechanism are accomplished. Therefore, the resource utilization, parallel degree and reliability of satellite-borne parallel computer system are improved.
     To meet the micro-satellite’s need for modular design and fast-response to space mission, a modular design of integrated electronic system based on plug-and-play technology is presented in this paper. In this design, the research content and research objectives of the integrated electronic plug-and-play system are discussed. An integrated electronic plug-and-play platform and a plug-and-play subsystem with subsystem electronic data sheet at the core are accomplished. On this basis an integrated electronic plug-and-play communication protocol applied in micro-satellite is completed.
     To meet micro-satellite’s need for intelligent control, the smart control program of micro-satellite’s satellite housekeeping management software is researched. Following the three-tier hierarchical control model, which are the organization level, the coordination level and the execution level, the housekeeping management smart software platform in micro-satellite of a typical configuration is designed. According to the parallel processing characteristics of satellite-borne parallel computer, the parallel program of satellite housekeeping management software platform is studied.
     Finally, an experimental system of micro-satellite’s integrated electronic system is designed. On the basis of the experimental system, the test of parallel performance, fault diagnosis, recovery ability and plug-and-play experiment are performed, as well as basic performance. The general and key technologies of integrated electronic system are verified.
引文
[1]李孝同,施思寒,李冠群.微小卫星综合电子系统设计.航天器工程, 2008, 17(1):30-35.
    [2]吴翔虎.小卫星星载计算机及其外围设备的管理.哈尔滨工业大学学报, 2002, 2:201-203.
    [3] T. Vladimirova, M. N. Sweeting. System-on-a-chip development for small satellite onboard data handling. System, 2004, 1:36-43.
    [4]王九龙.卫星综合电子系统现状和发展建议.航天器工程, 2007, 5(5):68-73.
    [5] C. Underwood, G. Richardson, J. Savignol. SNAP-1: A low cost modular COTS-based nano-satellite- Design, construction, launch and early operations phase. 2001.
    [6]曲峰,崔刚. TS—1.1小卫星星务计算机系统设计.计算机工程与科学, 2002, 24(2):96-98.
    [7]田贺祥,尤政,于世洁.嵌入式系统在微纳卫星上的应用.中国航天, 2005, 8:37-39.
    [8]黄琳,荆武兴.利用并行多处理器的卫星自主导航方法研究.哈尔滨工业大学学报, 2006, 38(9):1422-1425.
    [9] C. A. Klein, W. Wahawisan. Use of a multiprocessor for control of a robotic system. The International Journal of Robotics Research, 1982, 1(2):45.
    [10] A. L. Hopkins Jr, T. B. Smith Iii, J. H. Lala. FTMP—A highly reliable fault-tolerant multiprocess for aircraft. Proceedings of the IEEE, 1978, 66(10):1221-1239.
    [11]朱新忠,卫新国,陈明清.新一代并行处理星载计算机技术研究.上海航天, 2004, 21(1):32-37.
    [12]张国强,罗宇.星载并行处理计算机系统容错技术研究.国防科学技术大学, 2006.
    [13] C. Orogo, M. Enoch, D. Flaggs, et al. Javabased Plug-N-Play (Flight) Control Systems for Responsive Spacecraft. 2006.
    [14] R. Strunce, F. Eckert, C. Eddy. Responsive Space’s Spacecraft Design Tool (SDT). 2006:24-27.
    [15]王景泉.美国加速"作战快速响应太空"计划——开拓战术卫星发展的新方向.国际太空, 2007, 2:8-14.
    [16]朱利中.美空军准备发射具快速响应能力的战术卫星.国外卫星动态, 2006, 11:29-29.
    [17] P. Stadter, C. Reed, E. Finnegan, et al. A TACSAT UPDATE AND THE ORS/JWS STANDARDIZED BUS.
    [18] J. Lyke, D. Fronterhouse, S. Cannon, et al. Space Plug-and-Play Avionics. 2005:25–28.
    [19] P. Jaffe, G. Clifford, J. Summers. SpaceWire for Operationally Responsive Space. 2008:1-5.
    [20] W. C. Boncyk. Developing a Distributed Power and Grounding Architecture for PnPSat. 2008:1-9.
    [21] B. Jackson. A Low-Cost, Responsive Microsat Bus Utilizing COTS Parts and Components. 2008:1-9.
    [22]龚燃.美国国防高级研究计划局研究分块发射卫星的可行性.国际太空, 2007, 10: 29-30.
    [23]吴勤.美国F6计划概况.国际太空, 2008, 5: 1-5.
    [24]代树武,孙辉先.卫星运行中的自主控制技术.空间科学学报, 2002, 22(2):147-153.
    [25] M. M. Marshall, C. A. Jet Propulsion Lab Pasadena. Goals for Air Force Autonomous Spacecraft. Defense Technical Information Center, 1981.
    [26] T. Schetter, M. Campbell, D. Surka. Multiple agent-based autonomy for satellite constellations. Artificial Intelligence, 2003, 145(1):147-180.
    [27] M. Ricard, S. E. Kolitz, Laboratory Charles Stark Draper. The ADEPT Framework for Intelligent Autonomy. Charles Stark Draper Laboratory, Inc., 2002.
    [28]李智斌.航天器智能自主控制技术发展现状与展望.航天控制, 2002, 20(4):1-7.
    [29]柳吉.深空一号发射成功.国际太空, 1999, 2:9-11.
    [30] D. Bernard, G. Dorais, E. Gamble, et al. Spacecraft autonomy flight experience: The DS1 Remote Agent experiment. 1999.
    [31] P. Nayak, J. Kurien, G. Dorais, et al. Validating the DS-1 Remote Agent Experiment. Artificial Intelligence, Robotics and Automation in Space, 1999:28-30.
    [32]ВKanefsky, J. Kurien, W. Miller, et al. Design of the Remote Agent Experiment for Satellite Autonomy. 1998.
    [33] N. Muscettola, P. P. Nayak, B. Pell, et al. Remote agent: To boldly go where no AI system has gone before. Artificial Intelligence, 1998, 103(1-2):5-47.
    [34]王耀南.智能控制系统.湖南大学出版社, 1996.
    [35]孙增圻,张再兴.智能控制的理论与技术.控制与决策, 1996, 11(1):1-8.
    [36] A. da Silva Curiel, M. Wazni, L. Boland, et al. Real-time mosaic-rapid response, high resolution imaging from space. 2004.
    [37] M. Hurley, T. Duffey, C. Huffine, et al. Engineering a responsive, low cost, tactical satellite, TACSAT-1. 2004.
    [38] S. Yuhaniz, T. Vladimirova, M. Sweeting. Embedded intelligent imaging on-board small satellites. Lecture notes in computer science, 2005, 3740:90.
    [39] M. Inc. MPC8260UM/D (Motorola Order Number), MPC8260 PowerQUICC II User'sManual. 1999.
    [40]张宇亮,张立臣,李代平.并行算法的任务粒度与映射方法的分析.计算机工程与应用, 2005, 41(20):44-47.
    [41]陈国良,吴俊敏,章锋, et al.并行计算机体系结构.北京:高等教育出版社, 2002.
    [42] D. E. Culler, A. Gupta, J. P. Singh. Parallel computer architecture: a hardware/software approach. Morgan Kaufmann Publishers Inc. San Francisco, CA, USA, 1997.
    [43] T. Morphopoulos, L. J. Hansen, J. Pollack, et al. Plug and Play–An Enabling Capability For Responsive Space Missions. 2004.
    [44] M. Dunbar, C. Technol, C. A. San Jose. Plug-and-play sensors in wireless networks. IEEE Instrumentation & Measurement Magazine, 2001, 4(1):19-23.
    [45] J. G. Castano, J. Andreasson, M. Ekstrom, et al. Wireless industrial sensor monitoring based on Bluetooth. 2003:65-72.
    [46]刘淑芬,孙昕. CAN总线在卫星中的应用技术研究.航天控制, 2004, 22(6):79-83.
    [47]钱志鸿,杨帆,周求湛.蓝牙技术原理,开发与应用.北京:北京航空航天大学出版社, 2006.
    [48]么莉,刘鲁源.多单片机公共总线系统及总线仲裁逻辑.天津大学学报:自然科学与工程技术版, 2000, 33(5):645-647.
    [49]柳瑞恒.多机系统中的总线仲裁技术.计算机工程, 1994, 20(6):49-53.
    [50] J. Duell, P. Hargrove, E. Roman. The design and implementation of berkeley lab’s linux checkpoint/restart. 2000.
    [51]王春露,汪东升. Unix进程检查点设置关键技术.计算机工程与应用, 2002, 38(1):90-93.
    [52]龙翔,梁震. Linux中检查点(Checkpoint)的核心支持—ckpt文件系统的设计.计算机工程与应用, 2002, 38(6):120-122.
    [53]马秀娟,张秀珍.容错星载计算机系统结构设计.微处理机, 2003, 2:47-49.
    [54]向琳,曲峰,崔刚, et al.小卫星星务计算机的容错体系结构设计.航天控制, 2005, 23(002):92-96.
    [55]王平,孙宁,李华旺, et al.小卫星星载容错计算机控制系统软硬件设计.宇航学报, 2006, 27(003):412-415.
    [56]陈国良.并行计算——结构·算法·编程.高等教育出版社, 1999.
    [57]卢其庆,张安康.半导体器件可靠性与失效分析.江苏科学技术出版社, 1981.
    [58]陈健.“即插即用”与WINDOWS95下设备的安装.多媒体世界, 1997, 6:18.
    [59]谭雁英,刘澎.基于“即插即用”技术的无人机机载卫星导航设备的自动识别.弹箭与制导学报, 2007, 27(3):223-225.
    [60] Y. J. Zuang, J. B. Su. Prototype design of the plug-and-play desktop robotic system.2004, 2.
    [61]王暹辉.高级配置和电源接口ACPI标准介绍.电子技术应用, 1998, 24(12):4-5.
    [62]许永和,健莲科技. USB外围设备设计与应用.中国电力出版社, 2002.
    [63]张弘. USB接口设计.西安电子科技大学出版社, 2002.
    [64]范逸之. Visual Basic与RS232串行通讯控制.中国青年出版社, 2001.
    [65] C. E. Strangio. The RS232 standard :A tutorial with signal names and definitions. 2000.
    [66]陈利锋,吴刚.用RS232实现即插即拔一对多通信的策略.计算机工程, 2001, 27(10):180-182.
    [67] L. Cámara, O. Ruiz, J. Samitier. Complete IEEE-1451 node, STIM and NCAP, implemented for a CANnetwork. 2000, 2.
    [68]杜树旺,曹祁.支持TEDS的智能数据采集节点设计.仪器仪表学报, 2006, 1:148-150.
    [69] K. Lee. IEEE 1451: A standard in support of smart transducer networking. 2000, 2.
    [70] R. Johnson, K. Lee, J. Wiczer, et al. A standard smart transducer interface-IEEE 1451. Sensors Expo, Philadelphia, 2001.
    [71] K. C. Lee, M. H. Kim, S. Lee, et al. IEEE-1451-based smart module for in-vehicle networking systems of intelligent vehicles. IEEE Transactions on Industrial Electronics, 2004, 51(6):1150-1158.
    [72] K. Lee. IEEE 1451 Smart Sensor Interface Standard. 2005.
    [73]于世洁,尤政,林杨.纳型卫星CMOS遥感相机及其实验研究.光学技术, 2004, 30(6):740-742.
    [74]卞亦文,吴仲城,申飞, et al.基于IEEE1451.2即插即用网络化传感器的研制[J].传感器学报, 2003, 16(1):50-53.
    [75]段旭,任金鹏.基于IEEE1451网络化智能传感器技术的研究与应用.传感器世界, 2007, 13(10):36-38.
    [76] Kajlt JacksonPang. Clarification for CCSDS CRC-16Computation Algorithm. 2006.
    [77]李人厚,秦世引.智能控制理论和方法.西安电子科技大学出版社, 2000.
    [78]吴翔虎.小卫星星务管理软件的设计.哈尔滨工业大学学报, 2002, 6:753-756.
    [79]姚敏,赵敏.基于模糊神经网络的小卫星任务自主调度设计.宇航学报, 2007, 28(2):385-388.
    [80] N. Muscettola. HSTS: Integrating planning and scheduling. Intelligent scheduling, 1994:169–212.
    [81]刘键.并行程序设计方法学.华中理工大学出版社, 2000.
    [82]林慧琛,刘殊,尤国君. Red Hat Linux服务器配置与应用.人民邮电出版社, 2006.
    [83]蒋洵,熊剑平.利用FPGA实现模式可变的卫星数据存储器纠错系统.电子技术应用, 2002, 28(8):44-47.
    [84]王诚,薛小刚,钟信潮. FPGA/CPLD设计工具一Xilinx ISE使用详解.北京:人民邮电出版社, 2005.
    [85] G. Culp, R. Boys. Programming the Siemens C167CR CAN interface: A Real Life case. 2002.
    [86]熊剑平,尤政.微小卫星平台公共总线技术——CAN网络应用.航天器工程, 2000, 9(1):29-36.
    [87] J. Lonnblad, J. G. Castano, M. Ekstrom, et al. Optimization of wireless Bluetooth/spl trade/sensor systems. 2004, 1.
    [88] W. Changlong.星载数字电子设备的辐射加固技术(一).航天控制, 1998, 3:67-75.
    [89]叶梅,赵京伟,初元萍.嵌入式Linux系统在PowerPC上的实现.核电子学与探测技术, 2006, 26(5):614-618.
    [90] A. Meliones. Engineering of embedded Linux ATM for MPC8260 and derivatives. World Scientific and Engineering Academy and Society (WSEAS) Stevens Point, Wisconsin, USA, 2005.
    [91] E. T. Ltd. Performance Analysis of Embedded Linux ATM for MPC8260 and Derivatives. 2000.
    [92]叶卫东,张浩.快速实现即插即用设备驱动程序.测控技术, 2000, 19(10):41-42.
    [93]廖明宏,王永恒.小卫星星载操作系统内核的设计.计算机工程, 2002, 11:111-113.
    [94] N. Matthew, R. Stones. Linux程序设计. 2002.
    [95] K. M. Chandy. Parallel program design: a foundation. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1988.
    [96] I. Foster. Designing and building parallel programs: concepts and tools for parallel software engineering. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1995.
    [97]尤政,于世洁,林杨.基于CMOS图像传感器的纳型卫星遥感系统设计.清华大学学报:自然科学版, 2004, 44(8):1047-1050.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700