基于场协同原理的车用冷却系统流动传热耦合分析与结构优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车冷却系统是保障车辆稳定运行的重要辅助系统,对节能减排具有直接影响。在当前环境下,随高密度、大功率发动机的出现以及众多新技术、新系统在汽车上的应用,车辆散热环境日趋恶劣,对冷却系统的体积、重量、工作效率等也提出了新的需求。而各热交换器组件的性能优化是实现冷却系统整体优化设计的基础。如何在不借助辅助设备,不改变使用条件并合理控制阻力能耗的前提下,实现流动传热过程的优化,是现代汽车冷却系统设计和研究的核心问题。
     本文以强化传热的场协同原理为理论依托,以计算流体力学(CFD)方法为主要研究手段,与风洞实验技术相结合,对车用冷却系统从单元到组合模块,从局部到整场,从微观到宏观的流动传热特性分别进行研究。主要研究内容包括:
     1.对车用冷却系统的局部换热单元、单个热交换器、热交换器组件以及热交换器与风扇组合分别建立CFD三维仿真模型,研究换热过程的流动传热特性。
     2.采用多尺度耦合法对单个热交换器进行微观分析和整体仿真。
     3.利用风洞实验平台,采集实验数据以验证仿真模型的有效性。
     4.根据实际工作时可能遇到的状况对原始模型和边界条件进行调整,分析冷热介质流动不均匀性对单元换热过程的影响。
     5.研究单个热交换器内外侧的流动特性,分析结构、冷却介质分布规律等因素对整体换热效果的影响,提出可行的结构优化方案。
     6.分析两相邻热交换器之间的相对位置、距离以及热介质流动方式对组合模块换热过程的影响。
     7.研究吸气式风扇驱动时空气的流动特性。将热交换器和风扇进行组合,比较不同风扇配置方案对热交换器换热效果的影响。
     8.结合热交换器中的场协同原理,对以上研究结果进行印证和解释,设计相应的强化传热方法或结构优化方案。通过以上一些研究,发现:
     对以空气(气体)为冷热介质的换热过程,如果在计算时考虑介质的物性变化,与常物性并参照入口温度设置物性参数的仿真模型相比,会使冷热侧温差略为降低,冷空气压降略有增加,而热空气的压降明显减少。
     对局部单元的换热,如果热介质流速分布不均匀,尤其是热介质流速沿冷却介质流动方向降低时,会使单元换热能力降低。如果冷却介质的温度分布沿热介质流向降低,冷热介质温度场协同性相对更好,能适当提高换热效果,反之则使换热效果变差;如果冷却介质的流速沿热介质流动方向升高,流速升高导致温度降低,也能改善冷热介质温度场的协同性,使换热效果略好,反之则换热较差。
     对单个热交换器,如果采用多尺度耦合分析方法对热交换器进行详解,能显著提高计算精度,但操作过程较为复杂。在车用热交换器中,热介质在各通道的不均匀分布是降低整体工作效率的一个主要因素。因此,改良热交换器结构,使热介质在各通道分布更均匀,是有效的优化方向。此外,增大热交换器低温区的冷却介质流量,能降低低温区冷却介质的温度,改善冷热流体温度场的协同性,实现强化换热的目的。
     对相邻热交换器组合模块,在不考虑热辐射因素时,变换芯部上下的相对位置会对换热有轻微的影响,而当芯部距离达到一定范围且四周密封时,再增大芯部间距也并不会影响前后热交换器的换热效果。改变上游热交换器热介质流动方向,使热通道中的流量和温度分配更均匀,能显著提高该热交换器的换热效率,但由于冷却风在流经该热交换器后的温升更高,将导致下游热交换器的换热效果变差。
     在吸气式风扇的驱动下,风扇上游速度分布并不均匀,叶片尤其是叶尖正前方的来流速度较高,轴心和边角处速度较低。将热交换器及风扇区域密封,对提高风扇的工作效率十分关键。对典型的乘用车水散热器,采用一个较大风扇和两个小风扇的组合,和传统风扇配置方案相比,在静压(总和)相等的情况下,能实现更好的换热效果。
The cooling system of vehicle is an important assistance system to ensure the stability of the vehicle, and it has a direct effect to energy-saving and emission reduction. Recently the heat dissipation environment of vehicles is gradually deteriorating due to the emergence of high-density and high-power engines, as well as the application of many new technologies and systems. As a result, new demands have been raised on the volume, weight, efficiency and intellectualization of cooling systems. Meanwhile, the profit rate of automobile industry keeps decreasing so that it becomes an important direction to work out the optimization of cooling system with economical and effective measures.
     Based on field synergy principle, together with the application of CFD and the combination of wind tunnel techniques, the paper completed the research on the flowing and hear transfer characteristics of vehicle cooling modules, including that of the unit and module, partial and whole, micro and macro. The main contents are as follows:
     1. The research on flowing and heat transfer characteristics is completed on local heat exchanger unit, single heat exchanger, heat exchanger assemble and the combination between heat exchanger and fan, according to the establishment of the CFD 3-D simulation model.
     2. The microscopic analysis and integral simulation of single heat exchanger was completed based on multi-scale coupling.
     3. The wind tunnel experiment platform was built up to examine the effectiveness of simulation model according to the experiment data.
     4. According to the possible conditions in real situation, the original model and boundary conditions are adjusted to analyze the effect of uneven flow of both hotter and colder medium on the heat transfer process.
     5. The inside and outside flowing characteristics of single heat exchanger was analyzed, the optimization method was raised based on the analysis of effect of factors such as structure and the distribution regulation coolant.
     6. The analysis is completed on the effect of the relative position and distance, and the flow of hotter medium on the heat transfer process of heat exchanger module.
     7. The air flowing characteristic is researched when driven by suction fan. The effect of different fan configuration on the heat transfer performance of cooling module was compared by the combination between cooling module and fan.
     8. According to the field synergy principle, the results of research mentioned above was proved and explained, and the measure to enhance the heat transfer or structure optimization were designed.
     Conclusions from the researches above are as follows:
     As for the hear transfer process with air as media, considering the media property changing during calculation, the temperature difference between hot and cold side will decrease slightly, the pressure drop on the cold side will increase, and the pressure drop on the hot side will obviously decrease, compared with constant property simulation model.
     For the heat transfer of partial unit, the heat transfer capacity of the unit will decrease when the velocity distribution of hot medium is not homogenous, especially the velocity of hot medium decreases along with the flowing direction of cold one. If the temperature of cold medium decreases along the flowing direction, the temperature field synergy between hot and cold media is relatively better, thus showing better heat transfer performance, otherwise the heat transfer effect will get worse. If the velocity of cooling medium increases along the flowing direction of hot medium, the temperature will decrease due to the rise of velocity, and temperature field synergy between hot and cold media could be better, thus improving the heat transfer performance, otherwise the heat transfer will also get worse.
     As for the single heat exchanger, the application of multi-scale coupling method could raise the calculation accuracy, however the operation process would be complex. With reference to the vehicle heat exchangers, the inhomogeneous distribution of hot medium is an important factor to lower the working efficiency of intercooler. As a result, it is an effect optimization to improve the structure of heat exchanger, thus allowing a homogeneous distribution of hot medium in channels. Besides, the temperature of cold medium in low-temperature section could be lower if the flow rate of cold medium in low-temperature was increased, and the temperature field synergy could be better, thus realizing the enhancement of heat transfer.
     As for the adjacent cooling module, the change of the relative position of the core would have slight effect on heat transfer performance without the consideration of heat radiation factors. However, when the distance between cores reached a certain value, the increase of core distance would not affect the heat transfer performance. Changing the hot medium flowing direction of upper heat exchanger could achieve a more homogeneous distribution of flow rate and temperature in hot channels, thus improving the efficiency evidently, but it will meanwhile worsen that of the lower exchanger.
     When driven by suction fan, the velocity distribution in upper area of fan is inhomogeneous, the flow velocity was high at blades, especially at blade tips, and the velocity in center and edge was relatively lower. It is a key factor for the efficiency improvement of fan if the heat exchanger and fan were sealed. For typical water tank exchanger on passenger vehicles, the combination of a larger fan and two smaller fans, compared to traditional fan configuration, could obtain better heat transfer effect under the same static pressure.
引文
[1]中国原油进口依存首超警戒线能源安全风险加剧.http://news.sohu.com/20100329/n271162802.shtml,2009
    [2]中国机动车保有量近1.92亿辆比09年增长2.67%.http://www.cs.com.cn/xwzx/05/201004/t20100409_2389991.html,2010
    [3]陈清泰批评国人的不良汽车消费习惯。http://finance.people.com.cn/GB/43429/43515/125733/7465441.html,2008
    [4]汽车节能减排的策略与研究.http://guochanglong0710.blog.163.com/blog/static/19689132200932610285582/,2009
    [5]Qi-jun Yu, G. S. Anthony, E. T Brian. Carbon-foam finned tubes in air-water heat exchangers[J]. Applied Thermal Engineering,2006(26):131-143
    [6]Couetouse H. Gentile. Cooling System Control in Automotive Engines[C]. SAE Paper 920788,1992
    [7]过增元,黄素逸.协同原理与强化传热新技术.北京:中国电力出版社,2004.
    [8]R. L. Eisinger, R. E. Sullivan, J. T. Francis. A Review of Acoustic Vibration Vibration Criteria Compared to In-line Tube Banks [J]. ASME, Journal of Vessel Technology, 1994(116):17-23
    [9]程林,弹性管束换热器原理与应用.北京:科学出版社,2001
    [10]Chan Ho Song, Dae-Young Lee, Sung Tach Ro. Cooling enhancement in an air-cooled finned heat exchanger by thin water film evaporation [J]. International Journal of Heat and Mass Transfer,2003(46):1241-1249
    [11]A. Feldman, C. Marvillet, M. Lebouche. Nucleate and convective boiling in plate fin heat exchangers [J]. International Journal of Heat and Mass Transfer,2000(43):3433-3442
    [12]S. Vithayasai, T. Kiatsiriroat, A. Nuntaphan. Effect of electric field on heat transfer performance of automobile radiator at low frontal air velocity [J]. Applied Thermal Engineering,2006(26):2073-2078
    [13]Barbara Watel. Review of saturated flow boiling in small passages of compact heat-exchangers [J]. International Journal of Thermal Sciences,2003(42):107-140
    [14]Zhi-gang Yang, Jeffrey Bozeman, Fred Z. Shen, et al. CFRM Concept for Vehicle Thermal System[C]. SAE Paper 2002-01-1207
    [15]Elena Cortona, Christopher H. Onder. Engine Thermal Management with Electric Cooling Pump [C]. SAE Paper 2000-01-0965
    [16]Hoon Cho, Dohoy Jung, Zoran S Filipi,et al. Application of Controllable Electric Coolant Pump for Fuel Economy And Cooling Performance Improvement [C]. IMECE 2004-61056
    [17]Jouannet Bruno. Simulation of a Cooling Loop for a Variable Speed Fan System [C]. SAE Paper 1999-01-0576
    [18]权龙.电液比例技术控制发动机冷却风扇的原理及特征[J].汽车技术,1995,(7):10-13
    [19]郭新民,翟丽.汽车发动机智能冷却系统的研究[J].内燃机工程,2001,22(1):15-16,22
    [20]罗建曦,张扬军.节温器对发动机热系统动态性能的影响[J].清华大学学报:自然科学版,2004,44(5):701-704
    [21]张钊,张扬军,诸葛伟林.发动机电控冷却系统性能仿真研究[J].汽车工程,2005,27(3):296-299
    [22]W. M. Kays, A. L. London. Compact Heat Exchangers[M]. McGraw-Hill. New York, 1984
    [23]Y. S. Muzychka, M. M. Yovanovich. Modeling the f and j characteristics of the offset strip fin array [J]. Journal of Enhanced Heat Transfer,2001,8(4):261-277
    [24]W. R. Chang, C.C. Wang, W.C. Tsi, R.J. Shyu. Air side performance of louver fin heat exchanger [C], in Proceedings of the Fourth ASME:JSME Thermal Engineering Joint Conference,1997(3):256-261.
    [25]C.C. Wang, Y.P. Chang, K.U. Chi, Y.J. Chang. An experimental study of heat transfer and friction characteristics of typical louver fin and tube heat exchangers [J]. International Journal of Heat and Mass Transfer,1998,41(4-5):817-822.
    [26]C.C. Wang, Y.P. Chang, K.U. Chi, Y.J. Chang. A study of non-redirection louver fin-and-tube heat exchangers [C], in Proceedings of the Institute of Mechanical Engineering, Part C, Journal of Mechanical Engineering Science,1998(212):1-14.
    [27]C.C. Wang, C.J. Lee, C.T. Chang. Some aspects of the fin-and-tube heat exchangers with and without louvers [J]. Journal of Enhanced Heat Transfer,1997,14(1):174-186
    [28]C.C. Wang. ERL louver fin test data, unpublished data for four louver fins,0886.
    [29]Y.J. Chang, C.C. Wang. A generalized heat transfer correlation for louver fin geometry [J]. International Journal of Heat and Mass Transfer,1997,40(3):53-544
    [30]C.C. Wang, C.J. Lee, C.T. Chang, S.P. Lin. Heat transfer and friction correlation for compact louvered fin-and-tube heat exchangers [J]. International Journal of Heat and Mass Transfer,1999(42):1945-1956
    [31]C.C. Wang, K.Y. Chi. Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, part I:new experimental data [J]. International Journal of Heat and Mass Transfer,2000(43):2681-2691
    [32]C.C. Wang, K.Y. Chi, C.J. Chang. Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, part II:Correlation [J]. International Journal of Heat and Mass Transfer,2003(43):2693-2700
    [33]K. S. Yang, C. M. Chiang, Y. T. Lin, K. H. Chien, C. C. Wang. On the heat transfer characteristics of heat sinks:influence of fin spacing at low Reynolds number region [J]. International Journal of Heat and Mass Transfer,2007(50):2667-2674.
    [34]M. Fiebig, A. Valencia, N.K. Mitra. Wing-type vortex generators for fin-and-tube heat exchangers [J]. Experimental Thermal Fluid Science,1993(7):287-295.
    [35]K. Torii, K.M. Kwak, K. Nishino. Heat transfer enhancement accompanying pressure-loss reduction with winglet-type vortex generators for fin-tube heat exchangers [J]. International Journal of Heat and Mass Transfer,2002(45):3795-3801
    [36]Junqi DONG, Jiangping CHEN, Zhijiu CHEN. Thermal-hydraulic performance of novel louvered fin using flat tube cross-flow heat exchanger [J]. Frontiers of Energy and Power Engineering in China,2008,2(1):99-106
    [37]张后雷,宣益民.波纹打孔型板翅表面传热特性[J].化工学报,2001,52(9):810-813
    [38]范亚明,王厚华,李惠风.圆孔和半圆孔交叉翅片管的传热与流阻性能研究[J].空调 与制冷,2002,1,10-13
    [39]王厚华,罗庆,苏华,范亚明.大直径圆孔翅片管的传热与流阻性能实验研究[J].制冷学报,2002,2,25-29
    [40]F. N. Beauvais. An aerodynamic look at automotive radiators [C]. SAE Paper No.650470, 1965.
    [41]C.J. Davenport. Heat transfer and flow friction characteristics of louvred heat exchanger surfaces [M], in:J. Taborek, G.F. Hewitt, N. Afgan, (Eds), Heat Exchangers, Theory and Practice, Hemisphere/MacGraw-Hill, Washington, DC,1983,397-412.
    [42]M. Kajino, M. Hiramatsu. Research and development of automotive heat exchanger [J], Hemisphere Publ Corp,1987:420-432
    [43]R. L. Webb, P. Trauger. Flow structure in the louvered fin heat exchanger geometry [J]. Experimental Heat Transfer,1991,4(2):205-217
    [44]A. Achaichia, T.A. Cowell. Heat transfer and pressure drop characteristics of flat tube and louvered plate fin surfaces [J]. Experimental Thermal and Fluid Science 1(1988) 147-157.
    [45]A. A. Atoniou, M. R. Heikal, T. A. Cowell. Measurements of local velocity and turbulence levels in arrays of louvered plate fins [C]. Heat Transfer, Proceedings of the International Heat Transfer Conference,1990:105
    [46]R. L. Webb, S. H. Jung. Air-side performance of enhanced brazed aluminum heat exchangers [J]. ASHRAE Transactions,1992,98(2):391-401
    [47]A. M. Jacobi and R. K. Shah, Air-side flow and heat transfer in compact heat exchangers: a discussion of enhancement mechanisms [J], Heat Transfer Engineering,1998(19):29-41.
    [48]J. Kim, T. Song. Microscopic phenomena and macroscopic evaluation of heat transfer from plate fins/circular tube assembly using naphthalene sublimation technique [J]. International Journal of Heat and Mass Transfer,2002(45),3397-3404
    [49]H. Ay, J.Y. Jang, J. Yeh. Local heat transfer measurements of plate finned-tube heat exchangers by infrared thermography [J]. International Journal of Heat and Mass Transfer, 2002(45):4069-4078
    [50]M. Nacer-Bey, S. Russeil, B. Baudoin. Experimental study of the effect of flow velocity and fin-spacing on the horseshoe vortex structure upstream of a one unit single-row plate-finned tube [C]. In:Proceeding of Eurotherm 71 on Visualization, Imaging and Data Analysis in Convective Heat and Mass Transfer,2002
    [51]N.C. DeJong, A.M. Jacobi. Localized flow and heat transfer interactions in louvered-fin arrays [J]. International Journal of Heat and Mass Transfer,2003(46):443-455
    [52]D. Bougeard. Infrared thermography investigation of local heat transfer in a plate fin and two-tube rows assembly [J]. International Journal of Heat and Fluid Flow,2007(28): 988-1002
    [53]S. Lalot, P. Florent, S.K. Lang, A.E. Berglles. Flow maldistribution in heat exchangers[J]. Applied Thermal Enginnering,1999,19 (8):847-863.
    [54]Z. Zhang, Y.Z. Li, CFD simulation on inlet configuration of plate-fin heat exchanger [J]. Cryogenics,2003,43 (12):673-678.
    [55]Zhe Zhang, Yanzhong Li, Qing Xu. Experimental research on the effects of distributor configuration on flow distribution in plate-fin heat exchangers [J]. Heat Transfer-Asian Research,2004,33(6):402-410
    [56]Jian Wen, Yanzhong Li, Simin Wang, Aimin Zhou. Experimental investigation of header configuration improvement in plate-fin heat exchanger [J]. Applied Thermal Engineering, 2007(27):1761-1770
    [57]A. Witry, M.H. Al-Hajeri, Ali A. Bondok. Thermal performance of automotive aluminium plate radiator [J]. Applied Thermal Engineering,2005,25:1207-1218
    [58]S. Vithayasai, T. Kiatsiriroat, A. Nuntaphan. Effect of electric field on heat transfer performance of automobile radiator at low frontal air velocity [J]. Applied Thermal Engineering,2006,26:2073-2078
    [59]A. Feldman, C. Marvillet, M. Lebouche. Nucleate and convective boiling in plate fin heat exchangers [J]. International Journal of Heat and Mass Transferm,2000(43):3433-3442
    [60]董军启.车辆冷却系统空气侧特性研究[D].上海,上海交通大学,2007,博士学位论文
    [61]张毅.车辆热交换器模块流动与传热问题的数值分析与实验研究[D].杭州,浙江大学,2006,博士学位论文
    [62]A. Sahnoun, R. L. WEBB. Prediction of Heat Transfer and Friction for the Louver Fin Geometry [J]. Journal of Heat Transfer,1992,114(4):893-900
    [63]李重焕.管带式热交换器优化设计实例[J].汽车研究与开发,1995(4)
    [64]张建华,方祖华,张纪鹏等.车用增压柴油机中冷器模型及其性能预测[J].内燃机学报,1995,13(1):65-70
    [65]刘云岗,李国祥,陆家祥等.车用增压柴油机中冷器数学模型[J].农业机械学报,1997,28(2):15-18
    [66]李国祥,顾宏中等.车用柴油机气气中冷器数学模型及应用[J].内燃机学报.1997,15(3):327-332
    [67]廖强,朱恂,辛明道.管带式汽车热交换器传热与风阻性能研究[J].重庆大学学报(自然科学版),2002,25(8):40-43
    [68]李岳林,张志沛,郭晓汾等.管片式热交换器在汽车发动机冷却系匹配设计中的数值模拟[J].汽车工程,2001,23(1):64-66,71.
    [69]贾荣光,宣益民.高效紧凑式热交换器的计算机辅助设计[J].中国机械工程,1999,10(7):739-741
    [70]马虎根,李美玲,李科群.汽车发动机冷却系统计算机辅助设计[J].汽车工程,2000,22(3):207-209
    [71]马虎根,李美玲,李科群.汽车热交换器传热及阻力特性的预测方法[J].内燃机工程,2002,23(1):33-36
    [72]张行周,马重芳.汽车发动机热交换器特性仿真研究[J].车用发动机,2005,(4):23-26
    [73]张行周,王浚.百叶窗翅片汽车热交换器特性仿真研究[J].汽车技术,2005,(1):7-10
    [74]陶文铨.计算传热学的近代进展.北京:科学出版社,2000.6
    [75]E. M. Sparrow, B. R. Baliga. Heat transfer and flow analysis of interrupted-wall channels with application to heat exchangers [J]. ASME J.Heat Transfer,1977,99:4-11.
    [76]S. V. Patankar, C. Prakash. An analysis of the effect of plate thickness on laminar flow and heat transfer in interrupted-plate passages [J]. International Journal of Heat and Mass Transfer,1981,24:1801-1810
    [77]Y. Asako, M. Faghri. Finite-volume solutions for laminar flow and heat transfer in a corrugated duct [J]. Journal of Heat Transfer,1987,109(3):627-634
    [78]S. J. Baldwin, P.R.S. White, A.J. AlDaini, C.J. Davenport. Investigation of the gas side flow field in multi-louvered ducts with flow reversal [C]. Proceedings of the Fifth International Conference on Numerical Methods in Laminar and Turbulent Flow, Montreal, 1987,482-495.
    [79]G. Xi, Y. Hagiwara, K. Suzuki. Effect of fin thickness on flow and heat transfer characteristics of fin array an offset-fin array in the low Reynolds number range [J]. Heat Transfer-Japanese Res,1992,22:1-19
    [80]M. Mizuno. Heat transfer and flow characteristics of offset fins in low-Reynolds-number region (effects of parameters on heat transfer and flow characteristics)Nippon Kikai Gakkai Ronbunshu,B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B,1996,62(597):1921-1927
    [81]L. C. Yang, Y. Asako, Y. Yamaguchi, Numerical predication of transitional characteristics of flow and heat transfer in a corrugated duct [J], Journal of Heat Transfer, 1997,119(1):62-69.
    [82]K. N. Atkinson, R. Drakulic, M. R. Heikal, T. A. Cowell. Two-and three-dimensional numerical models of flow and heat transfer over louvered fin arrays in compact heat exchangers [J]. International Journal of Heat and Mass Transfer,1998,41:4063-4080
    [83]Thomas Perrotin, Denis Clodic. Thermal-hydraulic CFD study in louvered fin-and-flat-tube heat exchangers [J]. International Journal of Refrigeration,2004,27:422-432
    [84]E. Carluccio, G. Starace, A. Fiecarella, D. Laforgia. Numerical analysis of a cross-flow compact heat exchanger for vehicle applications [J]. Applied Thermal Engineering,2005, 25:1995-2013
    [85]Ching-Tsun Hsieh, Jiin-Yuh Jang.3-D thermal-hydraulic analysis for louver fin heat exchangers with variable louver angle [J]. Applied Thermal Engineering,2006,26: 1629-1639
    [86]J. M. Wu, W.Q. Tao. Investigation on laminar convection heat transfer in fin-and-tube heat exchanger in aligned arrangement with longitudinal vortex generator from the viewpoint of field synergy principle [J]. Applied Thermal Engineering,2007,27:2609-2617
    [87]C. Oliet, C.D. Perez-Segarra, O. Garc I a-Valladares, A. Oliva. Advanced numerical simulation of compact heat exchangers. Application to automotive, refrigeration and air conditioning industries, in: Proceedings of the Third European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS),2000, pp. 1-19.
    [88]C. Oliet, C.D. Perez-Segarra, S. Danov, A. Oliva. Numerical simulation of dehumidifying fin-and-tube heat exchangers [C]. Model strategies and experimental comparisons, in: Proceedings of the 2002 International Refrigeration Engineering Conference at Purdue, 2002,1-8.
    [89]C.D. Perez-Segarra, C. Oliet, A. Oliva. Thermal and fluid dynamic simulation of automotive fin-and-tube heat exchangers. Part 1:Mathematical model [J]. Heat Transfer Engineering,2008,29(5):484-494
    [90]C.Oliet, C.D. Perez-Segarra, A. Oliva, Thermal and fluid dynamic simulation of automotive fin-and-tube heat exchangers. Part 2:Experimental comparison, Heat Transfer Engineering,29(5) May 2008, pp 484-494
    [91]F. Escanes, C.D. Perez-Segarra, A. Oliva. Thermal and fluid-dynamic behavior of double-pipe condensers and evaporators [J]. International Journal for Numerical Methods for Heat and Fluid Flow,1995,5(9):781-795
    [92]C. Oliet, A. Oliva, J. Castro, C.D. Perez-Segarra. Parametric studies on automotive radiators [J]. Applied Thermal Engineering,2007(27):2033-2043
    [93]S. V. Patankar, D. B. Spalding. Heat exchanger design theory source book [M]. McGRAW-Hill Book Company, New York,1974:155-176.
    [94]S. V. Patankar, D. B. Spalding. A calculation procedure for the transient and steady state behavior of shell-and-tube heat exchangers [M], in Heat Exchangers Design and Theory Sourcebook, eds. N. M. Afgan and E. U. Schlunder, Hemisphere, Washington. D. C., 1976.
    [95]S. V. Patankar, D. B. Spalding. Computer Analysis of the Three-dimensional flow and heat transfer in a steam generator [J]. Forschung im Ingenieurwesen,1978,44:47-52.
    [96]S. V. Patankar. Recent developments in computational heat transfer [J]. ASME J. Heat Transfer,1988,110:1037-1045.
    [97]谢永红,郭方中,吴洪涛,张连璧.紧凑式热交换器的多孔介质模型化[J].核动力工程,1995,16(2):177-182
    [98]L. Tang, K. A. Moores, C. Ramaswamy, Y. Joshi. Characterizing the thermal performance of a flow through an electronics module (SEM-E Format) using a porous-medium model [C]. In:Fourteenth IEEE SEMI-THERM symposium.1998,68-77.
    [99]Dohoy Jung, Dennis N. Assanis. Numerical Modeling of Cross Flow Compact Heat Exchanger with Louvered Fins using Thermal Resistance Concept [C]. SAE Paper 2006-01-0726
    [100]陶文铨.传热与流动问题的多尺度数值模拟:方法与应用[M].北京:科学出版社,2008
    [101]W. Q. Tao, Z. Y. Guo, B. X. Wang. Field synergy principle for enhancing convective heat transfer-its extension and numerial verifications [J]. International Journal of Heat Mass Transfer,2002,45(18):3849-3856
    [102]M. Zeng, W. Q. Tao. Numerical verification of the field synergy principle for turbulent flow [J]. Journal of Enhanced Heat Transfer,2004,11(4):451-457
    [103]李迎.内燃机流固耦合传热问题数值仿真与应用研究[D].杭州,浙江大学,2006,博士学位论文
    [104]T. Asanuma, K. Kojima, H. Muramoto et al. Analysis of mutual thermal effects in radiator and condenser cooling [C]. SAE Paper 971774
    [105]B. Uhl, F. Brotz, J. Fauser et al. Development of Engine Cooling Systems By Coupling CFD Simulation and Heat Exchanger Analysis Programs [C]. SAE Paper 2001-01-1695
    [106]毕小平,马志雄,韩树等.装甲车辆发动机冷却系统空气流动的仿真模型[J].内燃机学报,2002,20(4):374-377
    [107]赵以贤,毕小平,刘西侠等.基于集总参数法的车用内燃机传热计算机仿真研究[J].内燃机学报,2003,21(4):239-243
    [108]赵以贤,毕小平,王普凯等.车用内燃机冷却系的流动与传热仿真[J].内燃机工程,2003,24(4):1-5
    [109]Tim Juan. Investigation and Assessment of Factors Affecting the Underhood Cooling Air Flow Using CFD [C]. SAE paper 2008-01-2658
    [110]S. A. Ngy. A Simple Engine Cooling System Simulation Model [C]. SAE paper 1999-01-0237
    [111]S. A. Ngy, G. Pascal, J. Philippe. Influence of Front End Vehicle, Fan and Shroud on the Heat Performance of A/C Condenser and Cooling Radiator [C]. SAE Transactions 2002-01-1206:1580-1588.
    [112]俞小莉,李婷.发动机热平衡仿真研究现状与发展趋势[J].车用发动机,2005,5:1-5
    [113]谭建勋,沈瑜铭,赵骆伟.等.工程机械热管理系统实验平台的开发[J].工程机械,2005,36(1):4144
    [114]谭建勋.工程机械热管理系统实验平台的开发[D].杭州,浙江,2005,硕士学位论文.
    [115]罗建曦,张扬军,涂尚荣.车用燃料电池发动机实验台热管理系统设计[J].车用发动机,2003,4:32-38
    [116]陈潇,汪茂海,张扬军,张钊.车用燃料电池发动机热管理系统研究[J].车用发动机,2006,6:12-15.
    [117]田颖,聂圣芳,张扬军,卢青春.燃料电池发动机热管理实验台测试系统软件开发[J].汽车工程,2007,29(4):318-320
    [118]S. J. BALDWIN, P. R. S. WHITE, A. J. Al-DAINI et al. Investigation of the gas side flow field in multi-louvered ducts with flow reversal [C]. Proceedings of the 5th International Conference on Numerical Methods in Laminar and Turbulent Flow. Montreal,1987: 482-495
    [119]FLUENT 6.2 Documentation. Fluent Inc.
    [120]R. A. Svehla. NASA Tech Rep R-132[R]. Ohio:Lewis Research Center,1962
    [121]J. Q. Dong, J. P, Chen, Z. J. Chen et al. Heat transfer and pressure drop correlations for the wavy fin and flat tube heat exchangers [J]. Applied Thermal Engineering,2007,27: 2066-2073
    [122]Z. Y. Guo, S. Q. Zhou, Z. X. Li et al. Theoretical analysis and experimental confirmation of the uniformity principle of temperature difference field in heat exchanger [J]. International Journal of Heat and Mass Transfer,2002,45:2119-2127
    [123]刘晓俊.车辆热交换器模块实验研究[D].杭州,浙江大学,2010,硕士学位论文

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700