光纤型行波调制器理论分析与设计探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速宽带电光调制器是光纤通信、CATV 光纤传输、光孤子通信、光纤传感
    等领域的重要器件,在未来光纤通信系统中占有十分重要的地位。随着通信迅
    速发展,对高速宽带调制器的研究也迫在眉睫。
    本论文综合分析了Ti:LiNbO3波导调制器存在的局限性,首次提出了一种可
    以获得高速、宽带调制器的新设计方案——铌酸锂光纤型行波调制器,并利用
    有限元法和神经网络方法对比分析了ACPS、SCPS、CPW三种电极结构下光纤
    型行波调制器的主要性能指标调制器带宽、微波等效折射率、半波电压、特性
    阻抗、微波传输损耗、插入损耗等。分析结果表明该光纤型行波调制器具有两
    大特点:一是具有大的带宽;二是半波驱动电压很低,且该调制器性能指标达
    到国际先进水平,具有自主知识产权。
    本论文首次把神经网络引入到光无源和有源器件的建模设计中,采用径向基
    函数(RBF)神经网络通过学习、训练和仿真,实现对光纤方向耦合器,半导体激
    光器噪声特性等建模仿真。利用NTT设计脊型Ti:LiNbO3光波导调制器的数据建
    立了该调制器的GRNN模型,分析模型误差,结果证明了用神经网络对调制器建
    模的可行性和可靠性。
    基于人工神经网络速度快、精度高、可扩展性等优点,以及上述模型的论证,
    本论文把 GRNN 神经网络扩展到对光纤型行波调制器的建模仿真,并且与有限
    元计算和保角变换的 Green 函数近似运算进行比较。神经网络模型输出结果与有
    限元方法计算结果一致,精度很高,误差非常小。而且利用所建立的神经网络
    模型对光纤型行波调制器的结构尺寸进行了优化设计。
    通过理论分析和建模仿真得到光纤型行波调制器的最佳 CPW 电极结构尺寸
    和性能指标:带宽?f =250GHz,半波驱动电压Vπ =1.14V,特性阻抗Z =55.78
    Ω。设计了光纤型行波调制器全部制作工艺流程,重点突出铌酸锂光纤 M-Z 形
    干涉计的制作工艺,该制作工艺国内外尚未见报导。同时还对调制器制作的各
    个工艺步骤进行了分析及描述,部分工艺给出了工艺参数以及图文表示,为后
    续的光纤型行波调制器的制作和测试提供了重要指导。
High speed and broadband electro-optic modulator is a key component in the
    fields of fiber communication system, CATV fiber transmission, soliton
    communication, and fiber sensor, etc. With the rapid development of communication,
    it is urgent to develop a high speed and broadband modulator.
     In the dissertation, the limitation of Ti:LiNbO3 wave-guide modulator has been
    analyzed. A novel design project —— LiNbO3 fiber type traveling-wave modulator,
    which can guarantee high speed and broadband modulation, is firstly proposed. Both
    finite-element method and neural network have been introduced to analyze and
    compare the main characteristics including the modulating bandwidth, effective
    refractive index, half-wave voltage, characteristic impedance, transmission
    attenuation of microwave, and insertion loss, of modulator with three different type of
    electrodes: ACPS, SCPS, CPW. The results show that the characteristics of the
    modulator are ahead of the world, for its two main advantages: broad bandwidth and
    low half-wave voltage. In addition, we have the intellectual property right on the
    modulator.
     The neural network is firstly used to model both passive and active optical
    devices. Through the RBF neural network, many devices can be modeled, such as the
    fiber direction coupler, the noise characteristic of laser, and so on. Furthermore, the
    Ti:LiNbO3 wave guide modulator with ridge structure researched by NTT lab is
    simulated using the GRNN, and the error is analyzed. It is identified the neural
    network model for the modulator is feasible and reliable.
     Since it has the advantages of rapidity, accuracy, expansibility, ANN model is
    used to simulate the fiber type traveling-wave modulator. Moreover, the simulation
    result of GRNN is compared with the calculation of FEM and conformal transfer with
    Green function approximation. The results of GRNN simulation are well agreement
    with that of FEM calculation, and the error is tiny. The trained model has also been
    applied to optimize the structure dimensions of modulator.
     Through the theory analysis and GRNN simulation, the optimal CPW electrode
    dimensions are gotten, and the performance index of fiber type traveling-wave
    modulator shows as follows: ?f =250GHz, Vπ =1.14V, Z =55.78Ω. Finally, the
    whole manufacture process of fiber type traveling-wave modulator is introduced.
     II
    
    
    摘 要
    Specially, the technological process of LiNbO3 fiber M-Z interferometer is introduced
    in detail, which is a wholly new innovation. Each technological step is described, and
    some steps are given the specific technological parameters and figure. All of these
    provide an important guidance for the subsequent fabrication and measurement of the
    fiber type traveling-wave modulator.
引文
[1] 李玉权,崔敏,光波导理论与技术,北京:人民邮电出版社,2002. 1-210
    [2] S.Kawanishi, H.Takara, T.Morioka, et al. 200Gbit/s, 100km
     time-division-multiplexedoptical transmission using supercontinuum pulses
     with prescaled PLL timing extraction and all-optical demultiplexing,
     Electronics Letters, 1995, 31(10): 816-817
    [3] T.Naito, T.Terahara, 128Gb/s WDM transmission of 24×5.3Gb/s RZ signals
     over 7828km using gain equalization to compensate for asymmetry in EDFA
     gain characteristics. Conference on Optical Communication (OFC), 1997,
     PD19-2
    [4] N.S.Bergano, C.R.Davidson, 100Gb/s error free transmission over 9100km
     using 2.5Gb/s WDM channels. Conference on Optical Communication (OFC),
     1996,PD23-2
    [5] O.Leclerc, P.Brindel, D.Rouvillain, et al. Dense WDM (0.27bit/s/Hz) 4×
     40Gbit/s dispersion-managed transmission over 10000km with in-line optical
     regeneration by channel pairs. Electronics Letters, 2000, 36(1): 337-338
    [6] G.Vareille, F.Pitel, A.Hugbart, et al. 800Gbit/s (80×10Gbit/s DWDM: 28GHz
     spacing) error-free transmission over 3400km.European Conference on
     Optical Fiber Communication (ECOC), 1999, PD2-11
    [7] T.Tsuritani, N.Takeda, K.Imai, et al. 1Tbit/s (100×10.7Gbit/s) transoceanic
     transmission using 30nm-wide broadband optical repeaters with aeff-enlarged
     positive dispersion fiber and slope-compensating DCF. European Conference
     on Optical Fiber Communication (ECOC), 1999, PD2-8
    [8] L. Becouarn, 3Tbit/s transmission (301 DPSK channels at 10.709Gb/s) over
     10270km with a record efficiency of 0.65(bit/s)/Hz, Proceeding of ECOC’03,
     Rimini, Italy, 2003, Th4.3.2
    [9] N.S.Bergano, C.R.Davidson, C.J.Chen, et al. 640Gb/s transmission of
     sixty-four 10Gb/s WDM channels over 7200km with 0.33(bits/s)/Hz spectral
     efficiency, Conference on Optical Communication (OFC), 1999, PD2-2
    [10] K.Fukuchi, T.Kasamatsu, M.Morie, et al. 10.92-Tb/s (273 × 40Gb/s)
     triple-band/ultra-dense WDM optical-repeated transmission experiment,
     Proceeding of OFC, Anaheim, CA, USA, 2001, PD24-5
    [11] D. G. Foursa, 2.56Tb/s (256x10Gb/s) transmission over 11,000km using
     hybrid Raman/EDFAs with 80nm continuous bandwidth, Proceeding of
     OFC’02, Anaheim, California, USA, 2003, FC3
     106
    
    
    参 考 文 献
    [12] G. Charlet, E. Corbel, J. Lazaro, et al. WDM Transmission at 6 Tbit/s capacity
     over transatlantic distance, using 42.7Gb/s Differential Phase-Shift Keying
     without pulse carver, Proceeding of OFC’04, Los Angeles, USA, 2004, FC2
    [13] 刘剑飞,高速光纤通信系统中的偏振模色散及其补偿技术的研究:[博士
     学位论文],天津;天津大学,2002
    [14] L.M?ller, Filter synthesis for broad-band PMD compensation in WDM
     systems, IEEE Photonics Technology Letters, 2000,12(9): 1258-1260
    [15] H.Ooi, Y.Akiyama, G.Ishikawa, Automatic PMD compensation in 40Gbit/s
     transmission, Proceeding of OFC, San Diego, CA, USA, 1999(WE5): 86-88
    [16] K. Kawano, T. Kitoh, H. Jumonji, et al. Spectral domain analysis of coplanar
     waveguide traveling-wave electrodes and their applications to Ti:LiNbO3
     Mach-Zehnder optical modulator, IEEE Transactions on Microwave Theory
     and Techniques. 1991, 39(9): 1595-1601
    [17] M.Nakazawa, K.Suzuki, E.Yamada, et al. Straight-line soliton data
     transmission over 2000km at 20Gbit/s and 1000km at 40Gbit/s using
     erbium-doped fiber amplifiers, Electronics Letters, 1993, 29(16): 1474-1476
    [18] T.Kataoka, Y.Miyamoto, K.Hagimoto, et al. 20Gbit/s long distance
     transmission using a 270 photon/bit optical preamplifier receiver, Electronics
     Letters, 1994, 30(9): 715-716
    [19] S.K.awanishi, T.Morioka, O.Kamatani, et al. 100Gbit/s, 200Km optical
     transmission experiment using extremely low jitter PLL timing extraction and
     all-optical demultiplexing based on polarization insensitive four-wave mixing,
     Electronics Letters, 1994, 30(10): 800-801
    [20] やないひさよし,光通信ハンドづック,东京:朝仓书店株式会社,
     1982.1-635
    [21] 黄章勇,光纤通信用光电子器件和组件,北京:北京邮电大学出版社,
     2001.137-151
    [22] S.H.Lin, S.Y.Wang, Y.M.Houng, GaAs p-i-n electro-optic traveling-wave
     modulator at 1.3 μm . Electron Letters, 1986, 22(18): 934-935
    [23] R.Spickermann, N.Dagli, M.G.Peters, et al. GaAs/GaAlAs Electro-optic
     modulator with bandwidth greater than 40GHz, Electronics Letters, 1996,
     32(12): 1095-1096
    [24] C.M.Chorey, A.Ferendici, K.Bhasin, A high frequency GaAlAs travelling
     wave electro-optic modulator at 0.82μm, IEEE MTT-s Int. Microwave
     Symposium, 1988, Digest: 735-738
    [25] G.L.Li, S.A.Pappert, C.k.Sun, et al. Wide bandwidth traveling-wave
     InGaAsP/InP electroabsorption modulator for millimeter wave applications,
     IEEE MTT-S International Microwave Symposium, May 2001, Digest: 61-64
     107
    
    
    参 考 文 献
    [26] A.Sciuto, S.Libertino, A.Alessandria, et al. Design, fabrication, and testing of
     an integrated Si-based light modulator, Journal of Lightwave Technology,
     2003, 21(1): 228 –235
    [27] H.F.Chou, J.E.Bowers, D.J.Blumenthal, Compact 160-Gb/s Add–Drop
     Multiplexer With a 40-Gb/s Base Rate Using Electroabsorption Modulators,
     IEEE Photonics Technology Letters, 2004, 16(6): 1564-1566
    [28] J.I.Shim, B.Liu, J.Piprek, Nonlinear properties of traveling-wave
     electroabsorption modulator, IEEE Photonics Technology Letters, 2004, 16(4):
     1035-1037
    [29] E.Forsberg, B.Hessmo, L.Thylen, Limits to modulation rates of
     electroabsorption modulators, IEEE Journal of Quantum Electronics, 2004,
     40(4): 400-405
    [30] Y.H.Kuo, W.H.Steier, S.Dubovitsky, et al. Demonstration of wavelength
     insensitive biasing using an electro-optic polymer modulator, IEEE Photonics
     Technology Letters, 2003, 15(6): 813-815
    [31] M.C.Oh, H.Zhang, C.Zhang, et al. Recent advances in electro-optic polymer
     modulators incorporating highly nonlinear chromophore, IEEE Journal on
     Selected Topics in Quantum Electronics, 2001,7(5): 826-835
    [32] J.Han, B.J.Seo, Y.Han, et al. Reduction of fiber chromatic dispersion effects
     in fiber-wireless and photonic time-stretching system using polymer
     modulators, Journal of Lightwave Technology, 2003, 21(6): 1504-1509
    [33] S.Park, J.J.Ju, J.Y.Do, et al. Thermal stability enhancement of electrooptic
     polymer modulator, IEEE Photonics Technology Letters, 2004,16(1): 93-95
    [34] M. C.Oh, W.Y. Hwang, H.M. Lee, et al. Electro-optic polymer modulators
     operating in both TE and TM modes incorporating a vertically tapered
     cladding, IEEE Photonics Technology Letters, 1997, 9(9): 1232-1234
    [35] K.H.Hahn, D.W.Dolfi, R.S.Moshrefzadeh, et al. Novel two-arm transmission
     line for high-speed electro-optic polymer modulators, Electronics Letters,
     1994, 30(15): 1220-1222
    [36] S.K.Kim, K.Geary, H.R.Fetterman, et al. Photo-bleaching induced
     electro-optic polymer modulators with dual driving electrodes operating at
     1.55um wavelength, Electronics Letters, 2003, 39 (18): 100-101
    [37] D.Chen, D.Bhattacharya, A.Udupa, et al. High-frequency polymer modulators
     with integrated finline transitions and low Vπ , IEEE Photonics Technology
     Letters, 1999, 11(1): 54-56
    [38] A.Yacoubian, A mechanically biased electrooptic polymer modulator, IEEE
     Photonics Technology Letters, 2002, 14(5): 618-620
    [39] S.K.Kim, H.Zhang, D.H.Chang, et al. Electro-optic polymer modulators with
     an inverted-rib waveguide structure, IEEE Photonics Technology Letters,
     2003, 15(2): 218-220
     108
    
    
    参 考 文 献
    [40] D.Chen, H.R.Fetterman, B.Tsap, et al. High bandwidth polymer modulators,
     IEEE Conference Proceedings of Lasers and Electro-Optics Society Annual
     Meeting, 1997. LEOS '97 10th Annual Meeting, 1997, 2 (10): 248 – 249
    [41] J.Liang, R.Levenson, Y.Chemla, Thermally stable highly efficient electrooptic
     polymer modulator, IEEE Conference Proceedings of Lasers and
     Electro-Optics Europe, 1994,1(8): 201 - 201
    [42] H.Fetterman, A.Udupa, D.Chan, et al. Polymer modulators with bandwidth
     exceeding100GHz, Proceedings of 24th European Conference Optical
     Communication, 1998, 1(20): 501 - 502
    [43] D.Chen, H.R.Fetterman, A.Chen, et al. Demonstration of 110 GHz
     electro-optic polymer modulators, Applied Physics Letters, 1997, 70 (25):
     3335-3337
    [44] Y.Q.Shi, C.Zhang, H.Zhang, et al. Low (Sub-1-Volt) halfwave voltage
     polymeric electro-optic modulators achieved by controlling chromophore
     shape, Science, 2000, 288(7): 119-122
    [45] M.Lee, H.E.Katz, C.Erben, et al. Broadband modulation of light by using an
     electro-optic polymer, Science, 2002, 298(18): 1401-1403
    [46] R.C.Alferness, Waveguide electrooptic modulators, IEEE Transactions on
     Microwave Theory Technology, 1982, 82(8): 1121-1137
    [47] M.Isutsu, Y.Yamane, T.Sueta, Broad-band traveling-wave modulator using
     LiNbO3 optical waveguides, IEEE Journal of Quantum Electronics. 1977,
     13(4): 278-290
    [48] T.R.Ranganath, S.Wang, Ti-diffused LiNbO3 branch-wave-guide modulator
     performance and design, IEEE J.Quantum Electronics. 1977, 13(4): 290-295
    [49] R.C.Alferness, R.A.Schmidt, E.H.Turner, Characteristics of Ti-diffused
     lithium niobate optical directional couplers, Applied Optics. 1979, 18(23):
     4012-4018
    [50] K.Kubota, J.Noda, O.Mikami, Traveling-wave optical modulator using a
     directional coupler LiNbO3 waveguide, IEEE Journal of Quantum Electronics.
     1980, 16(7): 754-760
    [51] S.K.Korotky, R.C.Alferness, Time and frequency-domain response of
     directional-coupler traveling-wave optical modulators, Journal of Lightwave
     Technology, 1983, 1(1): 244-251
    [52] R.C.Alferness, C.H.Joyner, L.L.Buhl, et al. High-speed traveling-wave
     directional coupler switch/modulator for 1.32um , IEEE Journal of Quantum
     Electronics. 1983, 19(9): 1339-1341
    [53] F.J.Leonberger, High-speed operation of LiNbO3 elctrooptic interferometer
     waveguide modulators, Optics letters, 1980, 5(7): 312-314
     109
    
    
    参 考 文 献
    [54] F.J.Leonberger, C.E.Woodward, R.A.Becker, 4-bit 828-megasample/s
     electro-optic guided-wave analog-to-digital converter, Applied Physics Letters.
     1982, 40(7): 565-568
    [55] C.M.Gee, G.D.Turmond, H.W.Wen 17-GHz bandwidth electro-optic
     modulator, Applied Physics Letters. 1983, 43(11): 998-1000
    [56] P.S.Cross, R.A.Baumgartner, B.H.Kolner, Microwave integrated optical
     modulator, Applied Physics Letters. 1984, 44(5): 486-488
    [57] R.A.Becker, Broadband guied-wave electro-optic modulators, IEEE Journal of
     Quantum Electronics, 1984, 20(7): 723-727
    [58] J.P.Donnelly, A.Gopinath, A comparison of power requirements of
     traveling-wave LiNbO3 optical couplers and interferometric modulators, IEEE
     Journal of Quantum Electronics, 1987, 23(1): 30-41
    [59] T.Kataka, Y.Miyamoto, K.Hagimoto, et al. 20Gbit/s long distance
     transmission using a 270 photon/bit optical preamplifier receiver, Electronics
     Letters. 1994, 30(9): 715-716
    [60] S.Kawanishi, T.Morioka, O.Kamatani, et al. 100Gbit/s 200Km optical
     transmission experiment using extremely low jetter timing extraction and
     all-optical demultiplexing based on polatization insensitive four-wave mixing,
     Electronics Letters. 1994, 30(10): 800-801
    [61] O.Mitomi, K.Noguchi, H.Miyazawa, Design of ultra-broad-band LiNbO3
     optical modulators with ridge structure, IEEE Transactions on Microwave
     Theory and Techniques. 1995, 43(9): 2203-2207
    [62] R.A.Becker, Traveling-wave electro-optic modulator with maximum
     bandwidth-length product, Applied Physics Letters, 1984, 45(11): 1168-1170
    [63] C.M.Gee, G.D.Thurmond, H.W.Yen, 17-GHz bandwidth electro-optic
     modulator, Applied Physics Letters, 1983, 43(11): 998-1000
    [64] S.K.Korotky, G.Eisenstein, R.S.Tucker, et al. Optical intensity modulation to
     40 GHz using a waveguide electro-optic switch, Applied Physics Letters,
     1987, 50(23): 1631-1633
    [65] R.S.Tucker, G.Eisenttein, S.K.Korotky, Optical time-multiplexing for very
     high bit-rate transmission, IEEE Journal of Lightwave Technology, 1988,
     6(11):1737~1749
    [66] 裴丽,简水生,LiNbO3 M-Z 干涉仪式强度调制器电极设计研究,光通信
     研究,2000,98(2):55-58
    [67] K.Kawano, T.Kitoh, H.Jumonji, et al. New travelling-wave electrode
     Mach-Zehnder optical modulator with 20GHz bandwidth and 4.7V drive
     voltage at 1.52um wavelength, Electronics Letters, 1989, 25(20): 1382-1383
    [68]罗家强,发展 1.55μm LiNbO3光调制器,世界产品与技术,2001,6:36-38
    [69] 例ぇぱ,三 富,宫 泽,野 口等.超大容量光伝送方式用光デバイス技
     术,NTT R&D,1995,44(37):265-270
     110
    
    
    参 考 文 献
    [70] K.Noguchi, H.Miyazawa, O.Mitomi, Frequency-dependent propagation
     characteristics of coplanar waveguide electrode on 100GHz Ti:LiNbO3 optical
     modulator, Electronics Letters, 1998, 34(7): 661-663.
    [71] 吴伯瑜, 靳晓民,带宽 15GHz 铌酸锂电光调制器, 高技术通讯,1997,
     7(7):39-42
    [72] 谷京华,吴伯瑜,新型行波电极超宽带LiNbO3电光调制器的优化设计,
     中国激光,1997,24(12):1073-1078
    [73] 张兵,吴伯瑜,周伟勤等,40GHz 铌酸锂电光调制器,光电子.激光, 2001,
     12(11):1199-1201
    [74] 赵旭,杨建义,吴志武等,基于直线法分析设计的新型 Mach-Zehnder 型
     GaAs 高速行波光调制器,光电子.激光,1999,10(4):301-304, 313.
    [75] B.M.A.Rahman, S.Haxha, Optimization of microwave properties for
     ultrahigh-speed etched and unetched lithium niobate electrooptic modulators,
     Journal of Lightwave Technology, 2002, 20(10): 1856-1863
    [76] G.K.Gopalakrishnan, W.K.Burns, R.W.McElhanon, et al. Performace and
     modeling of broadband LiNbO3 traveling wave optical intensity modulators,
     Journal of Lightwave Technology, 1994, 12(10): 1807-1819
    [77] D.Marcuse, Electrostatic field of coplanar lines computed with the point
     matching method, IEEE Journal of Quantum Electronics, 1989, 25(5):
     939-947
    [78] M.Kobayashi, Analysis of the microstrip and the electrooptic light modulator,
     IEEE Transaction on Microwave Theory and Techniques, 1978, 26(2): 119-
     126
    [79] M.T.Mahmoud, G.Sebastien, S.M.El-Ghazaly, Time-domain optical response
     of an electrooptic modulator using FDTD, IEEE Transactions on Microwave
     Technology and Techniques, 2001, 49(12): 2276-2281
    [80] S.J.Chang, C.L.Tsai, Y.B.Lin, et al. Improved Electrooptic Modulator with
     Ridge Structure in X-Cut LiNbO3. Jounal of Lightwave Technology, 1999,
     17(5): 843-847
    [81] C.M.Kim, R.V.Ramaswamy, Overlap intergral factors in intergrated optic
     modulators and switches. Jounal of Lightwave Technology, 1989,7(7):
     1063-1070
    [82] W.T.Weeks, Calculation of coefficients of capacitance of multiconductor
     transmission lines in the presence of a dielectric interface, IEEE Transaction
     on Microwave Theory and Techniques, 1970, 18(1): 35-43
    [83] C.Wei, R.F.Harrington, J.R.Mautz, et al. Multiconductor transmission lines in
     multilayered dielectric media, IEEE Transaction on Microwave Theory and
     Techniques, 1984, 32(4): 439-450
    [84] D.Marcuse, Optimal electrode design for integrated optics modulator, IEEE
     Journal of Quantum Electronics, 1982, 18(3): 393-398
     111
    
    
    参 考 文 献
    [85] M.Y.Frankel, S.Gupta, J.A.Valdmanis, et al, Terahertz attenuation and
     dispersion characteristics of coplanar transmission lines, IEEE Transaction on
     Microwave Theory and Techniques, 1991, 39(6): 910-916
    [86] E.J.Denlinger, Losses of microstrip lines, IEEE Transaction on Microwave
     Theory and Techniques, 1980, 28(6): 513-522
    [87] C.Themistos, B.M.A.Rahman, A.Hadjicharalambous, et al, Loss/gain
     characterization of optical waveguide, Journal of Lightwave Technology, 1995,
     13(8): 1760-1765
    [88] 陈福深,集成电光调制理论与技术,北京:国防工业出版社,1995.1-240
    [89] K.Noguchi, H.Miyazawa, O.Mitomi, Frequency-dependent propagation
     characteristics of coplanar waveguide electrode on 100GHz Ti:LiNbO3 optical
     modulator, Electronics Letters, 1998, 34(7): 661-663
    [90] B.M.A.Rahman, S.Haxha, Optimization of microwave properties for
     ultrahigh-speed etched and unetched lithium niobate electrooptic modulators,
     Journal of Lightwave Technology, 2002, 20(10): 1856-1863
    [91] 周伟勤,三毫米微波波段铌酸锂电光调制器的研制:[博士学位论文],北
     京;清华大学,2001
    [92] H.Chung, W.S.C.Chang, E.L.Adler, Modeling and optimization of
     traveling-wave LiNbO3 interferometric modulators, IEEE Journal of Quantum
     Electronics, 1991, 27(3): 608-617
    [93] K.Noguchi, H.Miyazawa, O.Mitomi, 75GHz broadband Ti:LiNbO3 optical
     modulator with ridge structure, Electronics Letters, 1994, 30(12): 949-951
    [94] T.Ranganath, S.Wang, Ti-diffused LiNbO3 branched-waveguide modulators:
     Performance and design, IEEE Journal of Quantum Electronics, 1977, 13(4):
     290- 295
    [95] M.Izutsu, T.Kitoh, T.Sueta, 10 GHz bandwidth traveling-wave LiNbO3optical
     waveguide modulator, IEEE Journal of Quantum Electronics, 1978, 14 (6):
     394- 395
    [96] H.Haga, M.Izutsu, T.Sueta, LiNbO3 traveling-wave light modulator/switch
     with an etched groove, IEEE Journal of Quantum Electronics, 1986, 22 (6):
     902 - 906
    [97] D.W.Dolfi, M.Nazarathy, R.L.Jungerman, 40GHz electro-optic modulator
     with 7.5V drive voltage, Electronics Letters, 1988, 24(9): 528-529
    [98] G.K.Gopalakrishnan, C.H.Bulmer, W.K.Burns, et al. 40GHz low half-wave
     voltage Ti:LiNbO3 intensity modulator, Electronics Letters, 1992, 28(9):
     826-827
    [99] D.W.Dolfi, T.R.Ranganath, 50GHz velocity-matched broad wavelength
     LiNbO3 modulator with multimode active section, Electronics Letters, 1992,
     28(13): 1197-1198
     112
    
    
    参 考 文 献
    [100] K.Noguchi, K.Kawano, Proposal for Ti:LiNbO3 optical modulator with
     modulation bandwidth of more than 150GHz, Electronics Letters, 1992,
     28(18): 1759-1761
    [101] D.Erasme, M.Wilson, Analysis and optimization of integrated-optic
     traveling-wave modulators using periodic and non-periodic phase reveals,
     Opt.& Quantum Elactronics. 1986, 18(2): 203-211
    [102] N.Jaeger, Z.Lee, Slow-wave electrodes for use in compound semiconductor
     eletro-optic modulators. IEEE Journal of Quantum Electronics, 1992, 28(8):
     1778-1784
    [103] W.Wang, R.Tavlykaev, R.V.Ramaswamy, Bandpass traveling-wave
     Mach-Zehnder modulator in LiNbO3 with domain reversal, IEEE Photonics
     Technology Letters, 1997, 9(5): 610-612
    [104] H.Miyamoto, H.Ohta, K.Tabuse, et al. A broadband traveling-wave Ti:LiNbO3
     optical phase modulator. Japanses Journal of Applied Physics, 1991, 30(3):
     L383-L385
    [105] S.K.Korotky, G.Eisenstein, R.S.Tuchey, et al. Optical intensity modulation to
     40GHz using a waveguide electro-optic switch, Applied Physics Letters,
     1987,50(23): 1631-1633
    [106] D.Erasme, D.A.Humphreys, A.G.Roddie, et al. Design and the performance of
     phase reversal traveling wave modulators. IEEE Journal of Lightwave
     Technology,1988, 6(6): 933~936
    [107] K.Noguchi, O.Mitomi, Low-voltage and broadband Ti: LiNbO3 modulators
     operating in the millimeter wavelength region, OFC’96, 1996, ThB2: 204-205
    [108] S.Hopfer, Y.Shani, D.Nir, A Novel, Wideband, Lithium Niobate Electrooptic
     Modulator, Journal of Lightwave Technology, 1998, 16(1): 73-77
    [109] K.Yoshida, Y.Kanda, S.Kohjiro, A traveling-wave-type LiNbO3 optical
     modulator with superconducting electrodes, IEEE Transactions on Microwave
     Theory and Techniques, 1999, 47(7): 1201-1205
    [110] K.Yoshida, A.Minami, Y.Kanda, Traveling-wave type LiNbO3 optical
     modulator with a superconducting coplanar waveguide electrode, IEEE
     Transactions on Applied Superconductivity, 1997, 7(2): 3508 - 3511
    [111] H.Miyamoto, H.Ohta, K.Tabuse, et al. Evaluation of LiNbO3 intensity
     modulator using electrodes buried in buffer layer, Electronics Letters, 1992,28
     (11): 976-977
    [112] K.Noguchi, O.Mitomi, K.Kawano, et al. High efficient 40GHz bandwidth Ti:
     LiNbO3 optical modulator employing ridge structure speed. IEEE Photonics
     Technology Letters, 1993, 5(1): 52-54
    [113] K.Noguchi, O.Mitomi, H.Miyazawa, et al. A broadband Ti: LiNbO3 optical
     modulator with a ridge structure, Journal of Lightwave Technology, 1995,
     13(6): 1164-1168
     113
    
    
    参 考 文 献
    [114] K.Noguchi, O.Mitomi, H.Miyazawa, Millimeter-wave Ti:LiNbO3 optical
     modulators, Journal of Lightwave Technology, 1998, 16(4): 615-619
    [115] W.K.Burns, M.M.Howerton, R.P.Moeller, et al. Low drive voltage,
     broad-band LiNbO3 modulators with and without etched ridges, Journal of
     Lightwave Technology, 1999, 17(12): 2551-2555
    [116] S.J.Chang, C.L.Tsai, Y.B.Lin, et al. Improved electrooptic modulator with
     ridge structure in X-cut LiNbO , Journal of Lightwave Technology, 1999,
     3
     17(5): 843-847
    [117] M.M.Howerton, R.P.Moeller, A.S.Greenblatt, et al. Fully packaged,
     broad-band LiNbO3 modulator with low drive voltage, IEEE Photonics
     Technology Letters, 2000, 12(7): 792-794
    [118] Zhou Weiqin, Wu Boyu, Peng Jihu, et al. Ultra-broad-band LiNbO3
     electro-optic modulator with novel complex electrode, Chinese Journal of
     Lasers, 2000, B9(2): 128-133
    [119] R.Madahushi, T.Miyakawa, A wide-band Ti: LiNbO3 optical modulator with a
     novel low microwave attenuation CPW electrode structure, IOOC’95, 1995,
     WD1-3: 104-105
    [120] R.A.Backer, B.E.Kincaid, Improved electrooptic efficiency in guided-wave
     modulator, IEEE Journal of Lightwave Technology, 1993, 11(12): 2076-2079
    [121] H.Miyamoto, H.Ohta, K.Tabuse, et al. Design of high efficiency LiNbO3
     phase modulator using an electrode buried in buffer layer, Electronics Letters,
     1992, 28(3): 322-324
    [122] H.Miyamoto, H.Ohta, K.Tabuse, et al. Evaluation of LiNbO3 intensity
     modulator using electrodes buried in buffer layer, Electronics Letters, 1992,
     28(11): 976-977
    [123] R.Alferness, S.Korotky, E.Marcatili, Velocity-matching techniques for
     integrated optic traveling wave switch/modulators, IEEE Journal of Quantum
     Electronics, 1984, 20(3): 301- 309
    [124] 项允楠,偏振型与偏振无关型Ti:LiNbO3 高速强度调制器的研究:[博士
     学位论文],北京;北京邮电大学,1995
    [125] J.C.Yi, S.H.Kim, S.S.Choi, Finite-element method for the impedance analysis
     of traveling-wave modulators, Journal of Lightwave Technology, 1990, 8(6):
     817-822
    [126] H.Haga, M.Izutsu, T.Sueta. LiNbO3 traveling-wave light modulator/switch
     with an etched groove, IEEE Journal of Quantum Electronics, 1986, 22(6):
     902-906
    [127] W.W.Kuo, R.W.Smith, P.J.Anthony, Full-wave analysis of coplanar
     waveguides for LiNbO3 optical modulators by the mode-matching method
     considering nonideal conductors on etched buffer layers, Journal of Lightwave
     Technology, 1995, 13(11): 2250-2257
     114
    
    
    参 考 文 献
    [128] T.Kitazawa, D.Polifko, H.Ogawa, Analysis of CPW for LiNbO3 optical
     modulator by extended spectral-domain approach, IEEE Microwave and
     Guided Wave Letters, 1992, 2(8): 313-315
    [129] E.Yamashita, Variational method for the analysis of microstrip-like
     transmission lines, IEEE Transactions on Microwave Theory and Techniques,
     1968, 16(8): 529-535
    [130] O.G.Ramer, Integrated optic electrooptic modulator electrode analysis, IEEE
     Journal of Quantum Electronics, 1982, 18(3): 386-392
    [131] D.Marcuse, Electrostatic field of coplanar lines computed with the point
     matching method, IEEE Journal of Quantum Electronics, 1989, 25(5):
     939-947
    [132] M.Koshiba, Y.Tsuji, M.Nishio, Finite-element modeling of brad-band
     traveling-wave optical modulators, IEEE Transactions on Microwave Theory
     and Techniques, 1999, 47(9): 1627-1633
    [133] Z.Pantic, R.Mititra, Quasi-TEM analysis of microwave transmission lines by
     the finite-element method, IEEE Transactions on Microwave Theory and
     Techniques, 1986, 34(11): 1096-1103
    [134] E.Strake, G.P.Bava, I.Montrosset, Guided modes of Ti:LiNbO3 channel
     waveguides: a novel quasi-analytical technique in comparison with the scalar
     finite-element method, Journal of Lightwave Technology, 1988, 6(6):
     1126-1135
    [135] B.M.A.Rahman, J.B.Davies, Finite-element solution of integrated optical
     waveguides, Journal of Lightwave Technology, 1984, 2(5): 682-688
    [136] S.Haxha, B.M.A.Rahman, Bandwidth calculation of high-speed optical
     modulators, IEEE 7th High Frequency Postgraduate Student Colloquium,
     2002, 5-13
    [137] N.Anwar, T.Wongchareon, F.A.Katsriku, et al. An accurate model for a
     LiNbO3 electro-optic modulator, High Performance Electron Devices for
     Microwave and Optoelectronic Applications Workshop, 1996, 56-61
    [138] S.Nam, Y.G.Kim, J.H.Lee, el at. Performance of traveling-wave
     electroabsorption modulators depending on microwave properties of
     waveguides calculated using the FDTD method, IEEE Journal of Selected
     Topics in Quantum Electronics, 2003, 9(3): 763 - 769
    [139] H.Chung, W.S.C.Chang, G.E.Betts, Microwave properties traveling-wave
     electrode in LiNbO3 electooptic modulators, Journal of Lightwave Technology,
     1993, 11(8): 1274-1278
    [140] W.T.Weeks, Calculation of coefficients of capacitance of multiconductor
     transmission lines in the presence of a dielectric interface, IEEE Transaction
     on Microwave Theory and Techniques, 1970,18(1): 35- 43
     115
    
    
    参 考 文 献
    [141] N.G.Alexopoulos, C.M.Krowne, Characteristics of single and coupled
     microstrips on anisotropic substrates, IEEE Transaction on Microwave Theory
     and Techniques, 1978, 26(6): 387- 393
    [142] 顾其诤,项家桢,袁孝康,微波集成电路设计,北京:人民邮电出版社,
     1978.40~41
    [143] 国分泰雄,光波工程(王友功),北京:科学出版社,2002.206~220
    [144] 梁清香,张根全,有限元与 MARC 实现,北京:机械工业出版社,2003.1-7
    [145] 王保良,电容层析成象技术及其在两相流参数检测中的应用研究:[博士
     学位论文],杭州;浙江大学,1998
    [146] K.Kawano, K.Noguchi, T.Kitoh, et al. A finite-element method (FEM)
     analysis of a shield velocity-matched Ti:LiNbO3 optical modulator, IEEE
     Photonics Technology Letters, 1991, 3(10):919-921
    [147] X.Zhang, T.Miyoshi, Optimum design of coplanar waveguide for LiNbO3
     optical modulator, IEEE Transactions on Microwave Theory and Techniques.
     1995, 43(3): 523-528
    [148] Z.Pantic, R.Mittra, Quasi-TEM analysis of microwave transmission lines by
     the finite-element method, IEEE Transactions on Microwave Theory and
     Techniques. 1986, 34(11): 1096-1103
    [149] E.Strake, G.P.Bava, I.Montrosset, Guide modes of Ti:LiNbO3 channel
     waveguides: a novel quasi-analytical technidue in comparison with the scalar
     finite-element method, Journal of Lightwave Technology, 1988,
     6(6):1126-1135
    [150] B.M.A.Rahaman, J.B.Davies, Finite-element solution of integrated optical
     waveguides, Journal of Lightwave Technology, 1984, 2(5): 682-688
    [151] 张国瑞,有限元法,北京:机械工业出版社,1991.1-9
    [152] 曾余庚,徐国华,宋国乡,电磁场有限单元法,北京:科学出版社,
     1982.1-421
    [153] 龚曙光,ANSYS 工程应用实例分析,北京:机械工业出版社,2003.315-336
    [154] 张榴晨,徐松,有限元法在电磁计算中的利用,中国铁道出版社,
     1996.1-129
    [155] C.T.Carson, G.K.Cambrell, Upper and lower bounds on the characteristic
     impedance of TEM mode transmission lines, IEEE Transactions on
     Microwave Theory and Techniques, 1966, 14(10): 497- 498
    [156] M.V.K.查利,P.P.席尔凡斯特,电磁场问题的有限元解法(史乃),北京:
     科学出版社,1982.1-248
    [157] 陈宇红,二维电磁场的有限元计算:[硕士论文],大连;大连理工大学,
     2001
    [158] M.T.Hagan, H.B.Demuth, M.H.Beale, 神经网络设计(戴葵),北京:
     机械工业出版社,2002.1~452
    [159] 刘钊,微波神经网络技术研究:[博士学位论文],天津;天津大学,2004
     116
    
    
    参 考 文 献
    [160] Simon Haykin,神经网络原理(叶世伟,史忠植),北京:机械工业出版
     社,2004.7~344
    [161] Q.J.Zhang, K.C.Gupta, Neural networks for RF and Microwave design,
     London: Artech House, 2000: 1-350
    [162] F.Wang, Q.J.Zhang, Knowledge-based neural models for microwave design,
     IEEE Transactions on Microwave Theory and Techniques, 1997,45(12):
     2333-2343
    [163] P.M.Watson, K.C.Gupta, Design and optimization of CPW circuits using
     EM-ANN models for CPW components, IEEE Transactions on Microwave
     Theory and Techniques, 1997,45(12): 2515-2523
    [164] P.Burrascano, S.Fiori, M.Mongiardo, Review of artificial neural networks
     applications in microwave computer- aided design, International Journal of
     RF and Microwave Computer-Aided Engineering, 1999,9(3): 158-174
    [165] P.M.Watson, K.C.Gupta, R.L.Mahajan, Applications of knowledge-based
     artificial neural network modeling to microwave components, International
     Journal of RF and Microwave Computer-Aided Engineering, 1999,9(3):
     254-260
    [166] P.M.Watson, C.Cho, K.C.Gupta, Electromagnetic-artificial neural network
     model for synthesis of physical dimensions for multilayer asymmetric coupled
     transmission structures, International Journal of RF and Microwave
     Computer-Aided Engineering, 1999,9(3): 175-186
    [167] A.Veluswami, M.S.Nakhla, Q.J.Zhang, Application of neural networks to
     EM-based simulation and optimization of interconnects in high-speed VLSI
     circuits, IEEE Transactions on Microwave Theory and Techniques, 1997,
     45(5): 712-723
    [168] T.Liu, S.Boumaiza, F.M.Ghannouchi, Dynamic Behavioral Modeling of 3G
     Power Amplifiers Using Real-Valued Time-Delay Neural Networks, IEEE
     Transactions on Microwave Theory and Techniques, 2004, 52(3): 1025 – 1033
    [169] P.D. Wasserman, Advanced Methods in Neural Computing, New York: Van
     Nostrand Reinhold, 1993.35-161
    [170] 闻新,周露,王丹力等,Matlab 神经网络应用设计,北京:科学出版社,
     2001.1-312
    [171] Li Jiusheng, Bao Zhenwu, Artificial neural network model for optical fiber
     direction coupler design, Transactions of Tianjin University, 2004,10(1):
     39-42
    [172] 林学煌,光无源器件,北京:人民邮电出版社,1997. 99-123
    [173] T.L.Koch, U.Koren. Semiconductor lasers for coherent optical fiber
     communications, IEEE Journal of Lightwave Technology. 1990, 8(3): 274-293
     117
    
    
    参 考 文 献
    [174] J.C.Cartledge, R.C.Srinivasan, Extraction of DFB laser rate equation
     parameters for system simulation purposes, IEEE Lightwave Technology.
     1997,15(5): 852-860.
    [175] D.Marcuse, Computer simulation of laser photon fluctuations: theory of single
     cavity laser, IEEE.Journal of Quantumn Electronics, 1984, 20(10): 1139-1148
    [176] C.H.Josephkatz, S.Margality, J.Shacham, et al. Noise equivalent circuit of
     asemiconductor laser diode, IEEE Journal of Quantumn Electronics. 1982,
     18(3): 333-337
    [177] 栖原明敏著,周南生译, 半导体激光器基础,北京:科学出版社,
     2002.129-210
    [178] M.F.Lu, J.S.Deng, C.Juang, et al. Equivalent circuit model quantum-well
     lasers, IEEE Journal of Quantumn Electronics. 1994, 31(8): 1418-1422
    [179] G.H.M.V.Tartwijk, H.D.Waardt, B.H.Verbeek, et al. Resonent optical
     amplification in a laser diode: theory and experiment, IEEE Journal of
     Quantumn Electronics. 1994, 31(8): 1763-1768
    [180] 胡庆,光纤接头的菲涅尔反射损耗分析及其对传输特性的影响,半导体
     光电,1998,19(2): 136-139
    [181] 李九生,鲍振武,刘翠华等,光纤陀螺尾纤耦合用紫外光固化胶粘剂及
     其性能测试,光纤与电缆及其应用技术,2002.5:33-34,38
    [182] 吴明英,毛秀华,微波技术,西安:西安电子科技大学出版社,1989.1-330
    [183] E.L.Wooten, K.M.Kissa, A.Y.Yan, et al. A review of lithium niobate
     modulators for fiber-optic communications systems, IEEE Journal of selected
     topics in Quantum Electronics, 2000, 6(1): 69-82
    [184] J.E.Midwinter, Lithium niobate: effects of composition on the refractive
     indices and optical second-harmonic generation, Journal of Applied Physics,
     1968, 39(7): 3033-3038
    [185] J.Noda, M.Fukuma, S.Saito, Effective of Mg diffusion on Ti-diffuse LiNbO3
     waveguide, Journal of Applied Physics, 1978, 49(6): 3150-3154
    [186] S.Sudo, A.C.Plaza, R.L.Byer, et al. MgO: LiNbO3 single-crystal fiber with
     magnesium-ion in-diffused cladding, Optics Letters, 1987, 12(11): 938-940
    [187] W.X.Que, Y.Zhou, Y.L.Lam, et al. Second-harmonic generation using an a
     axis Nd:MgO:LiNbO3 single crystal fiber with Mg-ion indiffused cladding,
     Optical Engineering, 2000, 39(10): 2804-2809
    [188] S.Z.Yin, Lithium niobate fiber and waveguides: fabrications and applications,
     Proceeding of the IEEE, 1999, 87 (11): 1962-1974

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700