低损耗平场聚焦阵列波导光栅的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阵列波导光栅型波分复用器对于实现未来密集波分复用全光网具有重要的意义。本论文在新型和特殊结构阵列波导光栅的设计,低损耗设计方法,光波导与光纤间新型高效耦合器的研究,以及器件的加工与测试等方面进行了相应的研究工作。
    基于阵列波导光栅的像差理论,利用三个无像差点约束三个主要结构参量,设计了新型平场聚焦阵列波导光栅,使得所有工作波长的输出信号都聚焦在与光束传输方向垂直的直线上,并进一步将其拓展为同时具有平输入场和平聚焦场的新型平场波长路由器。
    以多模干涉耦合器替代标准罗兰圆星形耦合器,构成一种特殊结构的阵列波导光栅,利用它仅在低通道数时具有较好性能的特点,提出了基于双通道多模干涉耦合器型阵列波导光栅的新型光梳状分波器方案,其设计简单,结构紧凑,易于实现微小频率间隔,并易于与其它光无源器件集成。
    全面分析了阵列波导光栅的插入损耗。针对损耗来源,讨论了各项损耗的计算方法及结构参量对损耗的影响。基于降低损耗的设计思路,逐步确定各结构参量和几何轮廓参量,在聚合物材料上设计了低损耗平场聚焦阵列波导光栅。
    提出一种具有集成化结构的衍射光学模式转换器,可以消除光波导与单模光纤之间的模式失配,从而实现高效耦合。其中的衍射光学器件通过数值迭代位相恢复算法进行优化设计,在迭代算法中引入一种新的混和远场振幅约束,可以达到很高的模式转换质量。本设计适用于任意结构的光波导与单模光纤的耦合,也适用于具有任何椭圆模场纵横比的LD半导体激光器与单模光纤的耦合。
    首次采用电子束直写技术在一种具有良好特性的新型聚合物材料上研制新型平场聚焦阵列波导光栅,通过测试实验,初步验证了加工工艺的可行性,并分析了加工误差对器件性能的影响。此外,还测试了一个二氧化硅标准罗兰圆阵列波导光栅样片,并对二者进行了对比。
Arrayed waveguide grating (AWG) is of great importance to the future dense wavelength division multiplexing (DWDM) all optical network (AON). In this dissertation, new-type and special-type AWG schemes are studied, the low insertion loss design method is discussed and a novel high-efficiency fiber-to-waveguide coupler is presented. The researches on the fabrication of a polymeric AWG are also reported.
    Based on the aberration theory of AWG, a new-type flat-field AWG is designed. The focal signals of all wavelengths of operation are focusing along a straight line perpendicular to the propagation direction. Three stigmatic points restrain three dominant geometry parameters. Furthermore, a new-type flat-field wavelength router with both flat input field and flat focal field is also designed.
    A novel integrated DWDM interleaver scheme is presented based on double-channel AWG with multimode interference (MMI) couplers instead of standard Rowland-circle star couplers. MMI-AWG interleaver can realize narrow channel spacing through simple design procedure. It’s simple in structure, compact in size, and convenient for integration with integrated planar waveguide multi/demultiplexers.
    The insertion loss of AWG is analyzed and the low-loss design method is discussed. A low-loss polymeric flat-field AWG is designed by optimizing the structure and geometry parameters.
    An integrated diffractive optical mode converter scheme is presented to eliminate the mode mismatch between optical waveguide and single mode fiber (SMF). Then, a high coupling efficiency can be achieved. The diffractive optical element (DOE) is designed using iterative phase retrieval algorithm. In the iterative algorithm, a new modification of far-field amplitude constraint is introduced to provide very high mode-conversion quality. The scheme is applicable for low-loss coupling between SMF and any type of waveguide
    
    
    structure. And it’s also applicable for efficiently coupling SMF with semiconductor laser diode (LD) of any aspect ratio of the elliptical field.
    For the first time, a new-type flat-field AWG is fabricated using electron-beam direct writing based on polymeric optical waveguide. The waveguide core-layer material is a newly-developed negative tone epoxy Novolak resin (ENR) polymer. The polymeric flat-field AWG sample is tested by an optoelectronics passive device test set. The feasibility of the fabrication technique is prelimimarily proved. The performance deteriorations due to fabrication errors are analyzed. And besides, a silica-based standard Rowland-circle AWG sample is also tested and compared with the polymeric one.
引文
Fukuchi K. Wideband and ultra-dense WDM transmission technologies toward over 10-Tb/s capacity. OFC ’02 2002: 558~559
    Suzuki H, Fujiwara M, Takachio N, et al. 12.5 GHz spaced 1.28 Tb/s (512-channel×2.5 Gb/s) super-dense WDM transmission over 320 km SMF using multiwavelength generation technique. IEEE Photon. Technol. Lett. 2002, 14(3): 405~407
    Glass A M, DiGiovanni D J, Strasser T A, et al. Advances in fiber optics. Bell Labs Tech. J. 2000: 168~187
    Pennings E, Khoe G D, Smit M K, et al. Integrated-optic versus microoptic devices for fiber-optic telecommunication systems: A comparison. IEEE J. Select. Top. Quantum Electron. 1996, 2(2): 151~164
    Hibino Y. Passive optical devices for photonic networks. IEICE Trans. Comm. 2000, E83-B(10): 2178~2190
    Smit M K. New focusing and dispersive planar component based on an optical phased array. Electron. Lett. 1988, 24(7): 385~386
    Vellekoop A R, Smit M K. Four-channel integrated-optic wavelength demultiplexer with weak polarization dependence. J. Lightwave Technol. 1991, 9(3): 310~314
    Takahashi H, Nishi I, and Hibino Y. 10GHz spacing optical frequency division multiplexer based on arrayed-waveguide grating. Electron. Lett. 1992, 28(4): 380~382
    Dragone C. An N(N optical multiplexer using a planar arrangement of two star couplers. IEEE Photon. Technol. Lett. 1991, 3(9): 812~815
    Smit M K, Van Dam C. PHASAR-based WDM-devices: principles, design and applications. IEEE J. Select. Top. Quantum Electron. 1996, 2(2): 236~250
    Miya T. Silica-based planar lightwave circuits: passive and thermally active devices. IEEE J. Select. Top. Quantum Electron. 2000, 6(1): 38~45
    陆思, 严瑛白, 王道义, 等. 阵列波导光栅平顶频谱响应实现方案综述与分析. 光通信技术 2002, 26(增刊): 18~21
    Okamoto K, Sugita A. Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns. Electron. Lett. 1996, 32(18): 1661~1662
    
    Takahashi H, Okamoto K, and Inoue Y. Arrayed-waveguide grating wavelength multiplexers for WDM systems. NTT Review 1998, 10(1): 37~44
    Rigny A, Bruno A, and Sik H. Multigrating method for flattened spectral response wavelength multi/demultiplexer. Electron. Lett. 1997, 33(20): 1701~1702
    Rigny A, Bruno A, and Sik H. Double-phased array for a flattened spectral response. ECOC ‘97 1997, 488: 79~82
    Ho Y P, Li H, and Chen Y J. Flat channel-passband-wavelength multiplexing and demultiplexing devices by multiple-Rowland-circle design. IEEE Photon. Technol. Lett. 1997, 9(3): 342~344
    Trouchet D, Béguin A, Boek H, et al. Passband flattening of PHASAR WDM using input and output star couplers designed with two focal points. OFC ’97 1997: 302~303
    Takahashi H, Hibino Y, and Nishi I. Polarization-insensitive arrayed-waveguide grating wavelength multiplexer on silicon. Opt. Lett. 1992, 17(7): 499~501
    Inoue Y, Ohmori Y, Kawachi M, et al. Polarization mode converter with polyimide half waveplate in silica-based planar lightwave circuit. IEEE Photon. Technol. Lett. 1994, 6(5): 626~628
    Inoue Y, Takahashi H, Ando S, et al. Elimination of polarization sensitivity in silica-based wavelength division multiplexer using a polyimide half waveplate. J. Lightwave Technol. 1997, 15(10): 1947~1957
    Grave de Peralta L, Bernussi A A, Gorbounov, et al. Temperature-insensitive reflective arrayed-waveguide grating multiplexers. IEEE Photon. Technol. Lett. 2004, 16(3): 831~833
    Bissessur H, Pagnod-Rossiaux P, Mestric R, et al. Extremely small polarization independent phased-array demultiplexers on InP. IEEE Photon. Technol. Lett. 1996, 8(4): 554~556
    Kohtoku M, Sanjo H, Oku S, et al. Polarization-independent InP arrayed waveguide grating filter using deep ridge waveguide structure. CLEO/Pacific Rim '97 1997: 284~285
    Spiekman L H, Amersfoort M R, de Vreede A H, et al. Design and realization of polarization independent phase array wavelength demultiplexers using different array orders for TE and TM. J. Lightwave Technol. 1996, 14(6): 991~995
    Inoue Y, Kaneko A, Hanawa F, et al. Athermal silica-based arrayed-waveguide grating multiplexer. Electron. Lett. 1997, 33(23): 1945~1947
    
    Kaneko A, Kamei S, Inoue Y, et al. Athermal silica-based arrayed-waveguide grating (AWG) multi/demultiplexers with new low loss groove design. Electron. Lett. 2000, 36(4): 318~319
    Tanobe H, Kondo Y, Kadota Y, et al. Temperature insensitive arrayed waveguide gratings on InP substrates. IEEE Photon. Technol. Lett. 1998, 10(2): 235~237
    Keil N, Yao H H, Zawadzki C, et al. Athermal all-polymer arrayed-waveguide grating multiplexer. Electron. Lett. 2001, 37(9): 579~580
    Hida Y, Hibino Y, Kitoh T, et al. 400-channel arrayed-waveguide grating with 25GHz spacing using 1.5%-Δ waveguides on 6-inch Si wafer. Electron. Lett. 2001, 37(9): 576~577
    Huang D W, Chin T H, and Lai Y C. Arrayed waveguide grating DWDM interleaver. OFC ‘01 2001: WDD80-1~WDD80-3
    Himeno A, Kato K, and Miya T. Silica-based planar lightwave circuits. IEEE J. Select. Top. Quantum Electron. 1998, 4(6): 913~924
    Takahashi H, Nishi I, and Hibino Y. 10GHz spacing optical frequency division multiplexer based on arrayed-waveguide grating. Electron. Lett. 1992, 28(4): 380~382
    Takahashi H, Suzuki S, and Nishi I. Wavelength multiplexer based on SiO2-Ta2O5 arrayed-waveguide grating. J. Lightwave Technol. 1994, 12(6): 989~995
    Okamoto K, Moriwaki K, and Suziki S. Fabrication of 64×64 arrayed-waveguide grating multiplexer on silicon. Electron. Lett. 1995, 31(3): 184~186
    Okamoto K, Syuto K, Takahashi H, et al. Fabrication of 128-channel arrayed-waveguide grating multiplexer with 25GHz channel spacing. Electron. Lett. 1996, 32(16): 1474~1476
    Trinh P D, Yegnanarayanan S, Coppinger F, et al. Silicon-on-insulator phased-array waveguide grating WDM filter. OFC ’97 Tech. Dig. 1997: 301~302
    Takada K, Yamada H, and Okamoto K. 480 channel 10GHz spaced multi/demultiplexer. Electron. Lett. 1999, 35(22): 1964~1966
    Hida Y, Hibino Y, Itoh M, et al. Fabrication of low-loss and polarization-insensitive 256 channel arrayed-waveguide grating with 25GHz spacing using 1.5%Δwaveguides. Electron. Lett. 2000, 36(9): 820~821
    
    Watanabe T, Inoue Y, Kaneko A, et al. Polymeric arrayed-waveguide grating multiplexer with wide tuning range. Electron. Lett. 1997, 33(18): 1547~1548
    Min Y H, Lee M H, Ju J J, et al. Polymeric 16×16 arrayed-waveguide grating router using fluorinated polyethers operating around 1550nm. IEEE J. Select. Top. Quantum Electron. 2001, 7(5): 806~811
    Toyoda S, Kaneko A, Ooba N, et al. Polarization-independent low-corsstalk polymeric AWG-based tunable filter operating around 1.55μm. IEEE Photon. Technol. Lett. 1999, 11(9): 1141~1143
    Eldada L, Shacklette L W. Advances in polymer integrated optics. IEEE J. Select. Top. Quantum Electron. 2000, 6(1): 54~68
    Imamura S, Yoshimura R, and Izawa T. Polymer channel waveguides with low loss at 1.3μm. Electron. Lett. 1991, 27(15): 1342~1343
    Hida Y, Inoue Y, and Imamura S. Polymeric arrayed-waveguide grating multiplexer operating around 1.3(m. Electron. Lett. 1994, 30(12): 959~960
    Diemeer M B J, Spiekman L H, Ramsamoedj R, et al. Polymeric phased array wavelength multiplexer operating around 1550nm. Electron. Lett. 1996, 32(12): 1132~1133
    Waldausl R, Schnabel B, Kley E -B, et al. Efficient focusing polymer waveguide grating couplers. Electron. Lett. 1997, 33(7): 623~624
    Nakayama H, Sugihara O, and Okamoto N. Nonlinear optical waveguide fabrication by direct electron-beam irradiation and thermal development using a high Tg polymer. Appl. Phys. Lett. 1997, 71(14): 1924~1926
    Callender C L, Viens J -F, Noad J P, et al. Compact low-cost tunable acrylate polymer arrayed-waveguide grating multiplexer. Electron. Lett. 1999, 35(21): 1839~1840
    Viens J -F, Callender C L, Noad J P, et al. Compact wide-band polymer wavelength-division multiplexers. IEEE Photon. Technol. Lett. 2000, 12(8): 1010~1012
    Wong W H, Zhou J, and Pun E Y B. Low-loss polymeric optical waveguides using electron-beam direct writing. Appl. Phys. Lett. 2001, 78(15): 2110~2112
    Wong W H, Pun E Y B. Polymeric waveguide wavelength filters using electron-beam direct writing. Appl. Phys. Lett. 2001, 79(22): 3576~3578
    
    Takahashi H, Okamoto K, and Inoue Y. Arrayed-waveguide grating for WDM systems. NTT R&D 1997, 46(7): 685~692
    Ishida O, Takahashi H, and Inoue Y. Digitally tunable optical filters using arrayed-waveguide grating (AWG) multiplexers and optical switches. J. Lightwave Technol. 1997, 15(2): 321~327
    Suzuki S, Himeno A, and Ishii M. Integrated multichannel optical wavelength selective switches incorporating an arrayed-waveguide grating multiplexer and thermooptic switches. J. Lightwave Technol. 1998, 16(4): 650~655
    McGreer K A. Arrayed waveguide gratings for wavelength routing. IEEE Comm. Mag. 1998, 36(12): 62~68
    Zirngibl M, Joyner C H, Doerr C R, et al. A 18-channel multifrequency laser. IEEE Photon. Technol. Lett. 1996, 8(7): 870~872
    Sanjoh H, Yasaka H, Sakai Y, et al. Multiwavelength light source with precise frequency spacing using a mode-locked semiconductor laser and an arrayed waveguide grating filter. IEEE Photon. Technol. Lett. 1997, 9(6): 818~820
    Miyazaki T, Edagawa N, Yamamoto S, et al. A multiwavelength fiber ring-laser employing a pair of silica-based arrayed-waveguide-gratings. IEEE Photon. Technol. Lett. 1997, 9(7): 910~912
    Amerfoort R, Soole J B D, Caneau C, et al. Compact arrayed-waveguide grating multifrequency laser using bulk active material. Electron. Lett. 1997, 33(25): 2124~2126
    Doerr C R, Joyner C H, Stulz L W, et al. Multifrequency laser having integrated amplified output coupler for high-extinction-ratio modulation with single-mode behavior. IEEE Photon. Technol. Lett. 1998, 10(10): 1374~1376
    Teshima M, Koga M, and Sato K. Multiwavelength simultaneous monitoring circuit employing wavelength crossover properties of arrayed-waveguide grating. Electron. Lett. 1995, 31(18): 1595~1597
    Okamoto K, Hattori K, and Ohmori Y. Fabrication of multiwavelength simultaneous monitoring device using arrayed-waveguide grating. Electron. Lett. 1996, 32(6): 569~570
    Teshima M, Koga M, and Sato K. Performance of multiwavelength simultaneous monitoring circuit employing arrayed-waveguide grating. J. Lightwave Technol. 1996, 14(10): 2277~2285
    
    Kobtoku M, Yoshikuni Y. A semiconductor arrayed waveguide grating and its application to a multiwavelength photodetector. LEOS ’2000: 342~343
    Ohyama T, Akahori Y, Yamada T, et al. 8-channel×2.5Gbit/s hybrid integrated multiwavelength photoreceiver module with arrayed-waveguide grating demultiplexer. Electron. Lett. 2002, 38(9): 419~421
    Takada K, Yamada H, Okamoto K, et al. Optical spectrum analyzer using cascaded AWG's with different channel spacings. IEEE Photon. Technol. Lett. 1999, 11(7): 863~864
    Tsuda H, Okamoto K, Ishii T, et al. Second- and third-order dispersion compensator using a high-resolution arrayed-waveguide grating. IEEE Photon. Technol. Lett. 1999, 11(5): 569~571
    Tsuda H, Takenouchi H, Hirano A, et al. Performance analysis of a dispersion compensator using arrayed-waveguide gratings. J. Lightwave Technol. 2000, 18(8): 1139~1147
    Scarmozzino R, Gopinath A, and Pregla R. Numerical techniques for modeling guided-wave photonic devices. IEEE J. Select. Top. Quantum Electron. 2000, 6(1): 150~162
    Kawano K, Kitoh T. Introduction to optical waveguide analysis – Solving Maxwell’s equations and the Schr?dinger equation. United States of America: John Wiley & Sons, Inc., 2001. 59~115
    Taflove A. Computational Electrodynamics: The Finite-Difference Time-Domain Method. Boston: Artech House, 1995.
    Xiao S, Vahldieck R, and Jin H. Full-wave analysis of guided wave structures using a novel 2-D FDTD. IEEE Microwave and Guided Wave Lett. 1992, 2(5): 165~167
    Feit M D, Fleck J A. Light propagation in graded-index optical fibers. Appl. Opt. 1978, 24(17): 3990~3998
    Roey J V, Donk J, and Lagasse P E. Beam-propagation method: analysis and assessment. J. Opt. Soc. Am. A 1981, 71(7): 803~810
    Scarmozzino R, Osgood R M. Comparison of finite-difference and Fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics applications. J. Opt. Soc. Am. A 1991, 8(5): 724~731
    Yevick D, Hermansson B. Efficient beam propagation techniques. IEEE J. Quantum Electron. 1990, 26(1): 109~112
    
    Nolting H P, M?rz R. Results of benchmark tests for different numerical BPM algorithms. J. Lightwave Technol. 1995, 13(2): 216~224
    Hoekstra H J W M. On beam propagation methods for modeling in integrated optics. Opt. Quantum Electron. 1997, 29(2): 157~171
    Chung Y, Dagli N. An assessment of finite difference beam propagation method. IEEE J. Quantum Electron. 1990, 26(8): 1335~1339
    Huang W P, Xu C L, Chu S T, et al. A vector beam propagation method for guided-wave optics. IEEE Photon. Technol. Lett. 1991, 3(10): 910~913
    Huang W P, Xu C L, and Chaudhuri S K. A vector beam propagation method based on H field. IEEE Trans. Photon. Technol. Lett. 1991, 3(12): 1117~1120
    Huang W P, Xu C L, and Chcudhuri S K. A finite difference vector beam propagation method for three-dimensional waveguide structures. IEEE Photon. Technol. Lett. 1992, 4(2): 148~151
    Huang W P, Xu C L, Chu S T, et al. The finite-difference vector beam propagation method: analysis and assessment. J. Lightwave Technol. 1992, 10(3): 295~305
    Huang W P, Xu C L. Simulation of three-dimension optical waveguides by a full-vector beam propagation method. IEEE J. Quantum Electron. 1993, 29(10): 2639~2649
    Ma F, Xu C L, and Huang W P. Wide-angle full vectorial beam propagation method. IEE Proc.-Optoelectron. 1996, 143(2): 139~143
    Hadley G R. Wide-angle beam propagation using Pade approximation operators. Opt. Lett. 1992, 17(20):1426~1428
    Ma F, Xu C L, and Huang W P. Wide-angle full vectorial beam propagation method. IEE Proc.-Optoelectron. 1996, 143(2): 139~143
    Hadley G R. Transparent boundary condition for beam propagation. Opt. Lett. 1991, 16(9): 624~626
    Hadley G R. Transparent boundary condition for the beam propagation method. J. Quantum Electron. 1992, 28(1): 363~370
    Chiang K S. Analysis of optical fibers by the effective-index method. Appl. Opt. 1986, 25(1): 348~354
    Chiang K S. Dual effective-index method for the analysis of rectangular dielectric waveguides. Appl. Opt. 1986, 25(13): 2169~2174
    
    Robertson M J, Kendall P C, Ritchie S, et al. The weighted index method: a new technique for analyzing planar optical waveguides. J. Lightwave Technol. 1989, 7(12): 2105~2111
    Pogossian S P, Vescan L, and Vonsovici A. The single-mode condition for semiconductor rib waveguides with large cross section. J. Lightwave Technol. 1998, 16(10): 1851~1853
    Xu C L, Huang W P, Stern M S, et al. Full-vectorial calculation by finite difference method. IEE Proc.-Optoelectron. 1994, 141(5): 281~286
    Wang D Y, Jin G F, Yan Y B, et al. Aberration theory of arrayed waveguide grating. J. Lightwave Technol. 2001, 19(2): 279~284
    Velzel C H F. A general theory of the aberrations of diffraction gratings and grating-like optical instruments. J. Opt. Soc. Am. 1976, 66: 346~353
    Marz R, Cremer C. On the theory of planar spectrographs. J. Lightwave Technol. 1992, 10(12): 2017~2022
    Lierstuen L O, Sudbo A. 8-channel wavelength division multiplexer based on multimode interference couplers. IEEE Photon. Technol. Lett. 1995, 7(9): 1034~1036
    Paiam M R, MacDonald R I. Planar phased-array wavelength multiplexers based on multimode interference couplers. Proc. SPIE 1997, 3007: 104~111
    Paiam M R, MacDonald R I. A 12-channel phased-array wavelength multiplexer with multimode interference couplers. IEEE Photon. Technol. Lett. 1998, 10(2): 241~243
    Bachmann M, Besse P A, and Melchior H. General self-imaging properties in N×N multimode interference couplers including phase relations. Appl. Opt. 1994, 33(18): 3905~3911
    Bachmann M, Besse P A, and Melchior H. Overlapping-image multimode interference couplers with a reduced number of self-images for uniform and power splitting. Appl. Opt. 1995, 34(30): 6898~6910
    Paiam M R, MacDonald R I. Design of phased-array wavelength division multiplexers using multimode interference couplers. Appl. Opt. 1997, 36(21): 5097~5108
    Abe M, Hibino Y, Tanaka T, et al. Mach-Zehnder interferometer and arrayed-waveguide- grating integrated multi/demultiplexer with photosensitive wavelength tuning. Electron. Lett. 2001, 37(6): 376~377
    
    Chen J C, Dragone C. A study of fiber-to-fiber losses in waveguide grating routers. J. Lightwave Technol. 1997, 15(10): 1895~1899
    Chen J C, Dragone C. A proposed design for ultralow-Loss Waveguide Grating Routers. IEEE Photon. Technol. Lett. 1998, 10(3): 379~381
    Heiblum M, Harris J H. Analysis of curved optical waveguides by conformal transformation. IEEE J. Quantum Electron. 1975, 11(2): 75~83
    Ladouceur F, Labeye P. A new general approach to optical waveguide path design. J. Lightwave Technol. 1995, 13(3): 481~492
    Seo C, Chen J C. Low transition losses in bent rib waveguides. J. Lightwave Technol. 1996, 14(10): 2255~2259
    Lierstuen L O, Sudb? A S. Coupling losses between standard single-mode fibers and rectangular waveguides for integrated optics. Appl. Opt. 1995, 34(6): 1024~1028
    Takada K, Yamada H, Hida Y, et al. Rayleigh backscattering measurement of 10m long silica-based waveguides. Electron. Lett. 1996, 32(18): 1665~1667
    Kasaya K, Mitomi O, Naganuma M, et al. A simple laterally tapered waveguide for low-loss coupling to single-mode fibers. IEEE Photon. Technol. Lett. 1993, 5(3): 345~347
    Mitomi O, Kasaya K, and Miyazawa H. Design of a single-mode tapered waveguide for low-loss chip-to-fiber coupling. IEEE J. Quantum Electron. 1994, 30(8): 1787~1793
    Fan R S, Hooker R B. Tapered polymer single-mode waveguides for mode transformation. J. Lightwave Technol. 1999, 17(3): 466~474
    Itoh M, Saida T, Hida Y, et al. Large reduction of singlemode-fiber coupling loss in 1.5%( planar lightwave circuits using spot-size converters. Electron. Lett. 2002, 38(2): 72~74
    Stemmer A, Zarschizky H, Mayerhofer F, et al. Design and fabrication of synthetic lenses in silicon. Proc. SPIE 1993, 1732: 77~88
    Zarschizky H, Stemmer A, Mayerhofer F, et al. Binary and multilevel diffractive lenses with submicrometer feature sizes. Opt. Eng. 1994, 33(11): 3527~3536
    Welch W H, Te Kolste R D, Feldman M R, et al. Achromatic diffractive optics for laser diodes and fiber-optic coupling. Proc. SPIE 1994, 2152: 118~126
    Rossi M, Bona G L, and Kunz R E. Arrays of anamorphic phase-matched Fresnel elements for diode-to-fiber coupling. Appl. Opt. 1995, 34(14): 2483~2488
    
    Cole H J, Cites J S, and Ashley P R. Diffractive optical components for fiber-to-waveguide couplers. Proc. SPIE 1994, 2267: 31~38
    McGaugh M K, Verber C M, and Kenan R P. Modified integrated optic Fresnel lens for waveguide-to-fiber coupling. Appl. Opt. 1995, 34(9): 1562~1568
    金国藩, 严瑛白, 邬敏贤. 二元光学. 北京: 国防工业出版社, 1998. 223~241
    宋菲君, Jutamulia S. 近代光学信息处理. 北京: 北京大学出版社, 1998. 118~125
    Fienup J R. Phase retrieval algorithms: a comparison. Appl. Opt. 1982, 21(15): 2758~2769
    Gerchberg R W, Saxton W O. A practical algorithm for the determination of phase from image and diffraction plane pictures. OPTIK 1972, 35(2): 237~246
    Sang T, Liao J H, Lu Z W, et al. A new Fourier iterative algorithm for the design of phase-only diffractive optical element used in laser beam shaping. Chin. J. Lasers 1996, B5(5): 451~460
    Irie Y, Miyokawa J, Mugino A, et al. Over 200 mW 980 nm pump laser diode module using optimized high-coupling lensed fiber. OFC/IOOC ’99 Tech. Dig. 1999: 238~240
    Ghafoori-shiraz H, Asano T. Microlens for coupling a semiconductor laser to a single-mode fiber. Opt. Lett. 1986, 11(8): 537~539
    Shah V S, Curtis L, Vodhanel R S, et al. Efficient power coupling from a 980-nm, broad-area laser to a single-mode fiber using a wedge-shaped fiber endface. J. Lightwave Technol. 1990, 8(9): 1313~1318
    Edwards C A, Presby H M, and Dragone C. Ideal microlenses for laser to fiber coupling. J. Lightwave Technol. 1993, 11(2): 252~257
    Presby H M, Giles C R. Asymmetric fiber microlenses for efficient coupling to elliptical laser beams. IEEE Photon. Technol. Lett. 1993, 5(2): 184~186
    Modavis R A, Webb T W. Anamorphic microlens for laser diode to single-mode fiber coupling. IEEE Photon. Technol. Lett. 1995, 7(7): 798~800
    Ogura A, Kuchiki S, Shiraishi K, et al. Efficient coupling between laser diodes with a highly elliptic field and single-mode fibers by means of GIO fibers. IEEE Photon. Technol. Lett. 2001, 13(11): 1191~1193
    Yoda H, Shiraishi K. A new scheme of a lensed fiber employing a wedge-shaped graded-index fiber tip for the coupling between high-power laser diodes and single-mode fibers. J. Lightwave Technol. 2001, 19(12): 1910~1917
    
    Buchold B, Voges E. Polarisation insensitive arrayed-waveguide grating multiplexers with ion-exchanged waveguides in glass. Electron. Lett. 1996, 32(24): 2248~2250
    Buchold B, Glingener C, Culemann D, et al. Polarization insensitive, ion-exchanged arrayed-waveguide grating multiplexers in glass. Fiber Integrated Opt. 1998, 17(4): 279~298
    Zirngibl M, Dragone C, and Joyner C H. Demonstration of a 15×15 arrayed waveguide multiplexer on InP. IEEE Photon. Technol. Lett. 1992, 4(11): 1250~1253
    Soole J B D, Amersfoort M R, Leblanc H P, et al. Polarization-independent InP arrayed waveguide filter using square cross-section waveguides. Electron. Lett. 1996, 32(4): 323~324
    Kohtoku M, Sanjoh H, Oku S, et al. InP-based 64-channel arrayed waveguide grating with 50 GHz channel spacing and up to -20 dB crosstalk. Electron. Lett. 1997, 33(21): 1786~1787
    Kobayashi J, Inoue Y, Matsuura T, et al. Tunable and polarization-insensitive arrayed-waveguide grating multiplexer fabricated from fluorinated polyimides. IEICE Trans. Electron. 1998, E81-C(7): 1020~1026
    Ahn J H, Lee H J, Hwang W Y, et al. Polymeric 1×16 arrayed waveguide grating multiplexer using fluorinated poly(arylene ethers) at 1550nm. IEICE Trans. Electron. 1999, E82-B(2): 406~408
    Yeniay A, Gao R Y, Takayama K, et al. Ultra-low-loss polymer waveguides. J. Lightwave Technol. 2004, 22(1): 154~158
    Wong W H, Pun E Y B. Exposure characteristics and three-dimensional profiling of SU8C resist using electron beam lithography. J. Vac. Sci. Technol. B 2001, 19(3): 732~735
    Kokubun Y, Takizawa M, and Taga S. Three-dimensional athermal waveguides for temperature independent lightwave devices. Electron. Lett. 1994, 30(15): 1223~1224

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700