左心室重构大鼠模型的中医证候学评价及其相关中药的电生理作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心律失常是严重威胁人类健康的心脏疾病,严重的心律失常已经成为导致人类死亡的主要原因。而长期以来,有效治疗心律失常是中医药和中西医结合临床工作的薄弱环节。因此本研究致力于开展中西医结合防治心律失常的研究。
     目的:
     1.建立部分缩窄大鼠腹主动脉致心室重构动物模型,并对该模型的中医证候学进行研究;
     2.研究心室重构大鼠模型的离体心脏电生理特点,并以应用活血、益气中药的提取物为主进行防治心室重构致心律失常的药理研究。
     方法:
     1.用部分缩窄大鼠腹主动脉的方法,复制大鼠心室重构的动物模型。应用超声心动技术和病理实验技术(对模型大鼠心脏常规石蜡切片,分别行HE染色和Masson染色,显微图象观察分析)的方法,对造模后第4周和第8周的大鼠心脏进行病理学评价。以中西医结合学会的虚证、血瘀证辨证标准作为动物模型的辨证依据,采集动物模型的外在表观信息和心功能评价等内容、将临床定性的问诊内容替代以同等意义的实验测试指标,包括左心室射血分值、心电图ST段改变、力竭性游泳时间等,开展病证动物模型的综合评价。
     2.用结扎大鼠冠状动脉致心肌梗死的方法和按方法1,复制两种心室重构的大鼠动物模型。应用Langdorff灌注大鼠离体心脏的电生理实验的方法分别观察造模后第8周两种心室重构大鼠离体心脏的电生理指标,包括:动作电位复极20%的时间(APD20,ms),动作电位复极50%的时间(APD50,ms),动作电位复极90%的时间(APD90,ms),ERP / APD90比值,有效不应期(ERP,ms) ,动作电位最大幅度(APA,mv),零相上升的最大速率(Vmax,v/s),APD90离散度,ERP离散度。研究它们各自的电生理特点,比较它们之间电生理特点的异同。
     3.按上述灌注离体心脏的电生理实验方法,以经典的抗心律失常西药利多卡因、胺碘酮、维拉帕米为阳性对照药,研究益气、活血、清热中药的提取物,人参茎叶皂苷、川芎嗪、人参茎叶皂苷+川芎嗪、槐定碱、小檗碱对部分缩窄大鼠腹主动脉致心室重构动物模型的离体心脏电生理的影响。4.按上述灌注离体心脏的电生理实验方法,研究扶正化瘀胶囊(0.4g/kg体重)和卡托普利(2.2mg/kg体重)对结扎大鼠冠状动脉模型灌胃8周后的离体心脏电生理作用。
     结果:
     1.造模后第4周,部分缩窄大鼠腹主动脉致心室重构大鼠心脏,室间隔舒张末期厚度(IVSTd)增厚、左室重量指数(LVMI)增大、左室壁厚度增加、左室腔面积增大、心肌胶原容积分数(CVF)、心脏血管周围胶原面积比值(PVCA)增大、ST段发生缺血性变化导联增加,以上超声、病理、心电图指标与假手术组比较均有非常显著性差异(P <0.01),心率增快(P <0.05);力竭游泳时间缩短(P <0.01)。造模后第8周,IVSTd仍非常增加、左室后壁舒张末期厚度(LVPWTd)增加,左室壁厚度增大,心肌CVF、心脏PVCA增大,ST段发生缺血性变化导联增加,以上超声、病理、心电图指标与假手术组比较均有非常显著性差异(P <0.01),左室舒张末期内径(LVDd)增加( P <0.05),左室射血分数(LVEF)减小(P <0.05);LVMI增大(P<0.01),左室腔面积增大(P <0.05),心率增快(P <0.05);力竭性游泳时间缩短(P <0.01),以上数值与8周假手术组比较,均有显著性差异。
     2.造模后第8周,部分缩窄大鼠腹主动脉致心室重构大鼠离体心脏左心室动作电位复极20%(APD20)、动作电位复极50%(APD50)、动作电位复极90%(APD90)均非常显著延长(P <0.01)、有效不应期(ERP)有显著延长(P <0.05)、ERP/ APD90比值显著减小(P <0.05),右心室APD20、APD50、APD90、ERP、ERP/ APD90比值无明显变化,APD90离散度、ERP离散度非常显著增大(P <0.01)。结扎大鼠冠状动脉致心室重构大鼠离体心脏左心室APD20、APD50、APD90、ERP均非常显著延长、ERP/ APD90比值非常显著减小,右心室APD20、APD50、APD90、ERP均非常显著延长, ERP / APD90比值非常显著减小,APD90离散度、ERP离散度非常显著增大。以上各指标均与假手术组相应各指标比较有非常显著性差异(P <0.01)。
     3.各药对部分缩窄大鼠腹主动脉致心室重构大鼠离体心脏的电生理影响:(1)利多卡因:缩短心肌APD90时程、增加ERP/APD90比值,减小心肌动作电位复极离散度,减小APA、Vmax。(2)胺碘酮:延长心肌APD90、ERP时程、增加ERP/APD90比值;减小心肌动作电位和有效不应期的离散度,延长A-H时长,减慢房室结传导速度。(3)维拉帕米:延长心肌A-H时长,对于该模型的动作电位振幅(APA)、动作电位上升最大速率(Vmax)、时程、均无影响,对室性心律失常作用有限。
     (4)人参茎叶皂苷:A-H延长(P<0.01)。(5)川芎嗪:ERP延长(P<0.05),ERP / APD90比值增大(P<0.05),A-H延长(P<0.01)。(6)人参茎叶皂苷+川芎嗪:APD90、ERP延长(P<0.05),ERP / APD90比值增大(P<0.05),A-H延长(P<0.01)。(7)槐定碱:APD90、ERP延长(P<0.05),ERP / APD90比值增大(P<0.05),A-H、H-V间期延长(P<0.01)。(8)小檗碱APD90、ERP延长(P<0.05),ERP / APD90比值增加(P<0.05),APA和Vmax减小(P<0.01),A-H、H-V间期均延长(P<0.01)。
     4.卡托普利和扶正化瘀胶囊对结扎大鼠冠状动脉致心室重构模型的离体心脏电生理的影响:(1)卡托普利:原已增大的心肌APD90减小(P <0.05),原已减小的ERP / APD90比值增大(P <0.05),APD90离散度减小,致室颤的乌头碱用药量增大(P <0.05)。(2)扶正化瘀胶囊:原已增大的APD90减小(P <0.05),原已减小的ERP / APD90比值增大(P <0.05),致室颤的乌头碱用药量增大(P <0.05)。
     结论:
     1.部分缩窄大鼠腹主动脉致心室重构模型大鼠心脏,具有早期呈现典型的向心性肥厚的病理改变,以后发展为向心性肥厚又有离心性肥厚的混合型左室肥厚的动态改变。中医证候表现为气虚、血瘀证候的特点。
     2.两种心室重构大鼠离体心脏的电生理特性各有其不同的特点。部分缩窄腹主动脉致心室重构大鼠离体心脏左心室APD、ERP延长,右心室APD、ERP无改变。心梗后心室重构大鼠离体心脏左心室APD、ERP延长更加明显,右心室APD和ERP也明显延长。
     3.人参茎叶皂苷加川芎嗪合用后对心肌电生理的影响比单用人参茎叶皂苷和川芎嗪全面,具体是:既延长心肌APD90、ERP,又增加了ERP/APD90比值,同时也具有延长A-H时长;增加冠脉流量的作用。对于改善心肌APD90、ERP、ERP/APD90比值,增加冠脉流量的强度大于单独应用人参茎叶皂苷或川芎嗪。
     槐定碱能够显著延长心肌APD90、ERP,增加ERP/APD90比值,延长A-H时长,H-V时长等抗心律失常作用,但有显著减少了心室重构大鼠离体心脏冠脉流量的作用。
     小檗碱延长心肌APD90、ERP,增加ERP/APD90比值,延长了A-H时长和H-V时长等抗心律失常作用。但有减小APA和Vmax的负性电生理作用。
     4.对未曾报告有抗心律失常的药物扶正化瘀胶囊和卡托普利,经8周灌胃给药,显著改善心梗大鼠离体心脏的左右心室电生理指标。并增大了引发室颤的乌头碱用药量。
Arrhythmia,which is a serious threat to human health, is a kind of heart disease. Serious arrhythmia has become the leading cause of death. And the long-standing, effective treatment of arrhythmia is the weak links for Chinese medicine and combination of TCM with Western medicine. Therefore this study is to launch prevention and treatment of Arrhythmia Research.
     Objectives:
     1. The establishment of coarctation rats abdominal aorta induced animal model of ventricular remodeling, and the research of traditional Chinese medicine syndrome.
     2. To study electrophysiological characteristics of isolated heart of ventricular remodeling in rats, and to make pharmacological research of application of active Blood and Yiqi medicine extracts to treat arrhythmia, which caused by ventricular remodeling.
     Methods:
     1. To duplicate the rat ventricular remodeling in animal models with coarctation rats abdominal aorta. Application of echocardiography technology and pathology laboratory to evaluate the pathologic characteristics of rat hearts right model after four weeks and eight weeks. Based on diagnostic standard of Integrated Traditional Chinese and Western Medicine about deficient syndrome and syndrome of blood stasis, with acquisition of the apparent external information and evaluation of cardiac function, conduct animal disease and syndrome comprehensive evaluation in animal model.
     2. Application of coronary artery ligation and abdominal aorta coarctation in rats to duplicate two kinds of ventricular remodeling animal model. With the method of Langdorff reperfusion isolated rat cardiac electrophysiology experimental, electrophysiology index, which including 20% action potential duration(APD20,ms), 50% action potential duration(APD50,ms), 90% action potential duration(APD90,ms), effective refractory period(ERP,ms), action potential amplitude(APA,mv), maximum velocity of phase depolarization(Vmax,v/s), APD90 divergence and ERP divergence, at 8 weeks right after operation. To study its electrophysiological characteristics.
     3. With the above in vitro perfusion of cardiac electrophysiology experimental, using lidocaine, amiodarone, verapamil as a positive control, make the research about electrophysiology impact of pharmaceutics remedies (gensenosides, trtram-ethylpvrazine, gensenosides and trtram-ethylpvrazine, sophordine, berbeine) on the rat ventricular remodeling in animal models with coarctation rats abdominal aorta.
     4.With the above in vitro perfusion of cardiac electrophysiology experimental, studying the electrophysiology impact of Fuzhenghuayu caps(0.4g/kg)and captopril(2.2mg/kg) on the rat ventricular remodeling in animal models with coronary artery ligation.
     Results:
     1. At 4 weeks of operation, in rat ventricular remodeling in animal models with coarctation rats abdominal aorta, inter-ventricular septum end-diastolic thickness(IVSTd),left ventricular mass index(LVMI),left ventricular wall thickness, left ventricular cavity area, collagen volume fraction (CVF), Perivascular Collagen area (PVCA) and leads of ST-segment changes increased (P <0.01), heart rate increased (P <0.05), exhaustive swim time decreased (P <0.01). At 8 weeks of operation, in rat ventricular remodeling in animal models with coarctation rats abdominal aorta, IVSTd, left ventricular posterior wall end-diastolic thickness(LVPWTd), left ventricular wall thickness, left ventricular cavity area, CVF, PVCA and leads of ST-segment changes increased (P <0.01), left ventricular end-diastolic diameter(LVDd) increased ( P <0.05 ) , left ventricular ejection fraction(LVEF) decreased(P <0.05), LVMI increased(P<0.01), left ventricular cavity area increased(P <0.05), heart rate increased (P <0.05), exhaustive swim time decreased (P <0.01).
     2. At 4 weeks of operation, in rat ventricular remodeling in animal models with coarctation rats abdominal aorta, electrophysiology index of left ventricle, including APD20,APD50 APD90 increased ( P <0.01 ) , ERP increased ( P <0.05),ERP/ APD90 decreased(P <0.05).But electrophysiology index of right ventricle have no changes. In rat ventricular remodeling in animal models with coronary artery ligation, electrophysiology index of left and right ventricle all increased.
     3.Electrophysiology impacts of drugs on the isolated heart of animal models with coarctation rats abdominal aorta. (1) Lidocaine : shorten the time of APD90 , increased the ratio of ERP/APD90, reduced myocardial action potential repolarization dispersion, reduced the APA, Vmax. (2) Amiodarone: extended the time of APD90 and ERP, increased the ratio of ERP/APD90, reduced myocardial action potential and effective refractory period of dispersion, extended the time of A-H and slow down the AV node conduction velocity. (3) Verapamil: extended the time of A-H. (4) GSL: extended the time of APD90, ERP (P <0.05) and A-H (P <0.01). (5) Trtramethylpyrazine (TMP): extended the time of ERP (P <0.05) and A-H (P <0.01), increased the ratio of ERP/APD90 (P <0.05). (6) GSL + TMP: extended the time of APD90 and ERP (P <0.05), increased the ratio of ERP/APD90 (P <0.05), extended the time of A-H (P <0.01). (7) Sophoridine: extended the time of APD90 and ERP (P <0.05), increased the ratio of ERP/APD90 (P <0.05), extended the time of A-H and H-V (P <0.01). (8) Berberine: extended the time of APD90 and ERP (P <0.05) increased the ratio of ERP / APD90 (P <0.05), decreased APA and Vmax (P <0.01), extended the time of A-H (P <0.01).
     4.Electrophysiology impacts of captopril and Fuzhenghuayufang capsule on the isolated heart of animal models with coronary artery ligation: (1) captopril: Shorten the time of APD (P <0.05), increased the ratio of ERP/APD90 (P <0.05), decreased the APD90 dispersion, induced ventricular fibrillation in aconitine dosage increased (P <0.05). (2) Fuzhenghuayufang Capsule: Shorten the time of APD (P <0.05), increased the ratio of ERP/APD90 (P <0.05), decreased the APD90 dispersion, induced ventricular fibrillation in aconitine dosage increased (P <0.05).
     Conclusions:
     1.The heart of animal models with coarctation rats abdominal aorta present typical concentric hypertrophy in early, and development combination of concentric hypertrophy and eccentric hypertrophy after sometimes. The characteristic of syndrome of traditional Chinese medicine present syndrome of Qixu and blood stasis.
     2. The isolated heart of two kinds of ventricles remodeling have their own electrophysiological characteristics.
     3. Combination gensenosides with trtram-ethylpvrazine have better electrophysiological impact on the heart of animal models with coarctation rats abdominal aorta than gensenosides or trtram-ethylpvrazine.
     4. Fuzhenghuayu caps and captopril, which have never been report to have antiarrhythmic function, had been found that their have some good electrophysiological impact on the animal models with coronary artery ligation.
引文
1.Gatzoulis KA, Vyssoulis GP, Apostolopoulos T, et al. Mild left ventricular hypertrophy in essential hypertension: is it really arrhythmogenic? [J] Am J Hypertens,2000,13(4 Pt 1):340
    2. Elliott PM. Natural history of hypertrophic cardiomyopathy [J]. Curr Cardiol Rep,2000,2(2):141
    3.Talard P,Levy S,Bonal J,et al.Sudden death as a presenting symptom of hypertrophic cardiomyopathy: treatment with an implantable cardioveter defibrillator[J].PACE,1996,19(8):1264
    4.Wolf CM, Moskowitz IP, Arno S, et al. Somatic events modify hypertrophic cardiomyopathy pathology and link hypertrophy to arrhythmia [J]. Proc Natl Acad Sci U S A, 2005, 102(50): 18123-8
    5.Philip J. Podrid,Peter R.Kowey .心律失常:机制、诊断与治疗[M].2001年版.北京大学医学出版社 2004:6
    6.陈在嘉,高润霖.冠心病[M].人民卫生出版社 2002 年第一版 北京:1034
    8.中华医学会心血管病分会,中华心血管病杂志编辑委员会.慢性收缩型心力衰竭治疗建议[J].中华心血管病杂志 2002,30(1):7
    9. Perrier E, Kerfant BG, Lalevee N, et al. Mineralocorticoid receptor antagonism prevents the electrical remodeling that precedes cellular hypertrophy after myocardial infarction [J]. Circulation, 2004 ,110(7):776-83
    10. McCrossan ZA, Billeter R, White E. Transmural changes in size, contractile and electrical properties of SHR left ventricular myocytes during compensated hypertrophy [J]. Cardiovasc Res, 2004, 63(2):283-92
    11.Anderson ME. Calmodulin kinase and L-type calcium channels; a recipe for arrhythmias? [J]. Trends Cardiovasc Med, 2004, 14(4):152-61
    12.梁黔生,郑 智.阿米洛利对甲状腺素诱发大鼠肥厚心肌的瞬时外向钾电流的作用[J].中国现代医学杂志,2005,17(9): 2597-2601
    13.Tomita AF,Bassett AL,Myerburg RJ et al.Dimished transient outward currents in rat hypertrophied ventricular myocytes [J]. Circ Res,1994,75:269-303
    14.Teneick RE,ZhangK,Harvey RD,et al.Enhanced functional expression of transient outward currents in hypertrophied feline myocytes [J] . Cardiovas Drug Ther , 1993,7(Suppl 3):611-619.
    15.Tomaselli GF, Marban E. Electrophysiological remodelingin hypertrophy and heart failure[J]. Cardiovasc Res,1999,42:270-83.
    16. Wakisaka Y, Niwano S, Niwanoh, et al .Structural and electrical ventricular remodeling in rat acute myocaitis and subsequent heart failure [J].Cardiovasc Res,2004,63(4):689-699.
    17.Armoundas AA,Wur,Juang G,etal,Electrical and structural remodeling of the failing ventricle[J].Pharmacol Ther,2001,92:213-230.
    18.Bodi I,Muthe JN,Hahnhs,etal. Electrical remodeling in hearts from a calcium-dependent mouse model of hypertrophy and failure :complex nature of K+ current changes and action potential duration [J]. J Am Coll Cardiol , 2003,41:1611-1622)
    19. Nabauer M, Beuckelmann DJ, Uberfuhr P, et al. Regionaldifferences in current density and rate-dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle[J]. Circulation. 1996,93::168-77.
    20 McIntosh MA, Cobbe SM, Kane KA. Action potential prolongation and potassium current sin left ventricular myocytes isolated from hypertrophied rabbit hearts [J].J Mol Cell Cardiol,1998,30:43
    21 Tomaselli GF, Marban E. Electrophysiological remodeling in hypertrophy and heart failure[J].Cardiovascular Research,1999,42:270
    22 Gomez AM, Benitah JP, Henzel D, et al. Modulation of electrical heterogeneity by compensated hypertrophy in rat lef tventricle[J].Am J Physiol Heart Circ Physiol,1997,272:H1078
    23.Kong W, Po S, Yamagishi T, et al. Isolation and characterization of the human gene encoding Ito: further diversity by alternative mRNA splicing[J]. Am J Physiol,1998,275:H1963-70.
    24 .Gidh-Jain M, Huang B, Jain P, et al. Differential expression of voltage-gated K+ channel genes in left ventricular remodeled myocardium after experimental myocardial infarction[J]. Circ Res, 1996,79:669-75.
    25.Kaab S, Dixon J, Duc J, et al. Molecular basis of transient outward potassium current downregulation in human heart failure: a decrease in Kv4.3 mRNA correlates with a reduction in current density[J]. Circulation,1998, 98:1383-93.
    26. Gintant GA. Regional differences in IK density in canine left ventricle: role of IK,s in electrical heterogeneity[J]. Am J Physiol. 1995; 268:H604-13.
    27.Ramakers C, Vos MA, Doevendans PA, et al. Coordinated down-regulation of KCNQ1 and KCNE1 expression contributes to reduction of I(Ks) in canine hypertrophied hearts[J]. Cardiovasc Res, 2003,57:486-96
    28.Volders P GA, Sipido KR,Vos MA,et al.Downregulation of delayed rectifier K+ currents in dogs with chronic complete atrioventricular block and acquired torsade de pointes[J]. Circulation, 1999, 100:2455
    29.XuYP, RialsSJ, WuY,et al. Left ventricular hypertrophy decreases slowly but not rapidly activating delayed rectifier potassium currents of epicardial and endocardial myocytes in rabbits[J].Circulation,2001,103:1585
    30.Ahmmed GU, Dong PH, Song GJ, et al. Changes in Ca2+cycling proteins underlie cardiac action potential prolongation in a pressure-over loaded guinea pig model with cardiac hypertrophy and failure[J].Circ Res, 2000,86:558
    31.吴晓冬,戴德哉.L2 甲状腺素引起肥厚心肌细胞膜上 125I 多非替利结合点的改变[J].中国药理学通报 ,2003,19(3):294-298
    32. Tsuji Y, Opthof T, Yasui K, et al. Ionic mechanisms of acquired QT prolongation and torsades de pointes in rabbits with chronic complete atrioventricular block[J]. Circulation,2002,106:2012-18
    33. Lopatin AN, Nichols CG. Inward rectifiers in the heart: an update on IK1. [J] Mol Cell Cardiol,2001, 33:625-38.
    34. LiS, Jiang WP. Electrical remodeling of membrane ionic channels of hypertrophied ventricular myocytes from spontaneously hypertensive rats [J].Chinese Medical Journal,2000,113 (7): 584
    35. Rials SJ, Xu YP, Wu Y, et al. Regression of LV hypertrophy with captopril normalizes membrane currents in rabbits[J]. Am J Physiol Heart Circ Physiol,1998,275:H1216
    36.Yuan F, Brandt NR, Pinto JM, et al. Hypertrophy decrease s cardiac KATP channel responsiveness to exogenous and locally generated (gly- colytic) ATP [J]. J Mol Cell Cardiol, 1997, 29 (10):2837
    37. Goldhaber J I. Free radicals enhance Na+-Ca2+ exchange in ventricular myocytes [J].Am J Physiol, 1996, 721:H823
    38.Benardeau A, Hatem S N, Martin C R, et al .Contribution of Na+/Ca2+ exchange to action potential of human atria myocytes [J]. Am J Physiol,1996,271:H 1151
    39. Nuss HB, Houser SR. T-type Ca2+ current is expressed in hypertrophied adult feline left ventricular myocytes[J]. CircRes,1993, 73:777-82.
    40. 周琳,蒋彬,李红霞,等.胺碘酮对大鼠肥厚心肌细胞急性电生理作用的研究[J]. 中华心血管病杂志,2006,34(2):164-168
    41.Goldhaber J I .Free radicals enhance Na+-Ca2+ exchange in ventricularmyocytes [J].Am J Physiol,1996,721:H823
    42. Benardeau A,Hatem S N,Martin C R, et al .Contribution of Na+/Ca2+ exchange to action potential of human atrial myocytes[J]. Am J Physiol,1996,271:H 1151.
    43. Ranjan R, Chiamvimonvat N, Thakor NV, et al. Mechanism of anode break stimulation in the heart[J]. Biophys J, 1998,74:1850-63
    44. Yu H, Chang F, Cohen IS. Pacemaker current If in adult canine cardiac ventricular myocytes[J]. J Physiol. 1995; 485( Pt 2):469-83
    45. Cerbai E, Barbieri M, Mugelli A. Occurrence and properties of the hyperpolarization-activated current If in ventricular myocytes from normotensive and hypertensive rats during aging[J]. Circulation,1996,94:1674-81.
    46. Hoppe UC, Jansen E, Sudkamp M, et al. Hyperpolarization-activated inward current in ventricular myocytes from normal and failing human hearts[J]. Circulation,1998,97:55-65.
    47.孙冰,孙宝贵.心脏缝隙连接和心律失常[J].中国心脏起搏与心电生理杂志,2004,18(1):63
    48. Sepp R, Severs N,Gourdie R, et al. Altered patterns of cardiac intercellular junction distribution in hypertrophic cardiontyopathy[J]. Heart,1996,76(5):412
    49.李霞,张存泰,刘念,等.缝隙连接对双细胞动作电位的影响[J].中国心脏起搏与心电生理杂志,2005,19(4):298
    50.贺莉,张存泰,马业新,等.缝隙连接对心肌肥厚兔室性心律失常的影响[J]. 中国心脏起搏与心电生理杂志,2006,2(4):333-336
    1.钱卫民,邓春玉,薛玉梅,等.丹参素对豚鼠心室肌细胞 L-型钙通道的影响[J].岭南心血管病杂志 2002,8(4):276-278
    2.于海波,徐长庆,单宏丽,等.丹参酮-A 对大鼠心室肌细胞膜钾电流的影响[J].哈尔滨医科大学学报,2002,36(2):112-114
    3.陈江斌,唐其柱,黄从新,等.丹皮酚对心肌细胞自律性和延迟后除极的影响[J].中国应用生理学杂志,1999,15(4):332-334
    4.李芳,娄延平,王孝铭,等.红花黄素对豚鼠心室肌缺氧和复氧损伤的保护作用[J].哈尔滨医科大学学报,1999,33(1):6-8
    5.单宏丽,徐长庆,刘凤芝,等.红花黄素对豚鼠单个心室肌细胞动作电位和钙电流的影响[J].中国药理学通报,1999,15(4):351—354
    6.陈江斌 黄从新.川芎嗪对单个心室肌细胞电生理的影响[J].湖北医科大学学报,1999,20(2):112
    7.闫福曼,曾晓荣,杨艳,等.川芎有效成分对猪冠脉平滑肌细胞钙激活钾通道的影响[J].第六次全国中西医结合心血管病学术会议论文汇编,2002,151-157
    8.周崇坦,刘云霞,关丽华,等.川芎嗪对离体大鼠心肌在钙反常损伤时发生早期后除极的抑制作用[J]. 中国临床康复,10(39):104-106
    9. 赵春燕,陈 龙,钟国赣,等.人参三醇组皂甙单体对培养心肌细胞自发性搏动与动作电位的影响[J]. 长春中医学院学报,1997,13(62):52-53
    10. 李学军,范劲松,刘业伟,等.三七中人参三醇试对羊心浦氏纤维动作电位及延迟整流钾电流的影响[J]. 药学学报,1993,28(2):81-84
    11. 李学军,范劲松,吴凤简,等.三七中人参三醇试对羊心浦氏纤维内向电流的影响[J]. 北京医科大学学报,1993,25(4):258-260
    12.赵连科,董佳明.黄连素抗实验性心律失常作用初步观察[J].中国药理通讯,1992,9(1):7
    13.华峥,王晓良.黄连素对豚鼠心肌钾离子通道的抑制作用[J].药学学报,1994,29(8):576-580
    14.徐尚忠,张翼,任建英,等.小檗碱对豚鼠心肌细胞 L-及 T-型钙离子通道的影响[J].中国药理学报,1997,18(6):515-518
    15.王嘉凌,农艺,夏国瑾,等.莲心碱对心肌慢反应动作电位及慢内向电流的影响[J].药学学报,1993,28(11):812
    16.王嘉陵,宗贤刚,姚伟星,等. 甲基莲心碱对心肌细胞 I_(Na)、I_(Ca-L)及稳态外向 K~+电流的影响[J]. 中国药理学通报,1999,15(4): 357-360
    17.黄彩云,谢世英,黄胜英.苦参总碱抗心律失常作用的实验研究[J].大连大学学报,2002,23(4):108-110
    18.陈霞,李英骥,张文杰,等.氧化苦参碱对豚鼠心室肌细胞钠电流的影响[J].白求恩医科大学学报,2001,27(1):41-42
    19.杜智敏,刘影.青蒿素抗心律失常作用研究[J]. 中国药学杂志,2003,38(5):372
    20.周 晋,杜智敏,邱晓红,等.抗疟药青蒿素抗心律失常的作用机制[J]. 药学学报,1999,34(8):569-572
    21.久保道德.葛根的药理[J].国外医学中医中药分册,1993,15(1):23-27
    22. 苗维纳,沈映君,曾晓荣.葛根素对豚鼠心室肌细胞钾离子通道的影响[J].中国应用生理学杂志,2002,18(2):155-157
    23. ZhangGuangQin, HaoXueMei, DaiDeZai, et al.Puerarin blocks Na+ current in rat ventricular myocytes[J].Acta Pharmacol Sin,2003,24(12):1212-1216
    24. Zhang GQ, Hao XM, Ma YP, et al. Characteristic of the delayed rectifier K+ current in guinea pig hypertrophied ventricular myocytes induced by thyroxine[J]. Chin Pharmacol Bull, 2001, 17:174-177
    25.敖行述,何华美,张乐之.粉防己碱对心血管的药理作用研究进展[J].中国药业,2000,9(1):63-65
    26.唐明,顾风明,唐晓青,等.粉防己碱对豚鼠心室肌细胞钙电流的影响[J].同济医科大学学报,1996,25(4):260
    27.骆红艳,唐明,吴克忠,等.粉防己碱对豚鼠心室肌延迟整流钾通道的影响[J].同济医科大学学报,1999,28(2):108
    28.王兴祥,陈君柱,程龙献,等.粉防己碱对豚鼠左心室前负荷增加所致电生理改变的影响[J].中国中药杂志,2003,28(11):1054-1056
    29.Li GR. Antagonistic effect on experimental arrhythmias[J]. J Tradit Chin Med,1984,4:25
    30. 曾万成,曾繁典,冷大毛,等. 蝙蝠葛碱的心脏电生理作用研究[J].中国临床药理学杂志,1990,6(3):178-183
    31. 朱接全,曾繁典,胡崇家. 蝙蝠葛碱对猫冠脉结扎和复灌性心律失常的影响及电生理作用[J].中国药理学通报.1991,7(1):23-26
    32.王晓良,张黎明,华峥.勾藤碱对大鼠和豚鼠心肌细胞钾离子通道的影响[J].药学学报,1994,29(1):9-14
    33. 马传庚,项思远,岑德意,等. 甘松乙醇提出液的抗心律失常的实验研究[J]. 安徽医科大学学报,1980,15(4):9-11
    34.张陆勇,王秋娟,季慧芳,等.关附甲素对心肌慢反应动作电位的影响[J].中国医科大学学报,1994,25(2):109
    35.裴德安,李庚山,蒋锡嘉,等.关附甲素对单个心肌细胞钙通道和内向整流钾通道的阻断作用[J].中国心脏起搏与心电生理杂志,1999,13(2):108-110
    1.王硕仁,王振涛,赵明镜,等.心气虚病证动物模型及其评价体系的构建[J].中国实验动物学报 2002,10 (1):33-38
    2.徐淑云,卞如濂,陈修.药理实验方法学[M].北京:人民卫生出版社,2002 .3:1026-1028
    3. L.H.奥佩.心脏生理学 从细胞到循环 (第三版)[M] 北京:科学出版社 ,2001:321
    4.吴爱明,赵明镜,张东梅,等.心梗后心力衰竭模型大鼠中医证候特点及心脏的超声评价.中国中西医结合杂志,2007,27(3):227-230
    5. Collucci W S. Molecular and cellular mechanisms of myocardial faiure [J].Am J Cardiology, 1999; 80(11): 15-25
    6. Shinoka T, Breuer CK, Tanel KE . Tissue engineering heart valve-leaflet replacement study in a lamb model [J].Ann Thoracic Surg, 1995, 60 (6 supple) : 513-516.
    7. Zeltinger J, Landeen LK, Alexander HG, et al. Development and characterization of tissue-engineered aorti-cvalves [J].Tissue Eng,2001,7(1):9-22.
    8.王振涛,王硕仁,赵明镜,等. 心梗后左心衰大鼠心气虚证动物模型的研究[J]. 中国中医基础医学杂志,2002,8(4):68-70
    9.史载祥,廖家桢,武泽民,等.“心气虚”患者左心室功能的研究[J].中医杂志,1982,(12):58-61
    1.Elliott PM. Natural history of hypertrophic cardiomypathy [J].Curr Cardiol Rep,2000,2(2):141
    2.Talard P,Levy S,Bonal J,et al.Sudden death as a presenting symptom of hypertrophic cardiomypathy: treatment with an implantable cardioveter defibrillator[J].PACE,1996,19(8):1264
    3.徐淑云,卞如濂,陈修.药理实验方法学[M].北京:人民卫生出版社,2002 .3 1026-1028
    4. 王硕仁,王振涛,赵明镜,李敏.心气虚病证动物模型及其评价体系的构建[J].中国实验动物学报,2002,10(1):33-38.
    5. 钮伟真.介绍一套小动物离体灌流心脏心电信号研究装置[J].中国心脏起博与心电生理杂志,2000,14(2):124-126
    6. Wasson S, Reddy HK, Dohrmann ML. Current perspectives of electrical remodeling and its therapeutic implications [J]. J Cardiovasc Pharmacol Ther,2004,9(2):129-44
    7. Perrier E, Kerfant BG, Lalevee N, et al. Mineralocorticoid receptor antagonism prevents the electrical remodeling that precedes cellular hypertrophy after myocardial infarction [J]. Circulation, 2004 ,110(7):776-83
    8. McCrossan ZA, Billeter R, White E. Transmural changes in size, contractile and electrical properties of SHR left ventricular myocytes during compensated hypertrophy [J]. Cardiovasc Res, 2004, 63(2):283-92
    9.Eghbali M, Deva R, Alioua A, et al. Molecular and functional signature of heart hypertrophy during pregnancy [J]. Circ Res, 2005 ,96(11):1208-16
    10. Lebeche D, Kaprielian R, del Monte F, et al. In vivo cardiac gene transfer of Kv4.3 abrogates the hypertrophic response in rats after aortic stenosis [J]. Circulation, 2004 ,110(22):3435-43
    11.Tomaselli GF, Marban E. Electrophysiological remodeling in hypertrophy and heart failure[J].Cardiovascular Research,1999,42:270
    12. Wang GL, Wang GX, Yamamoto S,et al. Molecular mechanisms of regulation of fast-inactivating voltage-dependent transient outward K+ current in mouse heart by cell volume changes[J]. J Physiol, 2005 ,568(Pt 2):423-43
    13. Volders P GA, Sipido KR,Vos MA,et al.Downregulation of delayed rectifier K+currents in dogs with chronic complete atrioventricular block and acquired torsade de pointes [J]. Circulation, 1999, 100:2455
    14.XuYP, RialsSJ, WuY,et al. Left ventricular hypertrophy decreases slowly but not rapidly activating delayed rectifier potassium currents of epicardial and endocardial myocytes in rabbits[J].Circulation,2001,103:1585
    15. Wang JK, Cui CC, Yao QH, et al. Na+/Ca2+ exchanger current and K+ current remodeling in midmyocardial cells of hypertrophic left ventricle [J]. Di Yi Jun Yi Da Xue Xue Bao, 2004, 24(4):430-3, 436.
    16. Li S Jiang WP. Electrical remodeling of membrane ionic channels of hypertrophied ventricular myocytes from spontaneously hypertensive rats [J].Chinese Medical Journal,2000,113 (7): 584
    17.肖建民,马业新,付 晖等. 兔在体左心室肥厚心肌跨室壁复极不均一性的实验研究. 中国心血管杂志,2003,8(1):14.
    18.Spach MS, Dolber PC. Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiacmuscle: Evidence for electrical uncoupling of side to side fiberconnection with increasing age[J]. CircRes, 1986, 58:356-371.
    19. Delgado C, Steinhaus B, Delmar M, et al. Directional differences in excitability and margin of safety for propagation in sheep ventricular repicardial muscle [J]. Circ Res,1990,67:97-110.
    20. Delmar M, Michaels DC, Johnson T, et al. Effect of increasing intercellular resistance on transverse and longitudinal prolongation in sheep epicardial muscle[J]. CircRes,1987, 60:780-785.
    21. Carbonin PU, Di Gennaro M, Pahor M, et al. Cardiac aging, calcium overload, and arrhythmias[J]. Exp Gerontol, 1990, 25: 261-268.
    1.钮伟真.介绍一套小动物离体灌流心脏心电信号研究装置[J].中国心脏起博与心电生理杂志,2000,14(2):124-126
    2.徐淑云,卞如濂,陈修.药理实验方法学[M].北京:人民卫生出版社,2002 .3 1026-1028
    3.陈修,陈维洲,曾贵云.心血管药理学[M].北京:人民卫生出版社,2002 .8 593-626
    4.王涛,蓝鸿钧,王忠民,等.利多卡因温血心停搏液对豚鼠心室肌细胞L 一型钙通道的作用. 中华实验外科杂志 1999,16(2):109
    5.管宁,吴建岚,马作盛等.盐酸小檗碱在心血管疾病中的应用[J]. 医药导报, 1994,2:91
    6.陈新,孙瑞龙,王方正主编.临床心电生理与心脏起搏[M].北京:人民卫生出版社,1997.5-12.
    1.江苏新医学院.中药大辞典[M].上海科学技术出版社(上海).第一版:220
    2.王玉良,巴彦坤.川芎嗪对心血管组织的药理和电生理作用----一种新的“钙拮抗剂”? [J].中西医结合杂志,1985,5:291
    3.曾贵云,周远鹏,张丽英,等.川芎嗪对犬心脏动力学的作用[J].药学学报,1982,17(3):182
    4.Marcia LB , Robert SM .Talking with families about herbal therapies[J].The Journal of Pediatrics,2000,136:673
    5.Pharand C,Ackman ML,Jackevicius CA,et al.Use of OTC and herbal products in patients with cardiovascular disease[J].Ann Pharmacother,2003,37:899
    6. 王天成,张宏艳.人参皂甙抗心律失常作用研究进展[J].中国心脏起搏与心电生理杂志,2004,18(4):309
    7.钮伟真.介绍一套小动物离体灌流心脏心电信号研究装置[J].中国心脏起博与心电生理杂志[J],2000,14(2):124-126
    8.王中峰,江岩,钟国赣,等.人参皂甙Rg1 对培养心肌细胞钙通道阻滞作用的单通道分析[J].第三军医大学学报,1994,3:193
    9.孙成文,赵春燕,钟国赣,等.人参二醇单体对大鼠心肌作用的单钙通道分析及ESR谱研究[J].基础医学与临床,1994,4:46
    10.赵春燕,张文杰,钟国赣,等.人参皂甙单体Rhl对心肌作用的单钙通道分析及电子自旋共振谱研究[J].中国老年学杂志,1997,6:235
    11. 张志军,江文.人参皂甙扩张兔基底动脉作用及其机制[J].心脏杂志,2003,15(5):313.
    12. 陈江斌,黄从新. 川芎嗪对单个心室肌细胞电生理的影响[J].湖北医科大学学报,1999,20 (2):112.
    13.黄燮南.川芎嗪舒血管作用的部位差异性及其对钙释放的抑制[J].中国药理学与毒理学杂志,1997,11:199
    14. 田禾,樊红亮.川芎嗪对高钾去极化收缩的猪冠状动脉环有作用[J].中医研究,1997,10(2)∶17~19
    15.徐淑云,卞如濂,陈修.药理实验方法学[M].北京:人民卫生出版社,2002 .3 1026-1028
    1.江苏新医学院.中药大辞典[M].上海科学技术出版社(上海).第一版.:1293-2025
    2.李宏,洪思微,彭茜,等.槐定碱的抗心律失常作用初探[J].药物分析杂志,1986,6(2):96.
    3.李在,赵德化,盛宝恒.槐定碱抗实验性心律失常作用[J].第四军医大学学报,1986,7(1):35.
    4. 方达超、宗贤刚、金满文等.小壁碱的抗心室纤颤作用[J].中国药理学学报,1986,7(4):321
    5. 汪永孝、谭月华.小璧碱对离体豚鼠乳头状肌跨膜电位和大鼠左室心肌收缩性能的影响[J].西北药学杂志,1987,2(4):11
    6.钮伟真.介绍一套小动物离体灌流心脏心电信号研究装置[J].中国心脏起博与心电生理杂志,2000,14(2):124-126
    7. 尉中民,刘国隆,施雪筠.槐定碱抗心律失常作用的电生理学研究[J].北京中医学院学报,1984,6:38.
    8. 李宝馨,杨宝峰,周晋,等.小檗碱对心肌细胞 IK1、IK及 HERG 通道的抑制作用[J]. 中国药理学报(英文版),2001,2:194
    9.徐淑云,卞如濂,陈修.药理实验方法学[M].北京:人民卫生出版社,2002 .3 1026-1028
    1. 许善战.扶正化瘀胶囊对慢性乙型肝炎患者血清肝纤维化指标的影响[J]. 现代中西医结合杂志,2006,15(9):1145-1146
    2. 胡义扬,刘平,刘成,等.扶正化瘀胶囊抗肝纤维化的适应症和疗效判断的非创伤性指征探讨:50 例慢性乙型肝炎患者治疗前后肝活检资料分析[J]. 中国中西医结合杂志,2006,26(1):18-22
    3. 刘 平,胡义扬,刘 成,等.扶正化瘀胶囊干预慢性乙型肝炎肝纤维化作用的多中心临床研究[J]. 中西医结合学报,2003,1(2):88-102
    4.王硕仁,王振涛,赵明镜,等.心气虚病证动物模型及其评价体系的构建[J].中国实验动物学报,2002,10(1):33-38.
    5. 钮伟真.介绍一套小动物离体灌流心脏心电信号研究装置[J].中国心脏起博与心电生理杂志,2000,14(2):124-126
    6.徐淑云,卞如濂,陈修.药理实验方法学[M].北京:人民卫生出版社,2002 .3 1016-1028
    7.Talard P,Levy S,Bonal J,et al.Sudden death as a presenting symptom of hypertrophic cardiomypathy: treatment with an implantable cardioveter defibrillator[J].PACE,1996,19(8):1264
    8. 陈 霞,李英骥,葛静岩,等.氧化苦参碱对正常及乌头碱诱发心律失常大鼠动作电位的影响[J]. 吉林大学学报(医学版),2004,30(5):704-706
    9. 王照华,梁黔生,郑智.丹参酮对肥厚心肌 L-型钙电流的影响[J]. 高血压杂志,2006,14(6):450-454
    10. Seth JR, Ying W, Xiaoping X, et al. Regression of left ventricular hypertrophy with captopril restores normal ventricular action potential duration, dispersion of refractoriness, and vulnerability to inducible ventricular fibrillation [J]. Circulation,1997,96:1330-1336
    11.张守焰,杨钧国.心律失常的遗传和分子生物学基础[J].临床心血管病杂志,2002,18(3):138-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700