高层建筑风荷载吸/吹气控制的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高强轻质材料的广泛应用,使得(超)高层建筑向着越来越高、越来越柔、阻尼比越来越小的方向发展,逐渐成为风敏感性结构,抗风设计已成为需重点考虑的关键因素。在强风作用下,(超)高层建筑在强度、变形和舒适度等方面的设计面临着严峻的挑战,而且其围护结构也时常遭受破坏,造成巨大损失。因此,研究(超)高层建筑风荷载的数值模拟技术,并进而研究风对(超)高层建筑的作用机理,探索采取空气动力学措施来减小风荷载和风致响应的策略和方法,具有十分重要的理论意义和实用价值。
     流动控制是指采取一定的局部控制措施来改变钝体或流线体周围的全局流场,从而实现控制流动分离、改善绕流性能、减小阻力和提高翼型的升阻比等目的的控制方法。流动控制被认为是当前空气动力学最有发展潜力的研究领域之一。近年来,主动流动控制方法已成为流体力学中不断受人关注的课题,其中吸/吹气控制方法已在航空航天、管道输运和流体机械等领域中被广泛应用。为减小高层建筑的风致阻力,改善结构的抗风性能,本文将均匀吸/吹气控制方法引入到建筑结构中。在对吸/吹气控制下三维后台阶的流动分离进行数值验证和确认后,采用雷诺应力方程模型(RSM)对侧风面全高或沿高度分段吸/吹气控制下高层建筑模型的风荷载减阻性能进行了数值研究,阐明了吸/吹气控制的风荷载减阻机理。此外,本文还模拟了大气边界层中“真实”的入流湍流,并采用大涡模拟(LES)方法研究了CAARC标准高层建筑刚性模型的脉动风荷载,构建了建筑结构脉动风荷载的数值模拟技术。本文主要进行了以下几方面的工作:
     1、分别采用基于RSM的雷诺平均Navier-Stokes(RANS)方法、基于动
     力Smagorinsky-Lilly模型(DSM)和动力动能亚格子模型(DKEM)的LES方法对均匀吸/吹气控制下三维后台阶的流动分离进行了定常和非定常数值模拟,并将数值结果与相应的实验数据进行了比较,确认了基于RSM的RANS方法和基于DKEM的LES方法模拟吸/吹气控制下钝体绕流的可信度,为下文研究采用均匀吸/吹气措施控制高层建筑风荷载的方法奠定基础。
     2、采用RSM湍流模型对侧风面全高均匀吸/吹气控制下高层建筑模型的风荷载减阻性能进行了定常数值模拟,分析了吸/吹气孔的几何参数和流量参数对风荷载减阻性能的影响,并通过展示流场结构阐明了吸/吹气控制机理。讨论了吸/吹气所消耗的功率及其产生的反作用力,并拟合了阻力折减系数CDR和顺风向基底弯矩折减系数CMR的经验公式,为全高吸/吹气控制高层建筑的实际应用提供参考。
     3、为解决全高吸/吹气高层建筑存在的设备安装困难、连续协同工作难以控制和影响建筑物的功能使用等缺点,采用RSM湍流模型对分段吸/吹气高层建筑模型的风荷载减阻性能进行了数值研究,基于最大风压折减效率和最小吸/吹气功率比较了分段吸/吹气模型和全高吸/吹气模型的减阻性能。回归了阻力折减效率ηDR和顺风向基底弯矩折减效率ηMR的经验公式,为分段吸/吹气控制高层建筑的实际应用提供参考。
     4、从控制原理、控制参数和控制效果等方面比较了吸/吹气控制实现高层建筑风荷载减阻的异同,讨论了吸/吹气控制方法在高层建筑抗风设计中的应用及其实施的可行性。
     5、在“真实”地模拟了大气边界层中的入流湍流基础之上,采用LES方法研究了CAARC标准模型的脉动风荷载特性,考察了数值模拟的多种参数对CAARC模型的表面风压分布特性、气动力参数和功率谱的影响。将数值计算结果与相应的风洞试验数据进行了比较,确认了入流湍流边界条件下LES方法模拟大气边界层中钝体绕流的脉动风荷载的可信度,从而为今后研究吸/吹气方法控制高层建筑的脉动风荷载和横风向的旋涡脱落特性奠定了基础。
As a result of extensive utility of high-strength and light-weight materials in construction, high-rise buildings tend to be higher and more flexible, with a lower damping ratio. Therefore, they are very sensitive to the wind loads, and the wind-resistance design has gradually become the dominant factor in structural designs. Wind-resistance designs for high-rise buildings, including the aspects of strength, displacement and habitational comfort, are confronted with severe challenges under strong wind excitations, and the claddings frequently suffer from destruction, bringing substantial losses. Consequently, it is very important and necessary to investigate the numerical simulation techniques for analyzing the physical mechanisms of wind loads on high-rise buildings, and to take aerodynamic measures to reduce the wind loads and wind-induced responses.
     The flow control is a means to change the overall flowfield around bluff or streamlined body via using some locally aerodynamic measures, and its aim is to control the flow separation, improve the aerodynamic performance, reduce the drag and increase the lift-to-drag ratio for the airfoils. Actually, flow control is believed to be one of the most promising domains for research in the currently developed aerodynamics. In recent years, the active flow control techniques have become an increasingly attractive topic in fluid mechanics, and among them the suction or blowing method has already been widely used in domains of the aerospace, pipeline transportation and fluid machinery.
     In order to reduce the wind-induced drag and improve the wind-resistance performance of high-rise buildings, the continuous suction/blowing control method is introduced into the building structures. Based on verification and validation of the numerical methods by the experiment of suction/blowing control over the flow separation of a 3D backward-facing step, the Reynolds stress equation model (RSM) is used to investigate the performance of wind-load reduction for a high-rise building controlled by all-height or subsection suction/blowing on its side faces, and the mechanism of the wind-load reduction under suction/blowing control is clarified. Moreover, the“real”inflow turbulence in the atmosphere boundary layer is simulated, and the turbulence model of large eddy simulation (LES) is used to investigate the fluctuating wind loads on the rigid CAARC standard building model. Therefore, the numerical techniques for simulating the fluctuating wind loads on building structures are constructed.
     The main contents in the paper are shown as followings:
     1. Three tuebulence models, including the Reynolds-averaged Navier-Stokes (RANS) method based on the RSM and the LES method based on the subgrid-scale stress models of the dynamic Smagorinsky-Lilly model (DSM) and dynamic kinetic energy subgrid-scale model (DKEM), are adopted to calculate flow separation of a 3D backward-facing step controlled by continuous suction/blowing, respectively. The numerical results are compared with the corresponding experiment data, and the credibility of using the RANS method based on the RSM and the LES method based on the DKEM to simulate separated flows around bluff body controlled by suction/blowing is validated. The CFD validation provides a solid foundation to correctly calculate the wind loads on a high-rise building controlled by continuous suction/blowing in the following paper.
     2. The performance of wind-load reduction for an all-height suction/blowing high-rise building is numerical investigated through the turbulence model of RSM. Effects of the orifice geometrical parameters and the suction/blowing flux parameters on the drag-reduction properties are analyzed, and detailed flowfields are showed to clarify the mechanism of suction/blowing control. Moreover, the power consumed and the counterforce induced by suction/blowing are discussed, and formulae for the coefficient of drag reduction (CDR) and the coefficient of along-wind base-moment reduction (CMR) are regressed, which can be referred for practical applications of the all-height suction/blowing high-rise buildings.
     3. In order to resolve the problems, such as installation of the suction/blowing equipments, continuous cooperations and functional usage of architectural space, induced by the all-height suction/blowing control on high-rise buildings, the performance of wind-load reduction for a high-rise building controlled by subsection suction/blowing along the height is numerical investigated through the turbulence model of RSM. The drag-reduction properties for the subsection and the all-height suction/blowing models are compared based on the maximal drag- reduction efficiencies and the minimal power consumed. Lastly, the formulae for the efficiency of drag reduction (ηDR) and the efficiency of along-wind base-moment reduction (ηMR) are regressed to be referred for practical applications of the subsection suction/blowing high-rise buildings.
     4. The similarities and differences between suction and blowing control to achieve the wind-load reduction for the high-rise building are compared based on the control principles, control parameters and control effects, and the feasibility of applying and implementing suction/blowing control for the wind-resistance design of high-rise buildings is discussed.
     5. Based on simulation of the“real”inflow turbulence in the atmosphere boundary layer, the LES method is used to investigate the characteristics of fluctuating wind loads on the CAARC standard building model, and effects of the influence parameters of numerical methods on the pressure coefficients, aerodynamic force/base-moment coefficients and power spectrum are analyzed. The numerical results are compared with the corresponding data from the wind tunnel tests, and the credibility of using the LES method together with the inflow turbulence boundary condition to simulate the fluctuating wind loads on bluff bodies in the atmosphere boundary layer is validated. Based on the studies, the ultimate aim is to investigate the fluctuating wind loads and characteristics of the crosswind vortex shedding for the suction/blowing controlled high-rise buildings in the future work.
引文
1顾明.土木结构抗风研究进展及基础科学问题.第七届全国风工程和工业空气动力学学术会议论文集.成都. 2006: 67~83
    2 S. Murakami. Comparison of various turbulence models applied to a bluff body. Journal of Wind Engineering and Industrial Aerodynamics. 1993, 46&47: 21~36
    3 A. G. Davenport. Gust loading factors. Journal of the Structural Division, ASCE. 1967, 93(ST3): 11~34
    4 A. G. Davenport. The generalization and simplification of wind loads and implications for computational methods. Journal of Wind Engineering and Industrial Aerodynamics. 1993, 46~47: 409~417
    5 A. G. Davenport. How can we simplify and generalize wind loads? Journal of Wind Engineering and Industrial Aerodynamics. 1995, 54~55: 657~669
    6 E. Simiu. Gust factors and along-wind pressures correlations. Journal of the Structural Division, ASCE. 1973, 99 (ST4): 773~783
    7 E. Simiu. Wind spectra and dynamic along-wind response. Journal of the Structural Division, ASCE. 1974, 100 (ST9): 1897~1910
    8 E. Simiu. Equivalent static wind loads for tall building design. Journal of the Structural Division, ASCE. 1976, 102 (ST4): 719~737
    9 A. Kareem. Synthesis of fluctuating along wind loads on buildings. Journal of Engineering Mechanics. 1986, 112(1): 121~133
    10 J. Vellozi, E. Cohen. Gust response factors. Journal of Engineering Mechanics Division. 1968, 94(ST6): 1259~1313
    11 G. Solari. Alongwind response estimation: closed form solution. Journal of the Structural Division. 1982, 108(ST1): 225~243
    12 H. Kikuchi, Y. Tamura, H. Ueda and K. Hibi. Dynamic wind pressures acting on a tall building model—proper orthogonal decomposition. Journal of Wind Engineering and Industrial Aerodynamics. 1997, 69~71: 631~646
    13 L. Carassale, G. Piccardo and G. Solari. Double modal transformation and wind engineering applications. Journal of Engineering Mechanics. 2001, 127(5): 432~439
    14 L. Carassale, G. Solari. Wind modes for structural dynamics: a continuous approach. Probabilistic Engineering Mechanics. 2002, 17: 157~166
    15 X. Chen, A. Kareem. Proper orthogonal decomposition-based modeling, analysis and simulation of dynamic wind load effects on structures. Journal of Engineering Mechanics. 2005, 131(4): 325~339
    16徐安,谢壮宁,葛建斌等. CAARC高层建筑标准模型层风荷载谱数学模型研究.建筑结构学报. 2004, 25(4): 118~123
    17金虎. X型超高层建筑三维风荷载与风致响应研究.浙江大学博士学位论文. 2008: 59~68
    18 K. C. S. Kwok, W. H. Melbourne. Wind-induced lock-in excitation of tall structures. Journal of Structural Division, ASCE. 1981, 107(ST1): 57~72
    19 J. W. Saunders, W. H. Melbourne. Tall rectangular building response to cross-wind excitation. Proceedings of the 4th International Conference on Wind Effects on Buildings and Structures. London, 1975, 369~379
    20 K. C. S. Kwok. Cross-wind response of tall buildings. Engineering Structures. 1982, 4: 256~262
    21 W. H. Melbourne, J. C. K. Cheung. Designing for serviceable accelerations in tall buildings. Proceedings of the 4th International Conference on Tall Building. Hongkong & Shanghai, 1988: 148~155
    22 H. Kawai. Vortex induced vibration of tall buildings. Journal of Wind Engineering and Industrial Aerodynamics. 1992, 41(1~3): 117~128
    23 H. Marukawa, T. Ohkuma and Y. Momomura. Across-wind and torsional acceleration of prismatic high-rise buildings. Journal of Wind Engineering and Industrial Aerodynamics. 1992, 41~44: 1139~1150
    24 H. Choi, J. Kanda. Proposed formulae for the power spectral densities of fluctuating lift and torque on rectangular 3-D cylinders. Journal of Wind Engineering and Industrial Aerodynamics. 1993, 46~47: 507~516
    25全涌.超高层建筑横风向风荷载及响应研究.同济大学博士学位论文. 2002.
    26 A. Kareem. Measurements of pressure and force fields on building models in simulated atmospheric flows. Journal of Wind Engineering and Industrial Aerodynamics. 1990, 36: 589~599
    27 C. M. Cheng, P. C. Lu and R. H. Chen. Wind loads on square cylinder in homogeneous turbulent flows. Journal of Wind Engineering and Industrial Aerodynamics. 1992, 41~44: 739~749
    28 S. Liang, S. Liu. Q. S. Li, L. Zhang and M. Gu. Mathematical model of acrosswind dynamic loads on rectangular tall buildings. Journal of WindEngineering and Industrial Aerodynamics. 2002, 90: 1757~1770
    29 N. Lin, C. Letchford, Y. Tamura, B. Liang and O. Nakamura. Characteristics of wind forces acting on tall buildings. Journal of Wind Engineering and Industrial Aerodynamics. 2005, 93: 217~242
    30叶丰.高层建筑顺、横风向和扭转方向风致响应及静力等效风荷载研究.同济大学博士学位论文. 2004
    31张建国,叶丰,顾明.典型超高层建筑横风向气动力谱的构成分析.北京工业大学学报. 2006, 32(2): 104~109
    32 G. Solari. Mathematical model to predict 3-D wind loading on buildings. Journal of Engineering Mechanics. 1985, 111(2): 254~276
    33 A. Kareem. Wind induced torsional loads on structures. Engineering Structures. 1981, 3: 85~86
    34 N. Isyumov, M. Poole. Wind induced torque on square and rectangular building shapes. Journal of Wind Engineering and Industrial Aerodynamics. 1983, 13: 83~96
    35 A. Tallin, B. Ellingwood. Wind induced lateral-torsional motion of buildings. Journal of Structural Engineering. 1985, 111(10): 2197~2213
    36 J. Kanda, H. Choi. Correlating dynamic wind force components on 3-D cylinders. Journal of Wind Engineering and Industrial Aerodynamics. 1992, 41~ 44: 785~796
    37 S. Liang, Q. S. Li, S. Liu. L. Zhang and M. Gu. Torsional dynamic wind loads on rectangular tall buildings. Engineering Structures. 2004, 26: 129~137
    38肖天崟,梁波,田村幸雄.高层建筑扭转风向动力风荷载数学模型.华中科技大学学报(城市科学版). 2003, 20(3): 67~70
    39唐意.高层建筑弯扭耦合风致振动及静力等效风荷载研究.同济大学博士学位论文. 2006: 102~135
    40 X. T. Zhang. The current Chinese code on wind loading and comparative study of wind loading codes. Journal of Wind Engineering and Industrial Aerodynamics. 1988, 30: 133~142
    41 M. Kasperski, H. J. Niemann. The LRC (load-response correlation) method: a general method of estimating unfavorable wind load distributions for linear and nonlinear structural behavior. Journal of Wind Engineering and Industrial Aerodynamics. 1992, 41~44: 1753~1763
    42 Y. Zhou, M. Gu and H. F. Xiang. Alongwind static equivalent wind loads andresponses of tall buildings. Part ?: unfavorable distributions of static equivalent wind loads. Journal of Wind Engineering and Industrial Aerodynamics. 1999, 79: 135~150
    43 Y. Zhou, M. Gu and H. F. Xiang. Alongwind static equivalent wind loads and responses of tall buildings. PartⅡ: effects of mode shapes. Journal of Wind Engineering and Industrial Aerodynamics. 1999, 79: 151~158
    44 Y. Zhou, A. Kareem. Gust loading factor: new model. Journal of Structural Engineering. 2001, 127(2): 168~175
    45 A. Kareem, Y. Zhou. Gust loading factor—past, present and future. Journal of Wind Engineering and Industrial Aerodynamics. 2003, 91: 1301~1328
    46 Y. Zhou, A. Kareem. Torsional load effects on buildings under wind. Advanced in Structural Engineering (Proceedings of the ASCE Structures Congress and Exposition). Philadelphia, Pennsylvania, 2000
    47 G. Solari. Gust buffeting, part ?: peak wind velocity and equivalent pressure. Journal of Structural Engineering. 1993, 119(2): 365~382
    48 G. Solari. Gust buffeting, partⅡ: dynamic alongwind response. Journal of Structural Engineering. 1993, 119(2): 383~398
    49 G. Piccardo, G. Solari. A refined model for calculating 3-D equivalent static wind forces on structures. Journal of Wind Engineering and Industrial Aerodynamics. 1996, 65(11): 21~30
    50 G. Solari, G. Piccardo. Probabilistic 3-D turbulence modeling for gust buffeting. Probabilistic Engineering Mechanics. 2001, 16: 73~86
    51 A. Kareem, X. Chen. Recent advances in coupled dynamic analysis of wind-excited structures. APCWE-Ⅵ. Seoul, Korea. 2005: 114~149
    52 X. Chen, A. Kareem. Coupled dynamic analysis and equivalent static wind loads on buildings with three-dimension models. Journal of Structural Engineering. 2005, 131(7): 1071~1082
    53 X. Chen, A. Kareem. Dynamic wind effects on buildings with 3D coupled modes: application of high frequency force balance measurements. Journal of Engineering Mechanics. 2005, 131(11): 1115~1125
    54 M. L. Levitan, K. C. Mehta. Texas tech field experiments for wind loads, part1: building and pressure measuring system. Journal of Wind Engineering and Industrial Aerodynamics. 1992, 43: 1565~1576
    55 R. P. Hoxey, A. P. Robertson. Pressure coefficients for low-rise building envelopes derived from full-scale experiments. Journal of Wind Engineeringand Industrial Aerodynamics. 1994, 53: 283~297
    56 A. P. Robertson, R. P. Hoxey and P. J. Richards. Design code, full-scale and numerical data for wind loads on free-standing walls. Journal of Wind Engineering and Industrial Aerodynamics. 1995, 57: 203~214
    57 R. P. Hoxey, P. J. Richards and L. Short. A 6m cube in an atmospheric boundary layer flow, part1: full scale and wind tunnel results. Wind and Structures. 2002, 5(2~4): 165~176
    58 Q. S. Li, J. Q. Fang, A. P. Jeary and C. K. Wong. Full scale measurements of wind effects on tall buildings. Journal of Wind Engineering and Industrial Aerodynamics. 1998, 74~76: 741~750
    59 Q. S. Li, Y. Q. Xiao, J. Y. Fu and Z. N. Li. Full-scale measurements of wind effects on the Jin Mao building. Journal of Wind Engineering and Industrial Aerodynamics. 2007, 95: 445~466
    60 J. Y. Fu, Q. S. Li, J. R. Wu, Y. Q. Xiao and L. L. Song. Field measurements of boundary layer wind characteristics and wind-induced responses of super-tall buildings. Journal of Wind Engineering and Industrial Aerodynamics. 2008, 96: 1332~1358
    61 W. H. Melbourne. Comparison of measurements on the CAARC standard tall building model in simulated model wind flows. Journal of Wind Engineering and Industrial Aerodynamics. 1980, 6: 73~88
    62 P. A. Blackmore. A comparison of experimental methods for estimating dynamic response of buildings. Journal of Wind Engineering and Industrial Aerodynamics. 1985, 18: 197~212
    63 H. Tanaka, N. Lawen. Test on the CAARC standard tall building model with a length scale of 1:1000. Journal of Wind Engineering and Industrial Aerodynamics. 1986, 25: 15~29
    64 E. D. Obasaju. Measurement of forces and base overturning moments on the CAARC tall building model in a simulated atmospheric boundary layer. Journal of Wind Engineering and Industrial Aerodynamics. 1992, 40: 103~126
    65 T. Balendra, M. P. Anwar & K. L. Tey. Direct measurement of wind-induced displacements in tall building models using laser positioning technique. Journal of Wind Engineering and Industrial Aerodynamics. 2005, 93: 399~412
    66卢占斌,魏庆鼎.网格湍流CAARC模型风洞实验.空气动力学学报. 2001, 19(1): 16~23
    67张召明,李京伯. CAARC高层建筑标模动态测力研究.南京航空航天大学学报. 2002, 34(3): 289~292
    68罗攀.基于标准模型的风洞试验研究.同济大学硕士学位论文. 2004: 11~87
    69 H. Okada, Y. C. Ha. Comparison of wind tunnel and full-scale measurement tests on the Texas tech building. Journal of Wind Engineering and Industrial Aerodynamics. 1992, 43: 1601~1612
    70 H. W. Tieleman, D. Surry and K. C. Mehta. Full/model scale comparison of surface pressures on the Texas tech experimental building. Journal of Wind Engineering and Industrial Aerodynamics. 1996, 61: 1~23
    71 H. J. Ham, B. Bienkiewicz. Wind tunnel simulation of TTU flow and building roof pressure. Journal of Wind Engineering and Industrial Aerodynamics. 1998, 77&78: 119~133
    72 S. Murakami. Current status and future trends in computational wind engineering. Journal of Wind Engineering and Industrial Aerodynamics. 1997, 67&68, 3~34
    73 T. Stathopoulos. Computational wind engineering: past achievement and future challenges. Journal of Wind Engineering and Industrial Aerodynamics. 1997, 67&68: 509~532
    74 J. Y. Tu, G. H. Yeoh, C. Q. Liu. Computational fluid dynamics: a practical approach. Butterworth-Heinemann. Burlington, USA. 2008
    75张兆顺,崔桂香,许春晓.湍流理论与模拟.清华大学出版社. 2005: 163~ 171
    76 H. K. Versteeg, W. Malalasekera. An introduction to computational fluid dynamics: the finite volume method. Longman Scientific and Technical, London. 1995, 70~74, 194~196
    77 B. E. Launder, M. Kato. Modeling flow-induced oscillations in turbulent flow around a square cylinder. ASME Fluid Engineering Conference. Washington D.C. 1993
    78 M. Tsuchiya, S. Murakami, A. Mochida, K. Kondo and Y. Ishida. Development of a new k-εmodel for flow and pressure fields around bluff body. Journal of Wind Engineering and Industrial Aerodynamics. 1997, 67&68: 169~182
    79 D. C. Wilcox. Reassessment of the scale-determining equation for advanced turbulence models. AIAA Journal. 1988, 26(11): 1299~1310
    80 F. R. Menter. Performance of popular turbulence models for attached and separated adverse pressure gradient flows. AIAA Journal. 1992, 30(8): 2066~2072
    81 F. R. Menter. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal. 1994, 32(8): 1598~1605
    82 F. R. Menter. Review of the shear-stress transport turbulence model experience from an industrial perspective. International Journal of Computational Fluid Dynamics. 2009, 23(4): 305~316
    83 P. A. Durbin. Separated flow computations with the k–ε–ν2 model. AIAA Journal. 1995, 33(4): 659~664
    84 G. Iaccarino. Prediction of the turbulent flow in a diffuser with commercial CFD codes. Annual Research Briefs. Center for Turbulence Research, Standford University. 2000
    85 G. Iaccarino, P. A. Durbin. Unsteady 3D RANS simulations using theν2-f model. Annual Research Briefs. Center for Turbulence Research, Standford University. 2000
    86黄本才.结构抗风分析原理及应用.同济大学出版社. 2001: 138~169
    87王福军.计算流体动力学分析—CFD软件原理与应用.清华大学出版社. 2004: 113~143
    88杨伟.基于RANS的结构风荷载和响应的数值模拟研究.同济大学博士论文. 2004: 76~84
    89林斌.悬挑屋盖的风荷载建模与气动控制研究.哈尔滨工业大学博士学位论文. 2009: 25~39
    90 U. Piomelli. Large-eddy simulation: achievements and challenges. Progress in Aerospace Science. 1999, 35: 335~362
    91 S. B. Pope. Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics. 2004, 35(6): 1~24
    92 J. Smagorinsky. General circulation experiments with the primitive equations, Part 1: basic experiments. Monthly Weather Review. 1963, 91(3): 99~164
    93 J. W. Deardorff. A three-dimensional numerical study of turbulent channel flow at large Reynolds numbers. Journal of Fluid Mechanics. 1970, 41: 453~480
    94 M. Germano, U. Piomelli, P. Moin and W. H. Cabot. A dynamic subgrid-scale eddy viscosity model. Physics of Fluids A. 1991, 3(7): 1760~1765
    95 D. K. Lilly. A proposed modification of the Germano subgrid-scale closure method. Physics of Fluids A. 1992, 4(3): 633~635
    96 W. W. Kim, S. Menon. Application of the localized dynamic subgrid-scalemodel to turbulent wall-bounded flows. Proceedings of the 35th Aerospace Sciences Meeting. Reno, Nevada. 1997: 97-0210
    97 S. Murakami, A. Mochida and K. Hibi. Three-dimensional numerical simulation of air flow around a cubic model by means of large eddy simulation. Journal of Wind Engineering and Industrial Aerodynamics. 1987, 25: 291~305
    98 T. Tamura. Towards practical use of LES in wind engineering. Journal of Wind Engineering and Industrial Aerodynamics. 2008, 96: 1451~1471
    99 S. Swaddiwudhipong, M. S. Khan. Dynamic response of wind-excited building using CFD. Journal of Sound and Vibration. 2002, 253(4): 735~754
    100武岳.考虑流固耦合作用的索膜结构风致动力响应研究.哈尔滨工业大学博士学位论文. 2003: 76~126
    101 Y. Tominaga, A. Mochida and S. Murakami. Large eddy simulation of flow field around a high-rise building. 11th International Conference on Wind Engineering. Texas, USA. 2003: 2543~2550
    102 S. Huang, Q. S. Li and S. Xu. Numerical evaluation of wind effects on a tall steel building by CFD. Journal of Constructional Steel Research. 2007, 63: 612~627
    103 J. S. Baggett. On the feasibility of merging LES with RANS for the near-wall region of attached turbulent flows. Annual Research Briefs. Center for Turbulence Research, Standford University. 1998
    104 K. Abe. A hybrid LES/RANS approach using an anisotropy-resolving algebraic turbulence model. International Journal of Heat and Fluid Flow. 2005, 26: 204~ 222
    105 P. R. Spalart. Detached-eddy simulation. Annual Review of Fluid Mechanics. 2009, 41: 181~202
    106 W.A. Dalgliesh, D. Surry. BLWT, CFD and HAM modeling vs. the real world: bridging the gaps with full-scale measurements. Journal of Wind Engineering and Industrial Aerodynamics. 2003, 91: 1651~1669
    107 H. Schlichting, K. Gersten. Boundary-layer theory. 8th Edition. New York: McGraw-Hill. 2000: 291~320
    108 D. Greenblatt, I. J. Wygnanski. The control of flow separation by periodic excitation. Progress in Aerospace Sciences. 2000, 36: 487~545
    109庄逢甘,黄志澄.未来高技术战争对空气动力学创新发展的需求. 2003年空气动力学前沿研究论文集.北京:中国宇航出版社. 2003:73~79
    110 H. Choi, W. P. Jeon and J. Kim. Control of flow over a bluff body. Annual Review of Fluid Mechanics. 2008, 40: 113~139
    111 P. Irwin, J. Kilpatrick, J. Robinson and A. Frisque. Wind and tall buildings: negative and positive. The Structural Design of Tall and Special Buildings. 2008, 17: 915-928
    112 E. Simiu, R. H. Scanlan. Wind effects on structures: fundamentals and applications to design. 3rd Edition. New York: Wiley-Interscience Publication. 1996: 33~194, 297~298
    113李椿萱,彭少波,吴子牛.附属小圆柱对主圆柱绕流影响的数值模拟.北京航空航天大学学报. 2003, 29(11): 951~958
    114邵传平,王建明.较高Re数圆柱尾流的控制.力学学报. 2006, 38(2): 153~ 161
    115 H. Kikitsu, H. Okada. Open passage design of tall buildings for reducing aerodynamics response. Wind Engineering into 21st Century. Rotterdam: Balkema. 1999: 667~672
    116 Y. M. Kim, H. Kawai. Aerodynamic methods for reducing bending and torsional vibrations of tall building. Wind Engineering into 21st Century. Rotterdam: Balkema. 1999: 673~677
    117秦云.结构静力风荷载数值模拟研究.哈尔滨工业大学博士学位论文. 2004: 62~115
    118 E. Maruta, M. Kanda and J. Sato. Effects on surface roughness for wind pressure on glass and cladding of buildings. Journal of Wind Engineering and Industrial Aerodynamics. 1998, 74~76: 651~663
    119 P. Bearman, M. Brankovic. Experimental studies of passive control of vortex-induced vibration. European Journal of Mechanics B/Fluids. 2004, 23: 9~15
    120 A. Kareem, T. Kijewski and Y. Tamura. Mitigation of motions of tall buildings with specific examples of recent applications. Wind and Structures. 1999, 2(3): 201~251
    121顾明,王凤元,全涌等.超高层建筑风荷载的试验研究.建筑结构学报. 2000, 21(4): 48~54
    122 K. T. Tse, P. A. Hitchcock, K. C. S. Kwok, S. Thepmongkorn and C. M. Chan. Economic perspectives of aerodynamic treatments of square tall buildings. Journal of Wind Engineering and Industrial Aerodynamics. 2009, 97: 455~467
    123 P. W. Bearman, J. C. Owen. Reduction of bluff-body drag and suppression of vortex shedding by the introduction of wavy separation lines. Journal of Fluids and Structures. 1998, 12: 123~130
    124 P. A. Irwin. Bluff body aerodynamics in wind engineering. Journal of Wind Engineering and Industrial Aerodynamics. 2008, 96: 701~712
    125 S. S. Collis, R. D. Joslin, A. Seifert and V. Theofilis. Issues in active flow control: theory, control, simulation, and experiment. Progress in Aerospace Sciences. 2004, 40: 237~289
    126 Y. Kubo, V. J. Modi, H. Yasuda and K. Kato. On the suppression of aerodynamic instabilities through the moving surface boundary-layer control. Journal of Wind Engineering and Industrial Aerodynamics. 1992, 41~44: 205~ 216
    127 Y. Kubo, V. J. Modi and C. Kotsubo. Suppression of wind-induced vibrations of tall structures through moving surface boundary-layer control. Journal of Wind Engineering and Industrial Aerodynamics. 1996, 61: 181~194
    128 S. R. Munshi, V. J. Modi and T. Yokomizo. Aerodynamics and dynamics of rectangular prisms with momentum injection. Journal of Fluids and Structures. 1997, 11: 873~892
    129 V. J. Modi. Moving surface boundary-layer control: a review. Journal of Fluids and Structures. 1997, 11: 627~663
    130 B. S. V. Patnaik, G. W. Wei. Controlling wake turbulence. Physical Review Letters. 2002, 88(5): 054502
    131徐枫.结构流固耦合振动与流动控制的数值模拟.哈尔滨工业大学博士学位论文. 2009: 144~165
    132季路成,林峰and P. S. Marco.定常吹/吸气控制凸包分离的数值研究.航空动力学报. 2006, 21(1): 25~30
    133邵传平.钝体尾流控制机理及方法研究进展.力学进展. 2008, 38(3): 314~ 328
    134罗振兵,夏智勋.合成射流技术及其在流动控制中应用的进展.力学进展. 2005, 35(2): 221~234
    135辛大波,欧进萍.定常吸气改善桥梁断面风致静力特性的数值研究.沈阳建筑大学学报. 2008, 24(1): 1~5
    136 P. Bradshaw, F. Y. F. Wong. The reattachment and relaxation of a turbulent shear layer. Journal of Fluid Mechanics. 1972, 52(1): 113~135
    137 B. F. Armaly, F. Durst, J. C. F. Pereira and B. Sch?nung. Experimental and theoretical investigation of backward-facing step flow. Journal of Fluid Mechanics. 1983, 127: 473~496
    138 J. G. Berbee, J. L. Ellzey. Aspect ratio and Reynolds number effects on the flow behind a rearward-facing step. In: 26th AIAA Aerospace Sciences Meeting, Reno, Nevada. 1988: AIAA-88-0612
    139 J. G. Berbee, J. L. Ellzey. The effect of aspect ratio on the flow over a rearward- facing step. Experiments in Fluids. 1989, 7: 447~452
    140 Y. Z. Liu, W. Kang and H. J. Sung. Assessment of the organization of a turbulent separated and reattaching flow by measuring wall pressure fluctuations. Experiments in Fluids. 2005, 38(4): 485~493
    141 F. Ke, Y. Z. Liu and H. P. Chen. Simultaneous flow visualization and wall- pressure measurement of the turbulent separated and reattaching flow over a backward-facing step. Journal of Hydrodynamics. 2007, 19(2): 180~187
    142 V. P. Lokrou, H. W. Shen. Analysis of characteristics of flow in sudden expansion by similarity approach. Journal of Hydraulic Research. 1983, 21(2): 41~53
    143 J. Bredberg, S. H. Peng and L. Davidson. An improved k-ωturbulence model applied to recirculating flows. International Journal of Heat and Fluid Flow. 2002, 23: 731~743
    144 J. Y. Kim, A. J. Ghajar, C. Tang and G. L. Foutch. Comparison of near-wall treatment methods for high Reynolds number backward-facing step flow. International Journal of Computational Fluid Dynamic. 2005, 19 (7): 493~500
    145 M. Inagaki, T. Kondoh and Y. Nagano. A mixed-time-scale SGS model with fixed model-parameters for practical LES. Journal of Fluids Engineering. 2005, 127, 1~13
    146 J. L. Aider, A. Danet. Large-eddy simulation study of upstream boundary conditions influence upon a backward-facing step flow. Comptes Rendus Mecanique. 2006, 334: 447~453
    147 M. Oki, T. Iwasawa, M. Suehiro, T. Umeda, Y. Nakayama and K. Oaki. Numerical simulation without turbulence model for backward-facing step flow. JSME International Journal Series B. 1993, 36: 577~583
    148 H. Le, P. Moin and J. Kim. Direct numerical simulation of turbulent flow over a backward-facing step. Journal of Fluid Mechanics. 1997, 330: 349~374
    149 T. L. Chng, A. Rachman, H. M. Tsai and G. C. Zha. Flow control of an airfoilvia injection and suction. Journal of Aircraft. 2009, 46(1), 291~300
    150 C. L. Rumsey, R. C. Swanson. Turbulence modeling for active flow control applications. International Journal of Computational Fluid Dynamic. 2009, 23(4), 317~326
    151郑朝荣,张耀春.吸气方法在高层建筑风荷载减阻中的应用.工程力学, 2009, 26(S1): 51~56
    152 V. Uruba, P. Joná? and O. Mazur. Control of a channel-flow behind a backward- facing step by suction/blowing. International Journal of Heat and Fluid Flow. 2007, 28: 665~672
    153 K. Sakuraba, K. Fukazawa and M. Sano. Control of turbulent channel flow over a backward-facing step by suction or injection. Heat Transfer—Asian Research. 2004, 33(8): 490~504
    154 M. Sano, I. Suzuki and K. Fukazawa. Control of turbulent channel flow over a backward-facing step by suction. Journal of Fluid Science and Technology. 2009, 4(1): 188~199
    155 K. B. Chun, H. J. Sung. Control of turbulent separated flow over a backward- facing step by local forcing. Experiments in Fluids. 1996, 21: 417~426
    156 A. Dejoan, M. A. Leschziner. Large eddy simulation of periodically perturbed separated flow over a backward-facing step. International Journal of Heat and Fluid Flow. 2004, 25: 581~592
    157 S. ?ari?, S. Jakirli? and C. Tropea. A periodically perturbed backward-facing step flow by means of LES, DES and T-RANS: An example of flow separation control. Journal of Fluids Engineering. 2005, 127: 879~887
    158 H. Jain, R. K. Agarwal and A. W. Cary. Numerical simulation of the influence of a synthetic jet on recirculating flow over a backward facing step. In: 41st AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. 2003: AIAA 2003-1125
    159 B. E. Launder, D. B. Spalding. Lectures in mathematical models of turbulence. Academic Press. London, England. 1972
    160 V. Yakhot, S. A. Orszag. Renormalization group analysis of turbulence: ?. Basic theory. Journal of Scientific Computing. 1986, 1(1): 3~51
    161 T. H. Shih, W. W. Liou, A. Shabbir, Z. Yang and J. Zhu. A new k-εeddy-viscosity model for high Reynolds number turbulent flows-model development and validation. Computers & Fluids. 1995, 24(3): 227~238
    162 B. E. Launder, G. J. Reece and W. Rodi. Progress in the development of aReynolds-stress turbulence closure. Journal of Fluid Mechanics. 1975, 68(3): 537~566
    163 S. E. Kim. Large eddy simulation using an unstructured mesh based finite- volume solver. In: 34th Fluid Dynamics Conference and Exhibit. Oregon, Portland. 2004: AIAA-2004-2548
    164 W. L. Oberkampf, F. G. Blottner. Issues in computational fluid dynamics code verification and validation. AIAA Journal. 1998, 36(5): 687~695
    165 P. J. Roache. Verication of code and calculations. AIAA Journal. 1998, 36(5): 696~702
    166 W. L. Oberkampf, T. G. Trucano. Verification and validation in computational fluid dynamics. Progress in Aerospace Sciences. 2002, 38: 209~272
    167 I. Babuska, J. T. Oden. Verification and validation in computational engineering and science: basic concepts. Computer Methods in Applied Mechanics and Engineering. 2004, 193: 4057~4066
    168邓小刚,宗文刚,张来平等.计算流体力学中的验证与确认.力学进展. 2007, 37(2): 279~288
    169 P. J. Roache, K. Chia and F. White. Editorial policy statement on the control of numerical accuracy. Journal of Fluids Engineering. 1986, 108(1): 2
    170 AIAA. Editorial policy statement on numerical accuracy and experimental uncertainty. AIAA Journal. 1994, 32(1): 3
    171 Editorial Board. Journal of heat transfer editorial policy statement on numerical accuracy. Journal of Heat Transfer. 1994, 116: 797~798
    172 http://www.informaworld.com/smpp/title~db=all~content=t713455064~tab=submit~mode=paper_submission_instructions
    173 American Institute of Aeronautics and Astronautics. Guide for the verification and validation of computational fluid dynamics simulations. Reston, VA. 1998: AIAA-G-077-1998
    174于沛. CFD软件的算例验证确认技术.第十二届全国计算流体力学会议论文集.西安. 2004: 786~789
    175康顺,刘强,祁明旭.一个高压比离心叶轮的CFD结果确认.工程热物理学报. 2005, 26(3): 400~404
    176张涵信,查俊.关于CFD验证确认中的不确定度和真值估算.空气动力学学报. 2010, 28(1): 39~45
    177 P. J. Roache. Quantification of uncertainty in computational fluid dynamics.Annual Review of Fluid Mechanics. 1997, 29: 123~160
    178 T. S. Cheng, W. J. Yang. Numerical simulation of three-dimensional turbulent separated and reattaching flows using a modified turbulence model. Computers and Fluids. 2008, 37: 194~206
    179 N. N. Bouda, R. Schiestel, M. Amielh, C. Rey and T. Benabid. Experimental approach and numerical prediction of a turbulent wall jet over a backward facing step. International Journal of Heat and Fluid Flow. 2008, 29: 927~944
    180郑朝荣,张耀春.高层建筑风荷载减阻的吸气方法数值研究.应用基础与工程科学学报. 2010, 18(1): 80~90
    181 R. C. Lima, C. R. Andrade and E. L. Zaparoli. Numerical study of three recirculation zones in the unilateral sudden expansion flow. International Communications in Heat and Mass Transfer. 2008, 35: 1053~1060
    182 L. M. Hudy, A. M. Naguib, W. M. Humphreys and S. M. Bartram. Particle image velocimetry measurements of a two/three-dimensional separating/ reattaching boundary layer downstream of an axisymmetric backward-facing step. In: 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. 2005: AIAA 2005-114
    183 P. G. Spazzini, G. Iuso, M. Onorato, N. Zurlo and G. M. D. Cicca. Unsteady behavior of back-facing step flow. Experiments in Fluids. 2001, 30: 551~561
    184 R. V. Westphal, J. P. Johnson. Effect of initial conditions on turbulent reattachment downstream of a backward-facing step. AIAA Journal. 1984, 22(12): 1727~1732
    185 Fluent Inc. Fluent 6.2 User’s guide. Fluent Inc. Lebanon. 2005, 11: 44~65
    186 R. W. Fox, A. T. McDonald and P. J. Pritchard. Introduction to fluid mechanics. NJ: John Wiley & Sons Inc. 2008: 409~446
    187 Q. S. Li. Reduced order control for wind-induced vibrations of tall buildings. The Structural Design of Tall and Special Buildings. 2003, 12: 177~190
    188 Y. M. Kim, K.P. You and H. Y. Kim. Wind-induced excitation control of a tall building with tuned mass dampers. The Structural Design of Tall and Special Buildings. 2008, 17: 669~682
    189 F. Saeed, M. S. Selig. A new class of airfoils with slot-suction. In: 34th AIAA Aerospace Sciences Meeting and Exhibit. Reno, NV, 1997: AIAA-96-0058
    190 L. Huang, P. G. Huang and R. P. LeBeau. Numerical study of blowing and suction control mechanism on NACA0012 airfoil. Journal of Aircraft. 2004,41(5): 1005~1013
    191李宇红,唐进,刘红.定常吸气改善叶型气动性能的数值研究.工程热物理学报. 2005, 26(4): 572~574
    192建筑结构荷载规范GB50009-2001.北京:中国建筑工业出版社, 2002
    193 Chaorong Zheng, Yaochun Zhang. Numerical simulation of mean interference effects for the interfering buildings with different heights. Journal of Harbin Institute of Technology (New Series). 2008, 15(4): 499~505
    194 Zhao Cheng, Zongcheng Shi and Feng Zhang. Reynolds number effects in tall building wind tunnel tests. Journal of Hydrodynamics Ser. B. 1996, 4: 56~62
    195王春刚.巨型高层开洞建筑刚性模型风洞试验研究.哈尔滨工业大学硕士学位论文. 2003: 47~76
    196郑朝荣.高层建筑静力风荷载若干问题的数值模拟研究.哈尔滨工业大学硕士学位论文. 2005: 72~76
    197 H. Kawai. Local peak pressure and conical vortex on building. Journal of Wind Engineering and Industrial Aerodynamics. 1997, 67&68: 169~182
    198董志勇.射流力学.北京:科学出版社. 2005: 11~83
    199 J. H. M. Fransson, P. Konieczny and P. H. Alfredsson. Flow around a porous cylinder subject to continuous suction or blowing. Journal of Fluids and Structures. 2004, 19: 1031~1048
    200 G. C. Layek, C. Midya and A. S. Gupta. Influences of suction and blowing on vortex shedding behind a square cylinder in a channel. International Journal of Non-Linear Mechanics. 2008, 43: 979~984
    201高层民用建筑钢结构技术规程JGJ 99-98.北京:中国建筑工业出版社, 1998
    202 E. Shirani, J. H. Ferziger and W. C. Reynolds. Mixing of a passive scalar in isotropic and sheared homogeneous turbulence. Report TF-15, Mechanics Engineering Department, Standford University. 1981
    203 S. Lizuka, S. Urakami, A. Mochida and S. Lee. Large eddy simulation of turbulence flow past 2D square cylinder using dynamic SGS model. Generation of inflow turbulence LES based on 3D energy spectrum in wave number space. In: Proceedings of AIJ Annual meeting. 1996, 9: 537~548 (in Japanese)
    204 K. Kondo, S. Murakami and A. Mochida. Generation of velocity fluctuations for inflow boundary condition of LES. Journal of Wind Engineering and Industrial Aerodynamics. 1997, 67&68: 51~64
    205 T. S. Lund, X. Wu and K. D. Squires. Generation of turbulent inflow data forspatially-developing boundary layer simulations. Journal of Computational Physics. 1998, 140: 233~258
    206 T. G. Thomas, J. J. R. Williams. Generating a wind environment for large eddy simulation of bluff body flows. Journal of Wind Engineering and Industrial Aerodynamics. 1999, 82: 189~208
    207 K. Nozawa, T. Tamura. Large eddy simulation of the flow around a low-rise building immersed in a rough-wall turbulent boundary layer. Journal of Wind Engineering and Industrial Aerodynamics. 2002, 90: 1151~1162
    208 H. Noda, A. Nakayama. Reproducibility of flow past two-dimensional rectangular cylinders in a homogeneous turbulent flow by LES. Journal of Wind Engineering and Industrial Aerodynamics. 2003, 91: 265~278
    209 M. Tutar, G. Oguz. Large eddy simulation of wind flow around parallel buildings with carrying configuration. Journal of Fluid Dynamics Research. 2002, 5~6: 289~315
    210李锦华,李春祥.土木工程随机风场数值模拟研究的进展.振动与冲击. 2008, 27(9): 116~125
    211张希黔,葛勇,严春风等.脉动风场模拟技术的研究与进展.地震工程与工程振动. 2008, 28(6): 206~212
    212 G. Deodatis. Simulation of ergodic multivariate stochastic processes. Journal of Engineering Mechanics ASCE. 1996, 122(8): 778~787
    213 M. Shinozuka, C.M. Jan. Digital simulation of random process and its application. Journal of Sound and Vibration. 1972, 25(1): 111~128
    214 Q. S. Ding, L. D. Zhu, H. F. Xiang. Simulation of stationary Gaussian stochastic wind velocity field. Wind and Structures. 2006, 9(3): 231~243
    215李锦华,李春祥.超高层建筑脉动风速场模拟的改进谐波合成法.振动与冲击. 2008, 27(12): 151~156
    216罗俊杰,韩大建.大跨度结构随机脉动风场的快速模拟方法.工程力学. 2008, 25(3): 96~101
    217 H. A. Panofsky, J. A. Dutton. Atmospheric turbulence. New York: John Wiley and Sons. 1984: 113~117
    218 R. Kraichman. Diffusion by a random velocity field. Physics of Fluids. 1970, 11: 21~31
    219 R. Smienov, S. Shi and I. Celik. Random flow generation technique for large eddy simulations and particle-dynamics modeling. Journal of FluidsEngineering. 2001, 123: 359~371

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700