水下机器人任务规划技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自主型水下机器人(AUV)能在非结构化的、不确定性的海洋环境下完成多项水下任务,任务规划起着关键的作用。任务规划不仅能根据下达的使命,规划出一个有效的任务序列,而且能对在水下任务执行过程中碰到的一定的不确定事件做出反应,实时的监督任务的执行。任务规划在一定程度上标志着AUV的智能水平,是进行决策和规划的关键组件。本文以AUV为研究背景,对大范围海洋环境下AUV的任务规划技术进行了系统的研究。
     首先明确了几项重要研究内容的提出,阐述了本文的研究目标,即保证水下机器人任务的顺利执行,以监督和管理的角度来对水下机器人进行任务规划。相对一般规划,本文的重点放在对整个任务的过程分析上,把任务规划作为一个下达任务,处理事件的监督与管理过程。
     考虑到AUV任务环境的特殊性,本文着重分析了AUV任务规划中可能会遇到的各种不确定性问题,并用智能规划的相关理论对这些不确定性事件进行了详细的研究,这些工作为以后的规划工作奠定了基础。AUV的良好体系结构是系统高效和合理工作的基础,任务规划在这个结构中的位置和作用是本文要考虑的首要问题。依据对任务规划的要求,本文给出了面向任务规划的体系结构的一个参考模型。
     当AUV的任务增加时,之前的单任务模型已经变得不是很有效。本文对任务组合的规划过程进行了建模研究,根据不确定性事件的发生情况,给出了任务规划过程模型并对其进行了仿真和状态分析,而且提出了重规划的方法,针对任务组合给出了一个简单规划软件,设定了任务的描述语言(格式),使得低一层结构能够解读其命令并指导规划的执行。
     对不确定性事件的分析和对任务规划过程的建模和仿真验证表明,本文提出的任务规划技术能够有效地处理任务组合中的各种意外事件,增强了任务规划过程中的可靠性和安全性,能指导AUV完成给定的多项水下任务。
Autonomous Underwater Vehicle (AUV), which can complete various underwater tasks in the non-structured and uncertain ocean environment, benefits from the mission planning. Mission planning can give not only the effective order according to the mission assigned, but also react to the uncertain occurred in the mission process, monitor the mission implementation in real-time. Mission planning marks the level of vehicle to some extent and is the key assemble of the vehicle to planning and decision-making. This paper studies systematically the mission planning of AUV in a large sea environment.
     First of all, the paper clarifies several related research questions, and describes the goal of the research, which is to ensure the task successfully implemented and do the mission planning from the view of supervision and management. Different from general planning, this paper lays stress on the analysis of the whole process of the mission, treats mission planning as a supervision and control mechanism which can give the order and deal with uncertain events.
     The good architecture of AUV is a foundation to make sure the system efficiency and the work reasonable. The planning system’s position and function are the principal considerations. Therefore, according to the demands, this paper gives an architecture which can handle the mission planning.
     Considering the particularity of the task environment, this paper lays stress on the analysis of the uncertain questions in the process of mission planning. Using some related methods in AI planning, the paper describes the uncertain events in detail, and these lay the foundation of future work.
     The single task modeling loses its availability when the number of the task increases. The paper makes a research on the execution of the combination of main task, gives the modeling for the task to the performance of the uncertain events and the simulation and analysis. This paper provides some method of re-planning, give a simple planner to the mission combination and setting a kind of mission description language (format), to let the following executive model unscramble it and guiding the mission execution.
     The analysis of the uncertain events, the modeling and simulation of mission planning process show that, mission planning technology is able to deal with various unexpected events effectively in the mission combination, enhance the reliability and safety in the process of mission planning, and direct AUV to complete various given underwater missions.
引文
[1]蒋新松,封锡胜,王棣堂.水下机器人[M].沈阳:辽宁科学技术出版社, 2000
    [2]徐玉如,庞永杰,甘永,孙玉山.智能水下机器人技术展望[J].智能系统学报. 2006, 1(1): 9-16页
    [3]冯正平.国外自治水下机器人发展现状综述[J].鱼雷技术. 2005, 13(1):5-9页
    [4] Malik Ghallab, Dana Nau, Paolo Traverso.自动规划:理论与实践[M].姜云飞,杨强,凌应标等译.清华大学出版社. 2008
    [5] Jiangli Cao, Chaoyi Sun. A Mission Planning System for an Autonomous Underwater Vehicle[C]. Proceedings of the 7th World Congress on Intelligent Control and Automation, Chongqin, 2008: 3915-3919P
    [6]陈蔼祥,姜云飞,柴啸龙.规划的形式表示技术研究[J].计算机科学, 2008.35 (7):105-110页
    [7]桑恩方,庞永杰,卞红雨.水下机器人技术[J].机器人技术与应用. 2003, 3: 8-13页
    [8] Hu Chunhua, Fan Yong, Jiang Zhihong, Zhu Jihong, Sun Zengqi. Mission Planning for Unmanned Aerial Vehicles[C]. IMACS Multiconference on "Computational Engineering in Systems Applications"(CESA), Beijing, China, 2006: 597-601P
    [9] W. A. Kamal, R. SamarA. Mission Planning Approach for UAV Applications[C]. Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico, 2008: 3101-3106P
    [10] Gary B. Lamont, James N. Slear, Kenneth Melendez. UAV Swarm Mission Planning and Routing using Multi-Objective Evolutionary Algorithms[C]. Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Multicriteria Decision Making, 2007
    [11]陈振学,赵明旺,刘成云.人工智能中的不确定性[J].计算机测量与控制. 2003,11(9):683-701页
    [12]张煜.战术飞机飞行任务规划在不确定性因素处理方法研究[MA].国防科技大学硕士论文.2006:1-37页
    [13] Hongjian Wang, Dehui Zhao, Xinqian Bian, and Xiaocheng Shi . Research on Autonomous Planning for AUV in Unstructured Environment. Harbin Engineering University[J]. 2006:586-599P
    [14] Philemon Sakamoto. UAV Mission Planning Under Uncertainty. Master thesis of Sloan School[MA]. 2006
    [15]李响,陈小平.一种动态不确定性环境中的持续规划系统[J].计算机学报. 2005,28(7):1163-1170页
    [16]贺炜.移动机器人体系结构研究[MA].哈尔滨工程大学硕士学位论文.2006:7-11页
    [17] Conor McGann, Frederic Py, Kanna Rajan, Hans Thomas, Richard Henthorn, Rob McEwen. A Deliberative Architecture for AUV Control.[C] 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 2008: 1049-1054P
    [18] BIAN Xin-qian,QIN Zheng,YAN Zhe-ping. Design and evaluation of a hierarchical control architecture for an AUV[J]. J.Marine.Sci.Appl. 2008, 7:53-58P
    [19] Ian Woodrow, Chris Purry, Adam Mawby, James Goodwin. Autonomous AUV Mission Planning and Replanning-Towards True Autonomy[C]. 14th International Symposium on Unmanned Untethered Submersible Technology, Durham, NH, 2005.
    [20] V. Kanakakis, N. Tsourveloudis. Evolutionary Path Planning and Navigation of Autonomous Underwater Vehicles[C]. 2007 Mediterranean Conference on Control and Automation, 2007.
    [21] Brad Rosenberg, Marc Richards, John T. Langton, Sofya Tenenbaum, Daniel W. Stouch. Applications of Multi-objective Evolutionary Algorithms to Air Operations Mission Planning[C]. Proceedings of the 2008 GECCOconference companion on Genetic and evolutionary computation, Atlanta, GA, USA. 2008:1879-1886P
    [22] Zhengqiang Zhang, Renjie He, Yuejin Tan. An HTN-Based Mission Planning Model and Algorithm for Autonomous Spacecraft[C]. Systems and Control in Aerospace and Astronautics, 2006.
    [23] James Colito. Autonomous Mission Planning and Execution for Unmanned Surface Vehicles in Compliance with the Marine Rules of the Road[C]. Master thesis University of Washington[MA]. 2007
    [24] T. Pfuetzenreuter. Advanced Mission Management for Long-range Autonomous Underwater Vehicles[MA]. Ilmenau Technical University. 2003
    [25]邹海,边信黔. AUV控制系统规划层DEDS建模与仿真[J]. 2007,24(3):164-167页
    [26]邹海,边信黔,熊华胜. AUV控制系统规划层使命与任务协调方法研究.机器人. 2006, 28(6):651-655页
    [27]黄巍.不确定性规划中的扩展目标语意比较和观测信息约简[J].软件学报.2008
    [28]刘海波,顾国昌,张国印.智能机器人体系结构分类研究[J].哈尔滨工程大学学报. 2003, 24(6):664-668页
    [29] Brooks, R.A.“A robust layered control system for a mobile robot”IEEE Journal of Robotics and Automation[C], 1986, RA-2:14-23P
    [30]王于,林良明,颜国正.基于包容结构的移动机器人混合式控制结构[J].机器人. 2002, 24(2):171-176页
    [31]李彩虹,李贻斌,宋勇.一种移动机器人混合式体系结构[J].中南大学学报(自然科学学版)增刊. 2007,38 (1):445-449页
    [32] BIAN Xin-qian,QIN Zheng,YAN Zhe-ping. Design and evaluation of a hierarchical control architecture for an AUV[J]. J.Marine.Sci.Appl.2008:54P
    [33] Ridao P,et al. Recent trends in control architectures for autonomous un-derwater vehicles [J]. International Journal of Systems Science.1999,30(9):1033-1056.P
    [34] Jon C. Russo, Mohammed Amduka, Boris Gelfand. Enabling Cognitive Architectures for UAV Mission Planning[C]. Mediterranean Conference on Control and Automation. 2006:1-3P
    [35] J.L. Posadas, J.L. Poza, J.E. Simo, G. Benet, F. Blanes. Agent-based distributed architecture for mobile robot control[J]. Engineering Applications of Artificial Intelligence. 2008,21:805–823P
    [36]吴亮.智能机器人规划系统的研究与实现[MA].哈尔滨工程大学硕士论文.2001
    [37]田维新.基于Petri网的离散事件系统仿真模型及其应用研究[MA].华中科技大学硕士学位论文. 2006:12-23页
    [38]戴学丰,援潜救生艇姿态和对口装置协调控制研究[D].哈尔滨工程大学博士论文, 2000:8页
    [39] Xu Hongli, Zhang Yu, Feng Xisheng. Research on the decentralized supervisory control of autonomous underwater vehicle[C]. Fifth World Congress on Intelligent Control and Automation, HangZhou ,China, 2004: 4909-4913P
    [40]吴哲辉. Petri网导论[M].机械工业出版社. 2006:1-9页
    [41] Claude Girault, Rudiger Valk.系统工程Petri网——建模、验证与应用指南[M].王生原,余鹏,霍金健译.电子工业出版社. 2005:132-290页
    [42]常宗虎,施小成,刘光军. AUV使命控制过程Petri网建模研究[C].第二十三届中国控制会议论文集. 2004:1204-1209页
    [43]张继军,吴哲辉. Petri网的分层递归模型[J].系统仿真学报(增刊). 2003,15:89-98页
    [44]李国强,规划的修补方法[J].科技信息. 2008,26:65页
    [45]吴哲辉. Petri网导论[M].机械工业出版社. 2006:181-186页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700