织造车间大小环境分区空调气流组织特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,分区空调在纺织行业应用的相关研究较少,没有可以借鉴的设计理论资料和运行调试方案来指导实践,致使工作人员在分区空调的实际设计和运行调试中比较盲目,难以有效发挥分区空调固有的节能优势。为更有效地发挥分区空调的节能优势,为设计和运行人员提供更详实的设计理论资料和运行调试方案,推动分区空调在纺织行业进一步推广应用,本文从数值模拟和实验研究两个方面入手,详细地分析了分区空调在纺织厂织造车间应用时的适用性和节能性,深入研究了影响分区空调运行效果的各主要因素的主次顺序及影响规律,并通过现场测试验证了数值模型的可靠性。本文的主要研究内容如下:
     (1)借助CFD模拟软件,对某纺织厂织造车间气流组织进行数值模拟,分析该分区空调的空调效果,以工艺性要求和操作人员的舒适性需求来研判分区空调在纺织企业织造车间的适用性。结果表明:分区空调的送风方式能够很好地满足工艺生产的高湿度要求和操作区操作人员的舒适度需要,因此,分区空调完全适合应用于纺织企业的织造车间。
     (2)分析比较了在达到相同送风效果参数的情况下,分区空调系统相对于传统空调的节风量和节能量。结果表明:在空调送风效果参数相同的情况下,分区空调系统较传统上送下回空调系统约节能41.4%左右。
     (3)建立了简化模型,将CFD模拟和四因素三水平方法、单因素实验的方法相结合,深入分析了影响分区空调运行效果的各主要因素的主次顺序及影响规律,并给出了推荐设计运行参数。结果表明:操作区送风对织造区温湿度影响较小,因此建议在实际工程设计和运行调试中,可适当降低操作区送风标准。同时结合模拟结果,建议取值范围为:织造区送风相对湿度不宜小于80%,送风速度以取0.5~0.8m/s为宜;而操作区送风送风参数相对湿度取值范围为70%~85%,送风速度取值范围为1.5~3.5m/s。
     (4)对某纺织厂织造车间分区空调系统进行现场实测,并将现场测试结果和CFD模拟结果进行对比分析,结果发现实验和模拟结果呈现相同的规律,且误差保持在10%以内,属于可接受范围。这表明在织造车间进行CFD模拟研究是可行的,本文所建立的数学模型是可靠的。
     最后,通过对织造车间分区空调设计参数及影响规律的模拟研究,并通过实验研究进行的验证,此外还发现,由于操作人员活动区域距离织造区风口较近,织造区送风参数在保证织造工艺高湿度要求的同时,其对操作区温湿度的影响远远大于操作区本身的送风参数的影响。因此,本文建议在实际工程中可适当加大织造区的送风标准,减小背景区的送风标准。为避免纺织厂织造车间在采用织造区单独送风的同时仍采用较大的操作区送风参数提供了理论依据。
At present,the literature about division air-conditioning in textile are too less which leads to air conditioning designers and operators are blind in practical engineering design and operation, It is hard to demonstrate the advantage of division air-conditioning on energy saving at the present conditions. In order to reflect the advantage of division air-conditioning on energy saving, provide more detailed data for designers and operators, popularize division air-condition in textile enterprise, this article details the applicability and energy-saving of division air-condition in loom workshop through numerical simulation and experimental study. Besides, it analyzes the law of main factors about division air-conditioning in this article. Experiment is carrying out to verify the reliability of the numerical model. The key components of the paper is as follows.
     (1) Combined with CFD simulation soft and practical engineer, this article researches the airflow in loom workshop, analyzes the effect of air conditioning, and evaluates the applicability of division air-conditioning in loom workshop. Results show: division air-conditioning meets craft production requirements and comfortably of operator,Thus division air-conditioning completely fits loom work.
     (2) In this article, it also analysis the energy saving and airflow saving between division air-conditioning and traditional air conditioning under same air-conditioning effects. Results show: when the effects of air-conditioning are same, division air-conditioning can save energy about 41.4% than traditional air conditioning.
     (3) This article establishes simplified model, researches main factors of the loom workshop’s division air-conditioning, sorts the main factors and gives commendatory design and operation parameters through CFD simulation software and the theory of statistics. Results show: it should choose lower standards of operating area in practical engineer, and give recommended range: relative humidity of loom area supplying is not less than 80%, speed of loom area supplying is between 0.5~0.8m/s. Relative humidity of operating area supplying is between 70%~85%, speed of operating area supplying is between 1.5~3.5m/s.
     (4) Through comparative analysis between results and CFD simulation results, it shows that result laws of test and CFD Simulation is same, and the numerical error below 10% which is within the acceptable range. Thus the mathematical model is reliable.
     Finally,this paper proposes the design idea of“pay attention to technology regional, neglect background regional”through simulation studies and experiment studies to division air-conditioning, which can provide a theoretical basis to avoid larger operating area of the blast parameters in the background regional.
引文
[1] MelikovAK,NielsenJB.Local thermal discomfortin rooms with displacement ventilaition[J].ASHRAE Transactions,1989,95(2):1050~1057.
    [2]杨瑞梁,郎婉臣,个体化送风的研究进展[J].西部制冷暖通与空调,2006,26(4):40-43.
    [3]周义德,樊瑞,杨瑞梁.喷气织机车间分区空调节能原理分析[J].棉纺织技术,2008,36(10):9-11.
    [4]彭少华.分层空调在成都某工程高大厂房中的应用[J].暖通空调,1999,26(3): 3-12.
    [5] Xiang yang C,Aya OHORI,Masayuki HARADA.Study of 3V personnal air-conditi oning system[C].The 4th international symposium on HVAC,Beijing,2003, 987-991.
    [6] H.Hanzawa,Y.Nagasaw. Thermal cmnfort with underfloor air-onnditioning systems[J].ASHRAE Transactions,1990,96(2):696-698.
    [7] F.S.Bauman ,P.E & TomWebster.Outlook for Under-floor Air Distribution.AS–HRAE Transactions.Jounral-June. 2001.
    [8] F.S.Bauman,E.A.Arens,S.Tananbe,H.Zhang,A.Baharlo,Testing and optimizing the performance of a floor-based task conditioning system[J].Energy and Buildings, 199522(2),173-186.
    [9] F.S.Bauman,H.Zhang,E.A.Arens,C.C.Benton.Localized confort control with a desktop task conditioning systemlaboratory and field measurements[J].ASHRAE Transactions.1993,99(2):733-749.
    [10]康健.桌面工位送风送风系统的送风性能及热舒适性的研究[M].重庆:重庆大学,2006.10.
    [11]张晋阳.桌面工位送风送风性能及舒适度研究[D].大连:大连理工大学,2005.3.
    [12]李俊等.稳态条件下人体对个体送风的热反应研究.暖通空调,2004,34(12):42-45.
    [13] S.H.Cho,W.T.Kim,M.Zaheeruddin.Thermal chaaracteristics of a personal environm -ental module task air conditioning system:an experimental study[J]. Energy Conversion and Management,2001,42:1023-1031.
    [14] R.Stute.Interated access floor HVAC:lessons learned[J]. ASHRAE Transactions. 1995,101(2):877-886.
    [15] D.Faulkner,W.J.Fisk.Indoor airflow and pollutant removal in a room with desktop ventilation[J].ASHRAE Transactions.1993,99(2):750-758.
    [16] Rrsen K.Melikov,J.Kaczmarczyk,L.Cygan.Indoor air quality assessment by a breathing themal manikin[J].Indoor Air submitted for publication.2005,98(3): 676-680.
    [17]郑洪男等.日本工位送风系统的研究与应用[J].制冷空调与电力机械,2005 (1).36-38.
    [18] Bautman,F.S.,Carter,T.G.,Baughman,A.V.,Arens,E.A.,Field study of the impact of a desktop task/ambient conditioning system in an office building[J].ASHRAE Transactions,1998,104(1):1153-1171.
    [19] E.A.Arens,T.Miura,K.Hnag,etal.A stdy of occupant cooling by personally controlled air movement.Energy and Building1998,87(3):45-59.
    [20]端木琳.桌面工位送风系统室内热环境和舒适性研究[D].大连:大连理工大学,2007.10.
    [21]何天棋等.三峡电厂发电机房夏季分层空调气流组织的设计与分析[J].重庆建筑大学学报.2000,22(1):30-35.
    [22]小林满等.某工厂室内气流模型实验与实测,《空气调和·卫生工学》,1974.
    [23]陈滨.日本大空间空调现状[J].暖通空调,1994,20(4):93-95.
    [24]卢耀庆.实用供热空调设计手册[M].北京:中国建筑工业出版社,2008.
    [25]赵菊.大空间多股送风射流重合特性的理论与实验研究[D].上海:同济大学,2002.3.
    [26]官庆,汤广发.高大空间分层空调三位稳流气流数值研究[J].暖通空调,1991,32(4):32-37.
    [27]杨露露.高大厂房分层空调技术的应用研究[D].重庆:重庆大学,2002.11.
    [28]董玉平.高大空间建筑空调系统CFD模拟研究[D].天津:天津大学,2003.12.
    [29]许登科.高大空间分层空调气流组织的数值模拟研究[D].安徽:安徽理工大学,2006.6.
    [30]卞康.应用CFD模拟技术队高大空间建筑分层空调气流组织及形成条件分析研究[D].北京:北京建筑工程学院,2008.1.
    [31]黄翔,杨文轩.国内外纺织空调除尘技术的现状与发展趋势[J].陕西纺织,2000.3:14-21.
    [32]李帆.纺织车间空调送风方式的研究[D].上海:东华大学,2006.1.
    [33] Nielesen P.V. The selection of turbulence models for prediction of room airflow. ASHRAE Transactions,1998,104(1):1119~1126.
    [34]王刚,廉乐明等.两方程模型在大空间建筑热环境模拟中的应用[J].建筑热能与通风,2003,(2):1-3.
    [35]陈小春,朱颖心.零方程模型用于空调通风房间气流组织数值模拟的研究[J].暖通空调,2006,36(8):19~24.
    [36]赵彬,李先庭,彦启森.用零方程湍流模型模拟通风空调室内空气流动[J].清华大学学报(自然科学版),2001,41(10):109~113.
    [37] Kazuyuki Takase. Numerical prediction of augmented turbulent heat transfer in an annular fuel channel with repeated two-dimensional square ribs[J]. Nuclear Engineering and Design, 1996,165:225-237.
    [38] van Doormaal J P,Raithby G D.Enhancement of the SIMPLE method for predicting incompressible fluid flow.Numer Heant Transfer,1984.07:147-163.
    [39]黄翔.纺织空调除尘技术手册[M].北京:中国纺织出版社,2003.
    [40]朱颖心.建筑环境学[M].北京:中国建筑工业出版社, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700