有序介孔碳/聚苯胺复合材料的制备及其在超级电容器中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文综述了超级电容器的国内外现状及超级电容器电极材料的最新研究进展,并且制备了超级电容器电极材料。由于有序介孔碳材料具有规则的排列、比较大的比表面积等优点,本文将有序介孔碳(CMK-3)与聚苯胺复合而制备得到CMK-3/PANI复合电极材料,并且以介孔碳为超级电容器的电极材料组装了混合电容器。研究其作为超级电容器电极材料的电化学性质,具体开展的研究内容如下:
     1.以SBA-15为模板制备了有序介孔碳材料,并且采用硝酸溶液对CMK-3的表面进行改性和修饰。系统研究了未改性CMK-3(p-CMK-3)及改性CMK-3(m-CMK-3)的结构、形貌特征、孔径大小及孔径分布。并对介孔碳的电化学性能进行了测试分析,结果表明,制备的CMK-3具有二维六方有序结构,结构完整均一且具有较高的有序度,孔径分布主要分布在2~8nm左右,比表面积和孔容大小分别为1206m2/g和1.38cm3/g。CMK-3具有最好的双电层电容性能,可达145F/g。CMK-3在HN03溶液中进行表面修饰,其电容性能有了明显地提高,达到200 F/g。
     2.将改性后的CMK-3(m-CMK-3)作为载体,通过化学氧化的方法加入PANI中,制得了m-CMK-3/PANI复合材料。并用SEM、循环伏安法、恒流充放电法和交流阻抗法研究了复合电极材料的结构和电化学性质。研究结果表明,PANI颗粒在载体m-CMK-3的碳纤维束上包覆,该复合物结构疏松,呈三维多孔结构,使得孔隙率增加,渗透性改善,有利于促使电解液中的活性离子扩散到电极表面和体相当中,发生氧化还原反应,产生大的法拉第赝电容。m-CMK-3的含量为30 wt%时,m-CMK-3/PANI复合材料比容量高达489 F/g。m-CMK-3的独特的孔结构、大比表面积和表面活性在m-CMK-3/PANI复合材料的结构上起了重要作用,使活性物质PANI更分散,提高了PANI的利用率和循环稳定性。
     3.为了进一步提高:m-CMK-3/PANI复合材料在超级电容器应用中的功率特性和能量密度,改善m-CMK-3/PANI复合材料循环稳定性。将该复合材料为正极材料,配以介孔碳CMK-3为负极和1mol/L H2SO4和1mol/L NaNO3电解液,组装成为电化学混合电容器,混合电容器的工作电压都提高至1.4V,1mol/L H2SO4中电容量为87.4F/g。经过电化学测试,在5mA/cm2电流密度和1.4V充放电电位条件下,电容器功率密度为206W/kg,能量密度达23.8Wh/kg。在1mol/L NaNO3中,混合电容器的能量密度在大功率情况下衰减小,经过1000次循环容量衰减约10%,充放电效率维持在96%左右,表现出良好的超级电容特性。
In this thesis,the newest development in research of supercapacitors and the electrode materials of supercapacitor devices have been reviewed.Because ordered mesoporous carbon CMK-3 exhibit high specific area and highly ordered pore structure, three kinds of nanostructured composites were prepared by using CMK-3 as the supporter and an attempt was made to apply the mass active electrode materials for electrochemical capacitors.The main studies are as follows:
     1.The ordered mesoporous carbon CMK-3 was synthesized by using SBA-15 as surfactant-template.Chemically modified CMK-3 is prepared by wet-oxidative method in HNO3 solution. Structures, morphologies,pore size distributions and pore volumes of p-CMK-3 and m-CMK-3 have been systemically explored.The electrochemical capacitance characteristic of CMK-3 has also been systemically studied. The result shows that CMK-3 present amorphous structure and highly ordered pore structure with average pore size of among 2~8 nm.The CMK-3 with surface area of about 1206 m2/g and volume of about 1.38 cm3/g yields the best electric layered capacitance, i.e.about 145F/g. After chemically modified CMK-3 in HNO3 solution, the capacitance of CMK-3 has been improved greatly, the specific capacitance is up to 200 F/g.
     2.By using m-CMK-3 as template, a novel m-CMK-3/PANI composite was successfully prepared by in-situ chemical oxidative polymerization. The microstructure and supercapacitive behaviors of these composites were investigated through SEM, XPS,cyclic voltammetry, charge-discharge and impedance spectroscopy. The particles of PANI on m-CMK-3 with large space between ordered nanowires can be effective to obtain fully reversible and very fast redox behavior, which contribute to the pseudo-capacitance.The maximum SC of m-CMK-3/PANI composite (30 wt% m-CMK-3)was up to 489 F/g. As the support of m-CMK-3,its unique porous structure, large specific surface area and surface activity have played an important role in optimizing the structure of m-CMK-3/PANI composite, making active materials more dispersed as well as improving the availability of PANI and good cycle performance.
     3.In order to improve the power and energy performances and ameliorate the cycle stability of m-CMK-3/PANI composite electrode for supercapacitors, an electrochemical hybrid capacitor was successfully designed using m-CMK-3/PANI composite and m-CMK-3 as positive and negative electrodes,respectively. The discharge capacity of the hybrid capacitor reached 87.4F/g in a lmol/L H2SO4 electrolyte solution under a current density of 5mA/cm2 and a cell voltage of 1.4 V. The energy density of the hybrid capacitor reached 23.8Wh/kg with a power density of 206 W/kg. When the current density was increased from 5.0 to 50mA/cm2, the capacity of the hybrid capacitor in a 1mol/L NaNO3 electrolyte solution remained at about 80% and it showed excellent high rate charge-discharge performance. Furthermore, the m-CMK-3/PANI hybrid capacitors possessed high charge-discharge efficiency and good cycle performance.
引文
[1]Winter M,Brodd R J.What are batteries,Fuel Cells, and Supercapacitors. Chemical Reviews,2004,104(10):4245-4269
    [2]Conway B E.Electrochemical Supercapacitors:Scientific Principles and Technological Applications,New York;Kluwer Academic/Plenum Publishers. 1999,11-32
    [3]Conway B E.Transition-from "Supercapacitor" to "Battery" Behavior in Electrochemical Energy Storage. Journal of the Electrochemical Society, 1991,138:1539-1548
    [4]Kotz R, Carlen M.Principles and applications of electrochemical capacitors. Electrochimica Acta,2000,45:2483-2489
    [5]Bockris J O M,Reddy A K N.Modern Electrochemistry, New York, Plenum Press,1970
    [6]Pell W G, Conway B E, Adams W A, et al.Electrochemical efficiency in multiple discharge/recharge cycling of supercapacitors in hybrid EV applications.Journal of Power Sources,1999,80(1-2):134-141
    [7]Jayakannan M,Annu S,Ramalekshmi S.Structural effects of dopants and polymerization methodologies on the solid-state ordering and morphology of polyaniline, Journal of Polymer Science Part B:Polymer Physics 2005,43:1321-1331
    [8]Faggioli E, Rena P, V Danel,et al.Supercapacitors for the energy management of electric vehicle. Journal of Power Sources,1999,84(2):261-269
    [9]张治安,邓梅根,胡永达.电化学电容器的特点及应用.电子元件与材料,2003,22(11):1-5
    [10]张琦,王金全.超级电容器及应用探讨.电气技术,2007,8:67-70
    [11]Lam L T, Newnham R H,Ozgun H,et al.Advanced design of valve-regulated lead-acid battery for hybrid electric vehicles,Journal of Power Sources,2000, 88(1):92-97
    [12]Gutmann G, Hybrid electric vehicles and electrochemical storage systems-a technology push-pill couple, Journal of Power Sources,1999,84(2):275-279
    [13]Lam L T, Newnham R H,Ozgun H,et al.Advanced design of valve-regulated lead-acid battery for hybrid electric vehicles, Journal of Power Sources, 2000,88(1):92-97
    [14]Jayakannan M,Annu S,Ramalekshmi S.Structural effects of dopants and polymerization methodologies on the solid-state ordering and morphology of polyaniline, Journal of Polymer Science Part B:Polymer Physics 2005,43:1321-1331
    [15]唐致远,徐国祥.电子导电聚合物在电化学电容器中的应用.化工进展,2002,21(9):652-655
    [16]Tanahashi I, Yoshida A, Nishino A.Activated carbon fiber sheets as polarizable electrodes ofelectric double layer capacitors.Carbon,1990,28(4):477-482
    [17]Yoshida A,Tanahashi I, Nishino A, Effect of concentration of surface acidic functional groups on electric double-layer properties of activated carbon fibers, Carbon,1990,28(5):611-615
    [18]Xu B,Wu F, Chen S,et al,Activated carbon fiber cloths as electrodes for high performance electric double layer capacitors, Journal of Electrochimica Acta,2007, 52(131):4595-4598
    [19]Lee J G,Kim J Y,Kim S H.Effects of microporosity on the specific capacitance of polyacrylonitrile-based activated carbon fiber. Journal of Power Sources, 2006,160(2):1495-1500
    [20]Miura K, Nakagawa H,Okamoto H.Production of high density activated carbonfiber by a hot briquetting method.Carbon,2000,38(1):119-125
    [21]Ryoo R, Joo S H, Kruk M, et al.Ordered Mesoporous Carbons.Advanced Materials,2001,13:677-681
    [22]Anon. Electrochemicam Society, Extended abstracts of 188th fall meeting. 1995:313-317
    [23]Yoon S,Lee J,Hyeon T, et al.Electric Double-Layer Capacitor Performance of Mesoporous Carbon.Journal of the Electrochemical Society,2000,147(7):2507-2512
    [24]Kohichi K, Shigeru S,Satashi O, et al.The application of scanning Auger microscopy to the surface characterization of RuO2-TiO2 coated titanium electrodes. Journal of the Electrochemical Society,1993,140(4):966-969
    [25]王晓峰,王大志,梁吉等.氧化钌/活性炭超电容器复合电极的电化学行为.物理化学学报,2002,18(8):750-753
    [26]Rudge A, Raistrick I, Gottesfeld S,et al.A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors. Electrochimica Acta,1994,39:273-287
    [27]Mastragostino M,Arbizzani C,Soavi F. Polymer-based super-capacitors.Journal of Power Sources,2001,97-98:812-815
    [28]Frackowiak E, Khomenko V, Jurewicz K, et al.Supercapacitors based on conducting polymers/nanotubes composites.Journal of Power Sources, 2006,153:413-418
    [29]Rudge A, Davey J, Raistrick I.Conducting polymers as active materials in electrochemical capacitors.Journal of Power Sources,1994,47(1):89-92
    [30]张光敏,阎康平,严季新.用导电聚合物电极的超电容器研究概况.电子元件与材料,1999,18(5):42-45
    [31]康旭.碳纳米管/聚合物复合材料的制备和表征.兰州大学硕士学位论文,2007,8-9
    [32]Halpin S M, Spyker R L, Nelms R M,et al.Application of double-layer capacitor technology to static condensers for distribution system voltage control.IEEE Transactions on Power Systems,1996,11(4):1899-1904
    [33]Oxley J E.Proceedings of the 34th international power sources symposium.New Jersey:JES Press,1991:346-350
    [34]Clark N H.Proceedings of the 35th international power sources symposium.New Jersev:JES Press.1993:306-309
    [35]Laconti A B,Sarangapani S,Kosek J A, et al.Proceedings of the 35th international power sources symposium. New Jersey:JES Press,1993:298-301
    [36]Fonseca I,Aggar J,Sarrazin C,et al.Possible improvements in making carbon electrodes for organic supercapacitors.Journal of Power Sources,1999,79:238-241
    [37]Laforgue A, Simon P,Fauvarque J F, et al.Hybrid Supercapacitors Based on Activated Carbons and Conducting Polymers.Journal of the Electrochemical Society,2001,148(10):A1130-A1134
    [38]Wang Y G, Xia Y Y. A new concept hybrid electrochemical supercapacitor: carbon/LiMn2O4 aqueous system. Electrochemistry Communications, 2005,7(11):1138-1142
    [39]Park J H,Park O O.Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes.Journal of Power Sources,2002,111(1):185-190
    [40]Qu D,Shi H.Studies of activated carbons used in double-layer capacitors.Journal of Power Sources,1998,74(1):99-107
    [41]Varakin I N,Kiementov A D,LitVineko S V, et al.New ultra-capacitors developed by JSC ESMA for various applications.Proceedings of the 8th International Seminar on Double-layer capacitors and Similar Energy Storage Devices.Deerfield Beach,FL,December 1998
    [42]Volfkoviceh Y M, Kiementov S V, et al.High energy density supercapacitor. Proceedings of the 8th International Seminar on Double-layercapacitors and Similar Energy Storage Devices.Deerfield Beach,FL,December 1998
    [43]刘志祥.超级电容器相关技术研究.硕士论文.哈尔滨工程大学,2001
    [44]闪星.纳米氧化物的制备及在超级电容器中的应用.硕士论文.哈尔滨工程大学,2001.
    [45]张治安,邓梅根等.电化学混合电容器.电池,2004(3):295-297
    [46]朱修锋,景晓燕,张密林.金属氧化物超级电容器及其应用研究进展.功能材料与器件学报.2002,8(3):325-330
    [47]王晓峰,解晶莹,孔祥华等.“超电容”电化学电容器研究进展.电源技术.2002.
    [48]Wang Y G, Yu L, Xia Y Y.Electrochemical capacitance-performance of hybrid supercapcitors based on Ni(OH)2 carbon nanotube composites and activated carbon[J].Journal of The Electrochemical Society,2006,153(4):A743-A748
    [49]Wang Y G, Xia Y Y,A new concept hybrid electrochemical supercapacitor: carbon/LiMnO4 aqueous system.Journal Electrochemistry Communications, 2005,7(11):1138-1142
    [50]Wang Y G, Xia Y Y, Hybrid aqueous energy storage cells using activated carbon and lithium-intercalated compounds.I.The C/LiMn2O4 system.Journal of The Electrochemical Society,2006,153:A450-A454
    [51]Wang Y G, Xia Y Y, Electrochemical profile of nano-partiacle CoAl double hydroxide/active carbon supercapacitor using KOH electrolyte solution.Journal of Power Sources,2006,153(1):191-196
    [52]Wang Y G,Xia Y Y. Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15.Electrochimica Acta, 2006,51(16):3223-3227
    [53]Park J H,Park O O.hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes.Journal of Power Sources,2002,111:185-190
    [54]于黄中,陈明光,贝承训等.导电聚苯胺的特性,应用及进展.高分子材料科学与工程,2003,19(4):18-22
    [55]何波兵,钟安永,陈德本等.聚苯胺及苯胺共聚物的合成与表征.高分子材料科学与工程,2002,18(3):65-69
    [56]张清华,金惠芬,景遐斌.一种新型的导电聚合物—聚苯胺.中国纺织大学学报,1998,24(3):114-117
    [57]陆珉,吴益华,姜海夏.导电聚苯胺的特性及应用.功能材料,1998,29(4):353-356
    [58]Zhang J, Kong L B,Wang B, Luo, Y C, Kang L. In-situ electrochemical polymerization of multi-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors.Synthetic Metals,2009,159(3,4):260-266
    [59]Zhang J, Kong L B, Wang B, Luo Y C, Kang L. Nano-composite of polypyrrole/modified mesoporous carbon for electrochemical capacitor application. Electrochimica Acta,2010
    [60]Huang J,Kaner R B A.General Chemical Route to Polyaniline Nano-fibers. Journal of the American Chemical Society,2004,126:851-855
    [61]Wang C W, Wang Z,Li M K, et al.Well-aligned polyaniline nano-fibril array membrane and its field emission property. Chemical Physics Letters,2001,341:431-434
    [62]Zhang L J,Wan M X. Self-assembly of polyaniline-from nanotubes to hollow microspheres.Advanced Functional Materials,2003,13(10):815-820
    [63]Cao Y, Smith P, Heeger A J.Counter-ion induced processibility of conducting polyaniline and conducting polyblends of polyaniline in bulk polymers.Synthetic Metals,1992,48:91-96
    [64]Gallard H,De Laat J,Legube B.Spectrophotometric study of the formation of iron(III)-hydroperoxy complexes in homogeneous aqueous solutions.Water Research,1999,33(13):2929-2936
    [65]DeBerry W. Moditication of the electrochemical and corrosion behavior of stainless steels with an eletroactive coating. Electrochemical Society, 1985,132:102-104
    [66]杨杰,沈曾民,熊涛.聚苯胺原位包覆碳纳米管材料的制备及性能.新型炭材料,2003,18(2):95-100
    [67]曾宪伟,赵东林.碳纳米管/聚苯胺复合材料的原位合成及其形成机理.炭素技术,2004,23(4):15-19
    [68]万其进,张学记,张春光等.聚苯胺修饰碳纤维超微pH传感器研究及其在植物柱头活体测试中的应用.高等学校化学学报,1997,18(2):226-228
    [69]封伟,易文辉,王晓工等.聚苯胺/富勒烯复合膜的光电响应.物理化学学报,2003,19(9):795-799
    [70]景遐斌,王利祥,王献红等.导电聚苯胺的合成、结构、性能和应用.高分子学报,2005,5:655-663
    [71]Jun S,Joo S,Ryoo H,et al.Synthesis of New,Nanoporous Carbon with Hexagonally Ordered Mesostructure.Journal of the American Chemical Society,2000,122(43):10712-10713
    [72]Wang T, Liu X, Zhao D,et al.The unusual electrochemical characteristics of a novel three-dimensional ordered bicontinuous mesoporous carbon.Chemical Physics Letter,2004,389(4-6):327-331
    [73]Kruk M, Jaroniec M, Ryoo R.Characterization of Ordered Mesoporous Carbons Synthesized Using MCM-48 Silicas as Templates.Journal of Physical Chemistry B,2000,104(33):7960-7968
    [74]Ryoo R, Joo S H,Kruk M, et al.Ordered Mesoporous Carbons.Advanced Materials,2001,13(9):677-681
    [75]Hun J,Joo S H,Ryoo R, et al.Synthesis of New Nanoporous Carbon with Hexagonally Ordered Mesostructure. Journal of the American Chemical
    -Society,2000,122(43):10712-10713
    [76]Kruk M, Jaroniec M, Kim T W. Synthesis and Characterization of Hexagonally ordered Carbon Nanopipes.Chemistry of Materials,2004,15(14):2815-2823
    [77]Kleirz F, Choi S H,Ryoo R. Cubic Ia3d large mesoporous silica:synthesis and replication to platinum nanowires,carbon nanorods and carbon nanotubes.Chemical Communications,2003,17:2136-2137
    [78]Ryoo R, Joo S H,Jun S J.Synthesis template-mediated structural transformation of highly carbon molecular sieves. Journal of Physical Chemistry B,1999,103(37):7743-7746
    [79]Kotz R, Carlen M.Principles and applications of electrochemical capacitors. Electrochimica Acta,2000,45(15-16):2483-2498
    [80]Liu H Y, Wang K P, Teng H.A simplified preparation of mesoporous carbon and the xamination of the carbon accessibility for electric double layer formation. Carbon,2005,43(3):559-566
    [81]Lee J,Yoon S,Hyeon T. Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors.Chemical Communications,1999: 2177-2178
    [82]侯朝辉,李新海,刘恩辉,等.同步合成模板炭化法制备双电层电容器电极用中孔炭材料的研究.新型炭材料,2004,19(1):11-15
    [83]Kotz R, Carlen M.Principles and applications of electrochemical capacitors. Electrochem Acta,2000,45(15-16):2483-2498
    [84]Liu H Y, Wang K P, Teng H. A simplified preparation of mesoporous carbon and the xamination of the carbon accessibility for electric double layer formation. Carbon,2005,43(3):559-566
    [85]Lee J,Yoon S,Hyeon T. Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors.Chemical Communications,1999: 2177-2178
    [86]侯朝辉,李新海,刘恩辉,等.同步合成模板炭化法制备双电层电容器电极用 中孔炭材料的研究.新型炭材料,2004,19(1):11-15
    [87]Zhou H,Zhu S,Hibino M,et al.Electrochemical capacitance of self-ordered mesoporous carbon.Journal of Power Sources,2003,122(2):219-223
    [88]Chen W, Wen T. Electrochemical and capacitive properties of polyaniline-implated porous carbon electrode for supercapacitors.Journal of Power Sources, 2003,117(1-2):273-282
    [89]Wu M, Snook G A, Gupta V, et al.Electrochemical fabrication and capacitance of composite-films of carbon nanotubes and polyaniline. Journal of Materials Chemistry,2005,15:2297-2303
    [90]Jang J, Bae J,Choi M, et al.Fabrication and characterization of polyaniline coated carbon nanofiber for supercapacitor. Carbon,2005,43(13):2730-2736
    [91]Grigoriants I, Sominski L, Li H,et al.The use of tin-decorated mesoporous carbon as all anode material for rechargeable lithium batteries. Chemical Communications,2005,7:921-923
    [92]张光敏,阎康平,严季新.用导电聚合物电极的超电容器研究概况.电子元件与材料,1999,18(5):42-45
    [93]何波兵,钟安永,陈德本等.聚苯胺及苯胺共聚物的合成与表征.高分子材料科学与工程,2002.18(3):65-69
    [94]Wang D W, Li F, Liy M, et al.Improved capacitance of SBA-15 templated mesoporous carbons after modification with nitric acid oxidation New Carbon Materials,2007,22(4):307-314
    [95]Pandolfo A Q, Hollenkamp A E. Carbon properties and their role in supercapacitors.Journal of Power Sources,2006,157(1):11-27
    [96]李红芳,席红安,杨学林,等.有序介孔碳的模板法制备与电化学电容性能研究.无机化学学报,2006,22(4):714-718
    [97]Park J H,Park O O.Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes.Journal of Power Sources,2002,111(1):185-190
    [98]Mastragostino M, Arbizzani C,Soavi F.Polymer-based supercapacitors.Journal of Power Sources,2001,97-98:812-815
    [99]Khomenko V, Raymundo-Pinero E,Beguin F.Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2V in aqueous medium. Journal of Power Sources,2006,153:183-190

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700