稻田土壤供氮机理及水稻氮肥优化施用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以稻田土壤氮素转化和水稻合理施用氮肥为研究目的,通过水稻长期定位肥料试验和水稻优化氮肥施用试验,采用室内培养,大田试验以及相关数学分析相结合的研究方法,探讨了土壤氮素供给-水稻养分吸收-水稻产量之间的相互关系。特别是采用先进的现代仪器分析技术和测定方法,比较系统地研究了土壤氮素转化机理及土壤供氮能力,取得了许多有意义的研究结果,为制定合理的水稻施肥方案,减少氮肥污染提供了理论依据。本文所获得的主要研究结果如下:
     1、长期定位肥料试验结果表明,水稻产量与水稻吸氮总量、吸磷总量和吸钾总量极显著相关(R~2分别为0.7353~(**),0.5461~(**)和0.5599~(**)),其中产量与吸氮总量的相关系数最高,说明氮素营养水平直接影响水稻产量的可信度高。对土壤养分供应状况的分析表明,随着种稻季数的增加,缺肥区土壤所缺养分的土壤供应能力明显下降,从而影响对水稻生长而导致减产。与NPK处理比较,不施N肥处理(PK)从第一季起引起减产:不施P肥处理(NK)从第八季开始减产;不施K肥处理(NP)从第三季开始减产。试验田肥力水平在当地具有代表性,试验结果表明水稻重视N、P、K肥施用具有紧迫性。不同施肥处理还明显影响了水稻养分吸收利用率,水稻氮内部利用效率(IEN)范围在42~94kg kg~(-1)之间,磷(IEP)在128~457kg kg~(-1)之间,钾(IEK)在66~109kg kg~(-1)之间。
     2、土壤微生物生态特征受多种因素的影响。本文的研究结果表明,同NPK配施处理相比较缺肥处理降低了土壤微生物量N,使微生物量C/N比增加。另外,对照(CK)微生物量N可以维持在较高水平,可见平衡施肥或土壤养分的平衡供应对于维持土壤微生物量N水平是有益的。Biolog测试表明,在32h之内,AWCD值很小,几乎没有变化。此后微生物活性增强,以NPK配施处理的AWCD值最高,CK其次,不平衡施肥处理(NP、PK、NK)相对最低。说明平衡施肥处理对维持土壤微生物活性有益。在连续种植水稻条件下,水稻对缺肥处理士壤所缺养分养分库的消耗加快,这种情况明显影响了土壤微生物量和微生物活性,对土壤氮素的转化不利。
     3、有机氮是土壤氮素的主要形态,一般占土壤全氮量的95%以上。土壤供氮能力是土壤肥力的一项重要的指标。对稻田土壤的有机氮组分研究的结果表明,经过6年双季稻种植,施氮区土壤全氮和酸解总氮量基本不变,只有缺氮区土壤酸解总氮明显下降。与不平衡施肥比较,NPK处理保持了较高的酸解铵态氮和酸解未知态氮水平,同时保持了较高的水稻产量和水稻吸
In this dissertation, we studied the mechanisms of nitrogen transformation and nitrogen supply to rice in paddy soils through incubation experiments, and field experiments. A long-term fertilization experiment was conducted with researching optimal nitrogen application for rice in Jinhua, Zhejiang Province of China. Information provided in this work may contribute to a better understanding of soil nitrogen supply capacity in paddy soil environment, which will be useful reference for reasonable fertilizer application. Main original conclusions are shown as follows.(1) Dynamics of grain yields and nutrient uptake of rice, and the ecological characteristics of microorganism of the paddy soil were investigated in a long-term split-block experiment with different fertilization treatment, including control (CK), PK, NK, NP, NPK fertilization, in the main block, and conventional rice and hybrid rice comparison, in the sub block. The results showed that grain yield of rice was positively correlated with N uptake, P uptake and K uptake(r=0.7353**, 0.5461**and 0.5599**, respectively), and soil available nutrient pool depletion might occur very fast under consecutive crops grown without fertilizer application. The results also showed that microbial biomass N varied from 33.78~70.44 mg kg~(-1), about 2.04 percent of total soil nitrogen. The soil microbial biomass N showed a marked increase in the NPK treatment as compared to values in the unbalanced nutrient treatments (NP, PK and NK). CK treatment could also support a higher level of soil microbial biomass N. The results of BIOLOG showed that in the first 32h of incubation, AWCD changed very little but afterwards AWCD increased continuously. At the same time, AWCD of NPK treatment was the highest in all treatments. AWCD of CK treatment increased gradually and were higher than that of NP, PK and NK treatments at the late stage of incubation. It was showed here that soil nutrient deficiency and
    unbalanced fertilization to rice crop had a negative effect on the diversity of the microbial community and total microbial biomass in the soil. We concluded that balanced application of N, P and K increased microbial community and total microbial biomass of the soil. Unbalanced fertilization reduced microbial N and increased C/N ratio of the microbial biomass.(2) Changes of soil organic nitrogen forms and soil nitrogen supply under continuous rice cropping were investigated through the long-term NPK experiment. It was found that after 6 years of continuous double-rice cropping, the soil total N and hydrolysable N contents were maintained in the N-supply plots, while the hydrolysable N contents were substantially reduced in the N omission plots. Balanced application of N, P and K promoted the percentages of hydrolysable ammonium N in the total N compared to the unbalanced fertilization treatments, also maintained higher rice grain yield and nitrogen uptake. It was found that grain yield was positively correlated with total N uptake, hydrolysable N, hydrolysable ammonium N and HUN fraction N (r = 0.875 , 0.608 , 0.560 , and 0.417**, respectively); total N uptake was positively correlated with hydrolysable N, hydrolysable ammonium N and HUN fraction N (r = 0.608* , 0.440 , and 0.431 , respectively). The hydrolysable N had contribution to rice grain yield and N uptake.(3) In this paper, the chemical group components in soil humic acids(HA) and fulvic soids(FA) isolated from soil of different fertilization treatments were studied by using infrared spectrum(IR) and *H nuclear resonance spectroscopy(NMR), and it was also researched the effect of different fertilization treatments on chemical groups structure of humic substance. The IR analysis of HA indicated that polycondensation and conjugation of the unstaturated structure and the content of aromatic compounds in HA isolated from the long term no fertilization soil increased, while aromatization degree and simple organic molecular fraction in HA isolated from fertilization soil increased, and effect was NPK> PK. It was found that there were more aliphatic groups and less sugar components in HA extracted using O.lmol/L Na4P2O7 and O.lmol/L NaOH compared with HA extracted only using O.lmol/L NaOH. The 'H NMR results showed that the positions of the major spectral bands of these NMR spectra were similar to each other, and it was found the effect of different fertilization treatment on carbon-H and aliphatic-H were NPK>CK>PK and PK>CK>NPK.(4) Direct-seeding for early rice as a laborsaving technique has been spreading rapidly in the past several years in Zhejiang Province. The agronomic performance of a newly developed site-specific nutrient management (SSNM) technique was tested against the farmer's fertilizer practice (FFP) in
引文
王岩,等.肥料残留的有效性及其与形态分布的关系.土壤学报,1993,30(1):19-24.
    王光火,DobermannA,等.浙江金华地区水稻土养分供应能力(INSC)研究.中国水稻科学,2001,15:201-205.
    王光火.浙江金华地区水稻土养分供应能力研究.中国水稻科学,2001,5(3):201-205.
    王光火,张奇春,黄昌勇.提高水稻氮肥利用率、控制氮肥污染的新途径—SSNM.浙江大学学报(农业与生命科学版),2003,29(1):67-70.
    王岩,沈其荣,史瑞和.有机无机肥料施用后土壤生物量C,N,P的变化及N素转化.土壤学报,1998,35(2):227-234.
    文启孝,林心雄.红壤地区土壤有机质的含量和特征.科学出版社,1983:464-482.
    文启孝.土壤有机质研究法.北京:农业出版社,1984:125—133.
    牛灵安,郝晋珉.盐渍土熟化过程中腐殖质特性的研究.土壤学报,2001,38(1):114-122.
    中国农业年鉴农业编辑委员会.中国农业年鉴.北京:农业出版社,1999.
    中国科学院南京土壤研究所编.中国土壤.北京:科学出版社,1978:382-383.
    巨晓棠,李生秀.培养条件对土壤氮素矿化的影响.西北农业学报,1997,6(2):64-67.
    巨晓棠.培养条件对土壤氮素矿化的影响.西北农业学报,1997,6(2):64-67.
    巨晓棠,李生秀.土壤氮素矿化的温度水分效应.植物营养与肥料学报,1998,4(1):37-42.
    叶优良,张福锁,李生秀.土壤供氮能力指标研究.土壤通报,2001,32(6):273-277.
    朱兆良.土壤中氮素的转化.土壤学报,1963,11:328—338.
    朱兆良.土壤中氮素的转化和移动的研究近况.土壤学进展,1979,2:1-16.
    朱兆良.我国土壤供氮和化肥氮去向研究的进展.土壤,1985,17(1):1-9.
    朱兆良,土壤氮素.见:中国土壤(熊毅,李庆列编).北京:科学出版社,1988:464-486.
    朱兆良.土壤中氮素转化研究的几个问题.见:中国科学院南京土壤研究所、土壤圈物质循环开放研究实验室编,土壤圈物质循环研究导向会论文集.南京:江苏科学出版社.1989:76-91.
    朱兆良,文启孝主编.中国土壤氮素.南京:江苏科学技术出版社,1992:37-59.
    朱兆良.中国土壤氮素肥力与农业中的氮素管理.见:沈善敏主编.中国土壤肥力.北京:科学出版社,1999:160-211.
    朱兆良.农田中氮肥的损失与对策.土壤与环境,2000,9(1):1-6.
    李楠,刘伟.土壤预处理对土壤氮素组分的影响.吉林农业大学学报,2000,22(4):81-84.
    李丽霞,郝明德,彭令发.黄土区人工牧草地有机氮组分变化研究.水土保持研究,2003,10(10):55-58.
    李世清,李生秀.有机物料在维持土壤微生物体氮库中的作用.生态学报,2001,21(1):136-142.
    李生秀.关于土壤供氮指标的研究Ⅰ.对几种测定土壤供氮能力方法的评价.土壤学报,1990,27(3):233-241.
    李泽炳.杂交水稻的研究与实践.上海科学技术出版社,1981:180-450.
    李学垣主编,土壤化学.高等教育出版社,2001:33-40.
    李学垣主编,土壤化学.高等教育出版社.2001:
    李良漠,潘映华,伍期途,等.无定形氧化铁作为嫌气下氧化时电子受体研究.土壤学报,1988,25(2):184-190.
    孙羲.植物营养与肥料.中国农业出版社,1988:102-155.
    孙羲.水稻的氮素营养.见:我国土壤氮素研究工作的现状与展望.科学出版社,1986:1-13.
    孙波,赵其国,张桃林,俞慎.土壤质量与持续环境Ⅲ,土壤质量评价的生物学指标.土壤,1997,29:225-234.
    刘晓宏,郝明德.添加无机氮磷与有机肥对土壤有机氮矿化的影响同.中国生态农业学报.2002,10(1):54-56.
    许春霞,吴守仁.娄土有机氮的构成及其在施肥条件下的变化.1991,22(2):54-56.
    陈刚才.土壤氮素及其环境效应.地质地球科学.2001,29(1):63-68.
    陈明昌,张强,等,田间土壤氮素形态转化模拟模型的研究.植物营养与肥料学报,1996,2(3):261-269.
    陈同斌.2000年农用化肥氮磷钾消费比例的研究.中国科学院地理研究所研究报告,1993.
    季国亮,王敬华.用微电极研究碳铵粒肥在水稻土中的释放扩散问题.土壤学报,1978,15:182-186.
    沈其荣,史瑞和.不同土壤有机氮的化学组分及其有效性的研究.土壤学报,1990,21:54-57.
    沈其荣,余玲,刘兆普,等.有机无机肥料配合施用对滨海盐土土壤微生物态氮及土壤供氮特性的影响.土壤学报,1994,31(3):287-294.
    沈其荣,王岩,史瑞和.土壤微生物量和土壤固定态铵的变化及水稻对残留N的利用.土壤学报,2000,37(3):330-338.
    张绍林,朱兆良,徐银华,等.关于太湖地区稻草上氮肥的适宜用量.土壤,1988,20:5-9.
    张付申.黄土区长期施肥对胡敏酸结构特性的影响.植物营养与肥料学报,1996,3(2):243-249.
    张英,褚秋华,邱少生,等.11年连续肥料处理对水稻土碳、氮及微生物量的影响.南京农业大学学报,2001,24(4):112-114.
    张庆江,张文英.小麦夏玉米两熟制粮田氮的平衡运转动态及氮肥利用率.土壤通报,1997,28(4):164-166.
    张奇春,王光火.应用离子交换树脂球研究温度对水稻土养分释放动态的影响.2003,17(4):365-368.
    张炎,史军辉,李磐,等.农田土壤氮素损失与环境污染.新疆农业科学.2004,4(4):57-60.
    张付中.黄土区土壤长期施肥对胡敏酸结构特征的影响.植物营养与肥料学报.1996,2(3):243-249.
    张雪英,黄焕忠.周云祥.堆肥处理对污泥腐殖物质组成和光谱学特性的影响.环境化学,2004,23(1):96-101.
    张继宏,颜丽,窦森主编.农业持续发展的土壤培肥研究.沈阳:东北大学出版社,1995.
    宋琦.我国几种土壤的有机氮组成和性质的研究.土壤学报,1988,25(1):95-100.
    吴庆法.水稻机械喷播的特点与技术.浙江农业科学,2000(4):165-166.
    林水水,吴平平,周文敏,等.实用付里叶变换红外光谱学.中国环境科学出版社,1991:322-323.
    林咸永,何念祖,章水松,等.不同水稻品种对钾吸收和利用的差异及其产量和品质的关系.土壤通报,1995,26(7):9-52.
    林咸永,孙羲.不同水稻基因型对钾反应的差异及其根系生理基础.土壤通报,1992,23(4):159-161.
    罗湘宁.长期规律耕作土壤腐殖质的高分辨核磁共振研究.分析测试学报,1997,6(5):51-53.
    罗明,文启凯,陈全家,等.不同用量的氮磷化肥对棉田土壤微生物区系及活性的影响.土壤通报,2000,21(2):66-69.
    佩德罗,A桑切兹和约翰,J 尼科雷迪斯.发展中国家植物营养与土壤限制因素.联合国粮食及农业组织技术咨询委员会秘书处,1983:1-17.
    周建斌,陈竹君,李生秀.土壤微生物量氮含量、矿化特性及其供氮作用.生态学报.2001,21(10):1718-1725.
    胡荣梅,马立珊,许祖贻.土壤氮素、亚硝胺与肝癌关系的研究.环境科学丛刊,1983,5:275-282.
    胡泓,王光火.施钾条件下杂交水稻氮磷养分吸收利用特点.土壤通报,2003,34(3):202-204.
    胡林军.直播水稻高产栽培技术.江苏农业科学,1999(3):17-18.
    钦绳武,刘芷宇.土壤—根系微区养分状况的研究.Ⅳ、不同形态肥料氮素在根际的迁移规律.土壤学报,1989,26:117-123.
    施书莲.土壤剖面不同粒级氨基酸组成.土壤,1998,(4):209-213.
    赵明宇,韩晓日,郭鹏程.不同施肥条件下土壤固定态铵含量的动态变化.土壤通报,1996,2(2):79-81.
    赵决建,赵艳萍.水稻定时定量施肥研究.土壤通报,2002,33(4):288-292.
    封克,殷士学.含氮有机物在不类型土壤中的转化.土壤学报,1993,30(3):333-335.
    郭鹏程,韩晓日.我国土壤氮素研究工作的现状与展望.北京:科学出版社,1986:28-33.
    唐耀先,张继宏,须湘成,等.土壤基础供氮能力和肥料氮素利用率及其应用的研究.土壤通报,1986,27(5):204 208.
    高家骅,章云,黄尔迈,等.稻田土壤矿化类型与氮肥效应.土壤学报,1984,21(4):341-349.
    梁国庆,等.长期施肥对石灰性潮土氮素形态的影响.植物营养与肥料学报,2000,6(1):3-10.
    梁重山,刘丛强,党志.现代分析技术在土壤腐殖质研究中的应用.土壤,2001,3:154-158.
    符建荣,詹长庚,姜丽娜,等.晚稻品种间钾效率的差异评价.土壤通报,1995,26(7):4648.
    程励励,文启孝,施书莲.有机肥和化学氮肥配合施用时氮素的供应和转化.见:中国土壤学会.中国土壤学会土壤氮素工作会议论文集.北京科学社,1986:104-105.
    韩晓日,邹德乙,郭鹏程,等.长期施肥条件下土壤生物量氮的动态及其调控氮素营养的作用.植物营养与肥料学报,1996,2(1):16-21.
    韩晓日,邹德乙,郭鹏程,陈恩凤.长期施肥条件下土壤生物量氮的动态及其调控氮素营养的作用.植物营养与肥料学报,1996,2(1):16-20.
    谢建昌,罗家贤,马茂桐.中国农科院土肥所主编:国际平衡施肥学术讨论会论文集.1989:97-105.
    彭少兵,等.提高中国氮肥利用率的研究策略.中国农业科学,2002,35(9):1095-1103.
    蒋疆,王果,陈芳育,林亮志.草炭溶解态有机物质与Cu~(2+)、Cd~(2+)络合稳定性的研究.土壤与环境,2002,11(2):116-120.
    蒋贵信.淹水种稻条件下氮肥的氨挥发损失.见:我国土壤氮素研究工作的现状与展望.科学出版社,1986:55-67.
    窦森,华士英.用13C-核磁共振方法研究有机肥料对胡敏酸结构特征的影响.吉林农业大学学报.1999,21(4):43-46.
    窦森,E.Lichtfouse A.Mariotti.土壤胡敏酸的水解和分组方法.土壤通报,1998,29(5):206-208.
    窦森,华士英.施用有机肥料对胡敏酸结构特征的影响-胡敏酸的H-核磁共振波谱.土壤学报,1997,34(3):225-234.
    窦森,陈恩凤,须湘成.不同来源胡敏酸的结构表征.吉林农业大学学报,1989,11(2):50-56.
    蔡贵信,张绍林,朱兆良.测定稻田土壤氮素矿化过程的淹水密闭培养的条件试验.土壤,1979,6:24-240.
    S.DE.HAAN.腐殖质.它的形成、它和土壤矿物质部分的关系、以及它对土壤生产力的重要性.土壤有机质研究.北京:科学出版社,1982:9-15.
    Addiscott T M. Kinetics and temperature relationships of mineralization and nitrification in Rothamsted soil with differing histories. Soil sci. 1983, 34(2): 343-353.
    Ahmad A R, Zulkefli M, Ahmed M, et al. Environmental impact of agricultural inorganic pollution on groundwater resources of the Kelantan Plain, Malaysia. In: Aminuddin B Y, Sharma M L, and Willett I R ed. Agricultural impacts on groundwater quality. ACIAR Proceedings. 1996, 61: 8-21.
    Aharoni C, Sparks D L. Kinetics of soil chmical reaction-a theoretical treatment. In: Sparks D L, Suarez D L. Rates of soil Chemical Processes. SSSA spec. Publ. No. 27. Madison W: SSSA, ASA, 1991: 1-18.
    Anderson F, Domsch K H. Ratio of microbial biomass carbon to total organic in arable soil. Soil Biol. Biochem, 1989, 21: 471-479.
    Andress Fliebach, Paul madder. Microbial biomass and size-density fractions differ between soils of organic and conventional agricultural systems. Soil Bio. Biochem. 2000, 32: 757-768.
    Aoyama M, Nozawa T. Microbial biomass nitrogen and mineralization immobilization process of nitrogen in soils incugated with various organic materials. Soil Sci. plant Nutr. 1993, 39: 23-32.
    Appel T, Mengel K. Nitrogen fractions in sandy soil in relation to plant nitrogen uptake and organic matter incorporation. SoiI Biol. Biochem. 1993, 25: 685-691.
    Bookes P C, Andrea L, Pruden G, Jenkinson D S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial nitrogen in soil. Soil Biol Biochem, 1985, 12(6): 837-842.
    Bronwyn D H, Raymond LC. Using the Gini coefficient with BIOLOG substrate utilization data to provide an alternative quantitative measure for comparing bacterial soil community. Journal of Microbiological Methods. 1997, 30: 91-101.
    Bremner J M. Determination of fixed ammonium in soil. J. Agric. Sci., 1959, 52: 147-160.
    Bremmer J M, Mulvaney C S. Organic forms of nitrogen. In A.L. Page et al. (ed.) Methods of soil analysis. Part 2. SSSA Book Ser. 5. SSSA, Madison, WI. 1982: 595-623.
    Broadent F C. Mineraliztion of organic nitrogen in apddy soil. Nitrogen and Rice, Phillipines IRRI, 1979: 105-118.
    Broadbent F E. Mineralization of organic nitrogen in paddy soils. Nitrogen and Rice, 1987: 105-115.
    Buresh R J, De Datta S K. Denitrification losses from puddle rice soils in the tropics. Bio.Fertil.Soils. 1990,9: 1-3.
    Buresh R J, De Datta S K, Samson M Z, et al. Dinitrogen and nitrous oxide flux from urea basely applied to puddle rice soils. Soil Sci. Soc. Am. J. 1991, 55: 268-273.
    Cantarella H D, Mattos J R, Van raij B. Lime effect on soil nitrogen availability in dexes as measured by plant uptake. Commn. Soil Sci. Plant Ana. 1944, 25(7-8): 989-1006.
     Carter M R. Microbial biomass and mineralizable N in Solonetzic soils: Influence of gypsum and time amendments. Soil Biochem. 1986, 18: 531-537.
    Carski L H, Sparks D L. Differentiation of soil nitrogen fractions using a kinetic approach. Soil. sci. soc. Am. 1987,51:314-317.
    Cassman K G, Kropff M J, Gaunt J, Peng S. Nitrogen use efficiency of rice reconsidered: What are the key constraints? Plant and soil, 1993, 155/156: 359-362.
    Cassman K G, Peng S, Olk D C, et al. Opportunities for increased nitrogen use effiency from improved resource management in irrigated rice systems. Field Crops Research. 1998, 56: 7-39.
     Cbaliger V, Fegeria N K. Nutrient use efficiency in plants. Common Soil SCI. Plant ANAL, 2001, 32: 921-950.
    Dawe D, Dobermann A, Ladha J K, et al. Do organic amendments improve yield trends and profitability in intensive rice systems. Field crop research. 2003, 83 (2): 191-213.
    De Datta S K, Buresh R J, Samson M Z, et al. Direct measurement of ammouia and denitrification fluxes from urea applied to rice. Soil Sci. Soc.Am.J, 1991, 55: 543-548.
    De Datta S K, Comez K A, Escalsota J P. Change in yield response to major nutrients and soil fertility under intensive rice cropping. Soil Sci. 1998, 146:350-358.
    Dharni Phar Patra et al. Effect of plant residues on the size of microbial biomass and nitrogen mineralization in soil incorporation of wheat straw. Soil Sci. plant. Nutr. 1992, 88(1): 1-6.
    Dobberman A, Langner H, Mutscher H, et al. Nutrient adsorption kinetics of ion exchange resin capsules: A study with soils of international origin. Commun.soil sci. plant anal. 1994, 25(9&10): 1329-1353.
    Dobermann A, Fairhurst T. Rice: Nutrient disorders and nutrient management. Oxford Graphic Printers Pte Ltd., 2000.
    Dobermann A, Witt C, et al. Soil fertility and indigenous nutrient supply in irrigated rice domains of Asia. Agron. J. 2003, 95:913-305.
    FAO. Statistical databases, Food and Agriculture Organization(FAO) of the United Nations. 2001, http://ww w. fao.org
    Fillery I R P. Biologial denitrification. In: Freney J R. and Simpson J R eds. Caseous loss of nitrogen from plant-soil systerms. Matrtinus Nijhoff. 1983: 33-64.
    Firestone M K. Biological denitrification. In: Stevenson F J ed. Nitrogen in Agricultural soils. No.22 ASA, CSSA and SSSA, Madison, Wisconsin, 1982: 289-326.
    Fixen P E, Grove J H. Testing soils for phosphorus.In.R L Westernann(ed):Soil testing and plant analysis. 3~rd edition, SSSA, Madison WI. 1990:141-180
    Fujiyoshi S, Kazuyuki I. Effects of organic matter application on microbial biomass and available nutrients in various type of paddy soils. Soil Sci. Plant Nutr. 1997, 43(1): 191-203.
    Garland J I. Analytical approaches to the characterization source utilization. Soil Biol. Biochem. 1995, 28:213-221.
    Gianello G, Bremner J M. A simple chemical method of assessing potentially available organic nitrogen in soil. Commun. In soil sci. plant anal. 1986, 17(2): 195-214.
    Havlin J L, Westfall D G. Potassium release kinetics and plant responses in calcareous soils. Soil Sci.Soc.Am.J. 1985, 49: 366-370.
    Holems W E, Zak D R. Soil microbial biomass dynamics and net-nitrogen mineralization in northen hard wood ecosystem. Soil SciSoc Am J.1994, 58: 238-243.
    Iia'ava V P, Waring S. Comparison of the chemical methods of assessing potentially available organic nitrogen in soils. Commu. Soil Sci. Plant Anal.1992,23(1-2): 157-164.
    Jacssen B H, Guiking F C T, Van der Eijk D, et al. A system for quantitative evaluation of the fertility of tropical soils (QUEFTS). Geoderma, 1990, 46: 299-318.
    Jansson S L. Use of isotopes in soil organic matter studies.p.415-422.In Report of the FAO/IAEA
     Technical Meeting, Brunswick-Volkenrode, 1966. Pergamon Press, New York.
    Janzen H H. soil organic matter characteristics after long-term cropping to various spring wheat rotations. Can.J soil.sci. 1987, 67: 845-856.
    Jenkinson D S, Ladd J N. Microbial biomass in soil: Measurement and turnover in: Soil Biochemistry, Paul, E.A. and Ladd, J.N(eds) Marcel Dekker INC. New York, 1981: 415-471.
    Jeorgensen R G, Mueller T. Calibration of the K_EN Value. Soil Biol. Biochem.1996, 28(1): 33-37.
    Kaur B, et al. Soil carbon, microbial activity and nitrogen availability in agroforestry systems on moderately alkaline soils in northern India. Applied soil Ecology. 2000, 15: 283-294.
    Kerstin Robertes. Microbial biomass in relation to C and N minerlization during laboratory incubation. Soil Biol. Biochem. 1988, 20(3): 281-286.
    Kiyo Hasegawa, Keisuke Hanaki, Tomonori Matsuo, Shin Hidaka. Nitrous oxide from the agricultural water system contaminated with high nitrogen. Chemosphere-Global change science, 2000: 235-345.
    Knicker H, Frund R, Ludemann H D. N-15 and C-13 CP-MAS and solution NMR studies of N-15 enriched plant material during 600 days of microbial degradation. Organic Geochemistry, 1995, 23:329-341.
    Kosknen W C, Keeney D R. Effect of pH on the rate of gaseous products of denitrification in a silt loam soil. Soil. Sci. Soc. Am. J. 1982, 46:1165-1167.
    Li S Y. Yield stability and fertileizer efficiency of long-term triple cereal cropping in paddy fields of China. Biol Fert Soils. 1993, 16: 151-153.
    Lundquist, et al. Changes in microbial biomass and community composition, and soil carbon and nitrogen pools after incorporation of rye into three California agriculture soils. Soil Bio.Biochem. 1999,3:221-236.
    Marumoto T, Anderson J P E, Domschl H. Decomposition of ~14C and ~15N-labelled microbial cells in soil. Soil Biol. Biochem. 1982, 14: 461-467.
    Marumoto T. Mineralization of C and N from microbial biomass. Plant and Soil, 1984, 76: 165-173.
    Martin L N, Aadriulo A E, Traghetta D G, Soil Sci. 1994, 157(6): 365-372.
    Molina J A E, Clap C E, Shatter M J, et al. NCSOIL, a model of nitrogen and carbon transformations in the soil: Description, Calibration, and behavior, soil sci.soc.Am. 1983, 47:85-91.
    Neil W. Macdonald et al. Temperature effects on kinetics of microbial respiration and net nitrogen and
     sulfur mineralization . soil sci.soc. am , 1995, 59: 233-240.
    Oien A, Selmer-Olsen A R. A laboratory method for evaluation of available nitrogen in soil. Acta. Agric. Scand. 1980, 30: 149-159.
    Olk D C, Cassman K G, Fan T W M. Characterization of two humic acid fractions from a calcareous vermiculitic soil: implications for the humification process. Geoderma. 1995, 65: 195-208.
    Olk D C, Cassman K G, Randall E W, et al. Changes in chemical properties of organic matter with intensified rice cropping in tropical lowland soil. European Journal of soil science. 1996, 47: 293-303.
    Panagiotis Dalias. Temperature responses of net nitrogen mineralization and nitrificaton in conifer forest soils incubated under standard laboratory conditions, soil Bio.Biochem., 2002, 34: 69-701.
    Parson J W, Tinsley J. Soil components. In: Nitrogenous substances. Gieseking J E, ed. Springer-verlag New York Inc. 1975: 263-297.
    Patra D D, et al. Seasonal changes of soil microbial biomass in arable and grass-land soil which have been under uniform management for many years. Soil.Biol.Biochem. 1990, 22(6): 739-742.
    Patra D D, Bhandari S C, Misra A. Effect of plant residues on the size of microbial biomass and nitrogen mineralization in soil of cow pea and wheat straw. Soil Sci. Plant Nutr. 1992, 39: 1-6.
    Paul E A, Juma N G. Mineralization and immobilization of soil nitrogen by microorganisms. In: Clark F E, Ross-wall T, eds. Terrestrial Nitrogen Cycles, Ecol. Bull.(Stockholm). 1981, 33: 179-195.
    Peng S, Garcia F V, Laza L C, et al. Increased N-use efficiency using a chlorophyll meter on high yielding irrigated rice. Field Crops Res. 1996, 47: 243-252.
    Peng S, Garcia F V, Gines H C, et al. Nitrogen use efficiency of irrigated tropical rice established by broadcast wet-seeding and transplanting. Fertilizer Res. 1996, 45: 123-134.
    Pratt P F. Potassium removal from Iowa soils by greenhouse and laboratory procedures. Soil Sci. 1951, 72:107-108
    Preston, C.M. Applications of NMR to soil organic matter analysis: History and prospects. Soil Sci. 1996. 161: 144-146.
    Ross D J, Tate K R, Newton PCD, Wilde R H, Clark H. Carbon and nitrogen pools and mineralization in a grassland grey soil under elevated carbon dioxide at a natural CO_2 spring. Global change Biology. 2000, 6: 779-790.
    Sakamoto K, Yoshida T, Satoh M. Comparison of carbon and nitrogen mineralization between
     fumigation and heating treatments. Soil Sci. Plant Nutr. 1992, 38: 133-140.
    Sanders, Jeremy K M, Hunter, Brian K. Modern NMR Spectroscopy Oxford: Oxford University Press, 1993.
    Satoh T. Organo-mineral complex status in soils. I. thermal analytical characteristics of humus in the soils. Soil Sci. Plant Nutr. 1984, 30(1): 1-12.
    Schnizer M, Schuppli P. Soil Sci.Soc, Am. J., 1989, 53: 1418-1424.
    Senesi N, Miano T M, Rrovenzano M R, Brunetti G Soil Sci, 1991, 152(4): 259-271
    Shen S M, Pruden G, Jenkinson D S. Mineralization and immobilization of microbial biomass nitrogen. Soil Biol Biochem.1984, 16: 437-444.
    Sibbesem E. A simple ion-exchange resin procedure for extracting plant-available elements from soil. Plant and soil. 1977, 46: 665-669
    Sibbesen E. Plant and soil ,1977, 46: 665-669.
    Sing J S, stivastava S C. Microbial biomass acts a source of plant nutrients in dry tropical forest and savanna. Nature, 1989, 338: 499-500.
    Skogley E O, Georgitis S j, Schoff B E. The phytoavailability soil test-PST. Comm soil Sci Plant Anal, 1990,21: 1229-1243.
    Skogley E O, Georgitis E J, Yang J E, Schaff B E. Commun. Soil Sci. plant Anal, 1990, 21: 1229-1243.
    Smith C J, Freney J R, Mosier A R. Effect of acetylene provided by as-coated calcium carbide on the transformation of urea nitrogen applied to an irrigated wheat crop. Bio. Fert. Soils, 1993, 16: 86-92.
    Somastri.L L. W and A C Edwards. An ion exchange resin method for nutrient extraction of agricultural advisory soil samples. Commum. Soil Sci. Plant Anal. 1992, 23: 645-657
    Stanford G, Frere M H, Schwaninger P H. Temperature coefficient of soil nitroger mineralization. Soil Sci. 1973, 115(4): 321-323.
    Standford G, Smith S J. Nitrogen mineralization potential of soils .soil sci.soc.Am.proc, 1972(36):465-472.
    Stevenson F J. Nitrogen in agricultural soils. Am. Soc. Of Agron. ,Madison, wis. USA, 1982: 67-122.
    Tao, Jin Zhang, Jian Jun Zhai. Characterization and differentiation of hmic acids and fulvic acids in fumigation and heating treatments. Soil Sci. Plant Nutr. 1992, 38: 133-140. Sanders, Jeremy K M, Hunter, Brian K. Modern NMR Spectroscopy Oxford: Oxford University Press,1993.
    Satoh T. Organo-mineral complex status in soils. I. thermal analytical characteristics of humus in the soils. Soil Sci. Plant Nutr. 1984, 30(1): 1-12.
    Schnizer M, Schuppli P. Soil Sci.Soc, Am. J., 1989, 53: 1418-1424.
    Senesi N, Miano T M, Rrovenzano M R, Brunetti G. Soil Sci, 1991, 152(4): 259-271
    Shen S M, Pruden G, Jenkinson D S. Mineralization and immobilization of microbial biomass nitrogen. Soil Biol Biochem.1984, 16: 437-444.
    Sibbesem E. A simple ion-exchange resin procedure for extracting plant-available elements from soil. Plant and soil. 1977, 46: 665-669
    Sibbesen E. Plant and soil ,1977, 46: 665-669.
    Sing J S, stivastava S C. Microbial biomass acts a source of plant nutrients in dry tropical forest and savanna. Nature, 1989, 338: 499-500.
    Skogley E O, Georgitis S j, Schoff B E. The phytoavailability soil test-PST. Comm soil Sci Plant Anal, 1990,21: 1229-1243.
    Skogley E O, Georgitis E J, Yang J E, Schaff B E. Commun. Soil Sci. plant Anal., 1990, 21:1229-1243.
    Smith C J, Freney J R, Mosier A R. Effect of acetylene provided by as-coated calcium carbide on the transformation of urea nitrogen applied to an irrigated wheat crop. Bio. Fert. Soils, 1993, 16: 86-92.
    Somastri.L L. W and A C Edwards. An ion exchange resin method for nutrient extraction of agricultural advisory soil samples. Commum. Soil Sci. Plant Anal. 1992, 23: 645-657
    Stanford G, Frere M H, Schwaninger P H. Temperature coefficient of soil nitroger mineralization. Soil Sci. 1973, 115(4): 321-323.
    Standford G, Smith S J. Nitrogen mineralization potential of soils .soil sci.soc.Am.proc, 1972(36):465-472.
    Stevenson F J. Nitrogen in agricultural soils. Am. Soc. Of Agron. ,Madison, wis. USA, 1982:67-122.
    Tao, Jin Zhang, Jian Jun Zhai. Characterization and differentiation of hmic acids and fulvic acids in

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700