高功率全光纤掺Yb~(3+)光纤放大器传输放大特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高功率掺Yb~(3+)光纤放大器以其结构紧凑、高效率、高光束质量、高信噪比等优点,广泛应用于科学研究、工业生产与军事等领域。尤其是高能固体激光装置的光脉冲产生系统要求输出具有一定光谱宽度、脉宽、高光束质量、高信噪比的高功率激光种子脉冲。高功率掺Yb~(3+)光纤放大器主要决定了光脉冲产生系统的输出能量、光束质量、信噪比等系统关键输出参数,其增益是系统能流分布设计的关键环节,涉及到其他系统的增益分配。但光纤放大器中的ASE噪声、非线性效应以及饱和失真等因素严重影响了高功率掺Yb~(3+)光纤放大器输出脉冲波形、光谱、能量以及信噪比等要求,因此,一方面,为保证光脉冲产生系统的输出能量、光谱带宽、信噪比及光束质量等指标;另一方面为保证整个光脉冲产生系统能够安全、高效、长期、稳定的运行工作,必须合理的设计该系统中高功率光纤放大器的工作点,并解决ASE噪声、饱和失真以及非线性效应等影响放大器输出的关键因素。
     论文针对光脉冲产生系统中高功率全光纤掺Yb~(3+)光纤放大器,理论和实验两方面深入研究了其传输放大特性。主要解决了以下几个方面的问题:建立并完善了高功率掺Yb~(3+)光纤放大器的理论;数值分析了高功率掺Yb~(3+)光纤放大器的ASE噪声特性,脉冲的饱和放大特性与增益特性,结果显示通过选择增益光纤并合理设计放大器的增益,可以降低放大器中的ASE噪声功率,并且可避免饱和放大引起的脉冲波形失真;研究了高功率全光纤掺Yb~(3+)光纤放大器的线性传输特性,分析了光纤放大器的损耗、增益光纤损伤阈值等,并提出了利用新型end-cap来解决光纤端面损伤的途径;研究了高功率全光纤掺Yb~(3+)光纤放大器的非线性传输特性,数值分析了SPM、SRS以及SBS的阈值特性,研究表明根据输出功率要求,通过选择较短的大芯径增益光纤可以提高SBS和SRS的阈值,避免其对光谱产生的影响;为了避免超短脉冲波形与光谱在高功率掺Yb~(3+)光纤放大器中引起的畸变,理论研究了高功率超短脉冲在掺Yb~(3+)光纤中的自相似传输放大特性,结果表明当脉冲宽度、脉冲能量与放大器的增益满足一定关系时,超短脉冲在增益光纤中自相似传输放大,脉冲波形与光谱均演化为抛物形,输出脉冲呈线性啁啾,易于脉宽压缩,为高功率全光纤超短脉冲产生系统的研制提供了依据。
     基于理论分析,设计了高功率全光纤大模场掺Yb~(3+)光纤放大器,实验中解决了泵浦光与信号光耦合技术、放大器级间隔离、噪声控制、饱和放大抑制、模式控制等难点,并通过增益光纤选择控制了光纤放大器中增益光纤的非线性效应与光纤损伤。通过对脉宽5ns的窄带脉冲放大,获得增益17dB,输出峰值功率700W;脉宽2.0ns,光谱带宽1.2nm的小宽带脉冲放大,获得增益33dB,输出脉冲峰值功率19.34kW。
     通过对高功率掺Yb~(3+)光纤放大器传输放大特性的理论与实验研究,解决了泵浦光与信号光高效率耦合入纤问题,实现了系统的全光纤化;理论与实验解决了ASE噪声问题,提高了系统的信噪比;通过理论分析合理设计光纤放大器的工作点,避免了时间波形的饱和失真问题;理论分析了增益光纤损伤和非线性效应阈值,提供了设计光纤放大器时避免损伤与非线性效应产生的依据;目前实验中研制的光纤放大器样机已成功地应用于高能量固体激光装置光脉冲产生系统的功率光纤放大组件中,实现了高功率输出的全光纤光脉冲产生系统。
High power ytterbium-doped fiber amplifier was found widespread application in scientific research, industry and military areas, due to its high compactness, high efficiency, high signal to noise ratio, good beam quality. In particular, the optical pulse generating system of high energy solid-state laser facility should provide the high-power seed pulse at 1053nm with good beam quality, high signal to noise ratio, and which must satisfy the certain temporal shape, spectral characteristic and polarization characteristic. The output energy, beam quality and signal to noise ratio of the optical pulse generating system were determined by high power ytterbium doped fiber amplifier to a certain degree, and the gain design of amplifier is the key component in the energy distribution of the whole system. However, the ASE noise, nonlinear effect and saturation distortion in the fiber amplifier had badly effect on output ability of the amplifier. Therefore, on the one hand, in order to ensure the output index of the optical pulse generation system, such as energy, spectral width, pulse duration etc, on the other hand, in order to ensure the whole optical pulse generating system to work safely and stabilitily in the longer period, it is very important to design the work point of the amplifier, and figure out the factor which had badly effect on the amplifier such as ASE noise, nonlinear effect and saturation distortion.
     In this paper, the amplification and transmission characteristics of the high power all fiber ytterbium-doped fiber amplifiers were investigated theoretically and experimentally. The mainly research results include: the theory of the high power ytterbium doped fiber amplifier was built; The ASE noise power characteristic and the saturation amplification characteristic of high power ytterbium fiber amplifier were numerical simulated,the results show that could reduce the ASE noise and avoid the saturation distortion by selecting the gain fiber and designing the gain of the fiber amplifier respectively; The linear transmission characteristics of the fiber amplifier were theoretically studied. The main loss in the amplifier, the damage threshold were analyzed, and the way that could be used to solve the fiber end face damage utilizing the end-cap device was introduced; The nonlinear transmission characteristics of the fiber amplifier were theoretically investigated. The threshold characteristics of SBS and SRS were numerical analyzed, the result show that the threshold of SBS and SRS were improved by selecting the shorter length and larger core diameter gain fiber; In order to avoid the utrashort pulse shape and spectral distortion in the high power ytterbium doped fiber amplifier, self-similar propagation and amplification of the high power ultra-short pulse in the ytterbium-doped large mode fiber were investigated, the results show that when the pulse duration ,energy and gain satisfied the certain relation,the utrashort pulse shape and spectral evolved into the parabolic shape, and the chirp was linear ,so the pulse can be compressed easily, which provided the theoretical basis and the promising way for realizing the all fiber high peak power ultra-short pulse generation system.
     High power LMA ytterbium-doped fiber amplifier was designed in the experiment based on the theoretical analysis. In the fiber amplifier, many difficult problems such as the coupling of the pump and signal light, the isolation between two stage amplifier, the noise manipulation and saturation amplification suppression were solved, at the same time, the occur of the nonlinear effect and the damage in the gain fiber were controlled by selecting the proper gain fiber in the amplifier. When the input pulse is narrow band and its duration is 5ns, the gain of the amplifier is 17dB, the amplified pulse power is 700W.when the input pulse duration and spectrum width are 2.0ns and 1.2nm respectively, the fiber amplifier reached the saturation state, at the same time the gain of the amplifier is 33dB, the peak power of the amplified pulse reached 19.34kW.
     Through the theoretical and experimental study of the amplification and transmission characteristics in the high power ytterbium doped fiber amplifier, the coupling problem of the high power pump and signal was resolved, and it is successful to realize the all fiber pulse generation system; the ASE noise problem was solved in the theory and experiment, the system noise was reduced dramatically; the threshold of the gain fiber damage and nonlinear effect were analyzed, which introduced the basis for the designing fiber amplifier to avoid the fiber damage and nonlinear effect; the sample fiber amplifier in the experiment was successfully applied in the power fiber amplifier module of the high power solid-state laser pulse generation system, which realized the high power all fiber optical pulse generation system.
引文
[1]郭玉彬,霍佳雨.光纤激光器及应用[M].北京:科学出版社,2008:1-5.
    [2]E.Desurvire,J.L.Zyskind,J.R.Simpson.Spectral Gain Hole-Burning at 1.53m in Erbium-doped fiber Amplifiers[J].IEEE Photonics Technology Letters,1990;2(4):246-248
    [3]C.Barnard,J.Chrostowski,M.Kavehrad.Analytical Model for Rate-Earth-Doped Fiber Amplifier and Lasers[J].IEEE Journal of Quantum Electronics,1994;30(8):1817-1830
    [4]Peng-Chun Peng,Kai-Ming Feng,Ching-Cheng Chang,Multiwavelength fiber laser using S-band erbium-doped fiber amplifier and semiconductor optical amplifie[J].Optics Communications,2006;259:200-203
    [5]N.Grote,H.venghaus,王景山等译.光纤通信器件[M].北京:国防工业出社,2003:164-207
    [6]W.A.Clarkson,V.Matera,T.M.J,Kendall,et al.High power wavelength combined cladding Tm doped fiber laser[A].CLEO 2001,363
    [7]R.Hofer,M.Hofer,G.A.Reider.High energy,sub-picosecond pulses from a Nd-doped double-cladfiber laser[J].Optics Communications,1999,169:135-139
    [8]Jay W.Dawson,Raymond Beach,Alex Drobshoff.938nm Nd-doped high power cladding pumped fiber amplifier.2002:UCRL-JC-150354
    [9]R.B.Wilcox,D.F.Browning,M.D.Feit,et al.Fiber Amplifiers and Lasers in Yb:silica.1996:UCRL-JC-125851
    [10]廖延彪.光纤光学[M].北京:清华大学出版社.2004:125-129
    [11]Yoonchan Jeong,Johan Nilsson,Jayanta K.Sahu,et al.Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500W[J].IEEE Journal of Selected Topics in Quantum Electronics,2007,13,(3):546-551
    [12]M.D.Mermelstein,K.Brar,M.J.Andrejco,et al.All-fiber 194 W single-frequency single-mode Yb-doped master-oscillator power-amplifier[J],Proc.of SPIE,2008,6873:68730L1-6
    [13]Sinter E,H.Po,F.Hakimi,et al.Double-Clad,Offset Core Nd Fiber Laser[A].Optical Fiber Sensor Conference[C],New Orleans,1988,PD5.
    [14]Rudiger Paschotta,Johan Nilsson,Anne C.Tropper,et al.Ytterbium-Doped Fiber Amplifier[J].IEEE Journal of Quantum Electronics,1997,33(7):1049-1056
    [15]Ram Oron,Amos A.Hardy.Rayleigh backscattering and amplified spontaneous emission in high-power ytterbium-doped fiber amplifiers[J].J.Opt.Soc.Am.B.1999,16(5):695-701
    [16]Yong Wang,Hong Po.Dynamics Characteristics of Double-clad Fiber Amplifier for High-Power Pulse Amplifier[J].Journal of Lgihtwave Technology,2003,21(10):2262-2270
    [17]D.C.Jones,A.M.Scott.A model of a fibre amplifier incorporating amplified spontaneous emission [J].Proc.of SPIE,2004,5335:73-80
    [18]V.I.Kovalev,R.G.Harrison.Suppression of stimulated Brillouin scattering in high-power single-frequency fiber amplifiers[J].Optics Letters.2006,13(2):161-163
    [19]Jean-Philippe Fève.Four-wave mixing in nanosecond pulsed fiber amplifiers[J]Optics Express,2007,15(8):4647-4662
    [20]M.E.Fermann,V.I.Kruglov,B.C.Thomsen,et al.Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers[J].Physics Review Letters,2000,84(26):6010-6013
    [21]Sergey A.Ponomarenko,Govind P.Agrawal.Optical similaritons in nonlinear waveguides[J].Optics Letters.2007,32(12):1659-1661
    [22]Vladimir I.Kruglov and John D.Harvey.Asymptotically exact parabolic solutions of the generalized nonlinear Schrodinger equation with varying parameters[J].J.Opt.Soc.Am.B.2006,23(12):2541-2550
    [23]Vladimir I.Kruglov,David Méchin,and John D.Harvey.High compression of similariton pulses under the influence of higher-order effects[J].J.Opt.Soc.Am.B,2007,24(4):833-838
    [24]Toshihiko Hirooka and Masataka Nakazawa.Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion[J].Optics Letters.2004,29(5):498-500
    [25]J.Limpert,T.Schreiber,T.Clausnitzer,et al.High-power femtosecond Yb-doped fiber amplifier [J].Optics Express,2002,10(14):628-638
    [26]F.O.Ilday,J.R.Buckley,W.G.Clark et al.Self-Similar Evolution of Parabolic Pulses in a Laser[J].PHYSICAL REVI EW LETTERS.2004,92(21):213902-1-213902-4
    [27]David Méchin,Sung-Hoon Im,Vladimir I.Krugtov et al.Experimental demonstration of similariton pulse compression in a comblike dispersion-decreasing fiber amplifier[J].Optics Letters.2006,31(14):2106-2108
    [28]D.N.Papadopoulos,Y.Zaouter,M.Hanna et al Generation of 63fs 4.1MW peak power pulses from a parabolic fiber amplifier operated beyond the gain bandwidth limit[J].OPTICS LETTERS.2007,32(17):2520-2522
    [29]冯杰,徐文成,张巧芬等.光纤中自相似脉冲研究进展[J].激光与光电子学进展.2006,43(10):26-36
    [30]涂成厚,雷霆,朱辉等.高能量、无波分裂的超短脉冲光源的研究进展[J].激光与红外.2007,37(4):304-307
    [31]雷霆,涂成厚,李恩邦等.高能量无波分裂超短脉冲自相似传输的理论研究和数值模拟[J].物理学报.2007,56(5):2769-2775
    [32]C.C.Renaud,H.L.Offerhaus,J.A.Alvarez-Chavez,et alCharacteristics of Q-Switched Cladding Pumped Ytterbium-Doped Fiber Lasers with Different High-Energy Fiber Design[J].IEEE J.Quantum Electron,2001,37:199-206
    [33]A.Galvanauskas,Mode-Scalable Fiber-Based Chirped Pulse Amplification Systems[J].IEEE Journal on selected topics in Quantum Electronics,2001,7(4):504-517
    [34]M.-Y.Chen,Y.-C.Chang,A.Galvanauskas,et al.High energy and high-peak-power nanosecond pulse generation with beam quality control in 200-μm core highly multimode Yb-doped fiber amplifiers[J].Opt.Lett,2005,30(4):358-360
    [35]J.Limpert,A.Liem,M.Reich,et al.Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier[J].Optics Express.2004,12(7):1313-1319
    [36]C.D.Brooks,F.Di Teodoro.1-mJ energy,1-MW peak-power,10-W average power,spectrally narrow,diffraction-limited pulses from a photonic-crystal fiber amplifier[J].Optics Express,2005,13(22):8999-9002
    [37]F.Di Teodoro,C.D.Brooks.1.1-MW peak-power,7-W average-power,high-spectral-brightness,diffraction-limited pulses from a photonic crystal fiber amplifier[J].Optic Letters,2005,30(20):2694-2696
    [38]F.Di Teodoro,C.D.Brooks.Multistage Yb-doped fiber amplifier generating megawatt peak power,subnansecond pulses[J],Optics Letters,2005,30(24):3299-3301
    [39]LiPing Chang,Wei Fan,Jialin Chen,et al.Signal amplification in ytterbium-doped double-clad fiber amplifier[J].Chinese Optics Letters,2007,5,supplement:S92-S94
    [40]C.A.Hayman,P.J.Wegner,J.M.Auerbach,et al.National ignition facility laser performance status [J].Applied Optics.2007,46(16):3276-3303
    [41]A.J.Bayramian,J.P.Armstrong,R,J,Beach,et al.Activation of a Temporal,Spectral,and Spatially-Shaped Front End for the Mercury laser,UCRL-PRES-212866
    [42]Jay W.Dawson,Zhi Liao,Scott Mitchell,et al.Fiber laser front ends for high-energy short pulse lasers [J].Proc.of SPIE,2005,5709:37-44
    [43]杨祥林.光纤通信系统[M].北京:国防工业出版社,2000:156-160
    [44]许党朋,李明中,隋展等.双端泵浦的高功率掺Yb~(3+)双包层光纤激光器[J].强激光与粒子束,2007,19(11):1841-1844
    [45]L.D.Deloach,S.A.Payne,L.L.Chase,et al.Evaluation of absorption and emission properties of Yb~(3+) doped crystals for laser applications[J].IEEE J.Quantum Electron,1999,29(4):1179-1190
    [46]陈吉欣.掺Yb~(3+)双包层光纤激光器研究[D].博士学位论文,成都:电子科技大学,2006
    [47]J.T.Kringlebotn,J.L.Archambault,et al.Er~(3+):Yb~(3+)-codoped fiber distributed-feedback laser[J].Opt,Lett,1994,19(24):2101-2103
    [48]王凤蕊.掺Yb~(3+)双包层光纤激光器理论及实验研究[D].硕士学位论文,四川,中国工程物理研究院,2005
    [49]S.Magne,Y.Querdane,et al.Cooperative Iuminescence in an Ytterbium -doped silica fiber[J].Opt.Commun,1994,11:310-316
    [50]Eiichiro Nakazawa.Cooperative Luminescence in YbPO_4[J].PHYSICAL REVIEW LETTERS,1970,25(25):1710-1712.
    [51]Alexander V.Kir'yanov,Yuri O.Barmenkov,Itzel Lucio Martinez Cooperative luminescence and absorption in Ytterbium-doped silica fiber and the fiber nonlinear transmission coefficient atλ=980nm with a regard to the Ytterbium ions-pairs'effect[J].OPTICS EXPRESS 2006,14(9):3981-3992.
    [52]J.Nilsson,W.A.Clarkson,R.Selvas,et al.High-power wavelength-tunable cladding-pumped rare earth doped silica fiber lasers[J].Optical Fiber Technology,2004,10:5-30
    [53]张立文,郑义.掺镱光纤放大器(YDFA)特性的研究[J].激光杂志,2003,24(6):11-13
    [54]邵铭,张立文,高明义.掺Yb~(3+)光纤放大器的速串-传输方程分析[J].激光与红外,2003,33(5):356-359
    [55]卢秀权,陈绍和.Yb~(3+)光纤放大器[J].中国激光,2001,A28(3):209-214.
    [56]许党朋,李明中,吕新杰等高功率掺镱双包层光纤放大器放大特性理论模拟[J].强激光与粒子束,2007,19(7):1071-1076
    [57]Guijun Hu,Chengyu.Shan,Xiaoying Deng,et al.Threshold characteristics of linear cavity Yb~(3+) doped double clad fiber laser[J].Optics&Laser Technology.2004,37:3-7
    [58]Peroni M etc Gain in erbium-doped fiber amplifier:a simple analytical solution for the rate equation 1990 15(15):842-844
    [59]J.Limpert,S.Hofer,A.Liem,et al.100-W average-power,high-energy nanosecond fiber amplifier [J].Applied Physics B,2002,75:477-479
    [60]C.C.Renaud,H.L.Offerhaus,J.A.Alvarez-Chavez,et al.Characteristics of Q-switched cladding pumped Ytterbium doped fiber lasers with different high energy fiber designs[J].IEEE Journal of Quantum Electronics,2001,37(2):199-206
    [61]Jay W.Dawson,Zhi M.Liao,Igor Jovanovic,et al.All fiber technology for high energy petawatt front end laser system.2003,UCRL-JC-152561
    [62]Jay W.Dawson,Zhi M.Liao,S.Mitchell,et al.Fiber Laser Front Ends for High-Energy Short Pulse Lasers.2005,UCRL-CONF-209779
    [63]J.W.Dawson,S.Mitchell,R.J.Beach,et al.High energy,short pulse fiber laser front end for kilo-Joule class CPA systems[J].Proc.of SPIE 2006,6102:6102141-6102149
    [64]L.Lombard,A.Brignon,J.P.Huignard,et al.Diffraction-limited polarized emission from a multimode ytterbium fiber amplifier after a nonlinear beam convener[J].Optics Leeters,2004,29(9):989-991
    [65]Fabio Di Teodoro,Jeffrey P.Koplow,Sean W.Moore,et al.Diffraction-limited,300-kW peak-power pulses from a coiled multimode fiber amplifier[J].Optics Letters,2002,27(7):518-520
    [66]Steven J.Augst,Jinendra K.Ranka,T.Y.Fan,et al.Beam combining of ytterbium fiber amplifiers[J],J.Opt.Soc.Am.B,2007,24(8):1707-1715
    [67]W.克希耐尔,孙文,江泽文等译.固体激光工程[M].北京:科学出版社,2002:582-597
    [68]L.Lombard,A.Brignon,J.P.Huignard,et al.Diffraction-limited polarized emission from a multimode ytterbium fiber amplifier after a nonlinear beam converter[J].Optics Letters,2004,29(9):989-991
    [69]Y.Guo,C.K.Kao,E.H.Li,et al.Noninear Photonics[M].HongKang.The Chinese university press,2002
    [70]石顺祥,陈国夫,赵卫等.非线性光学[M].西安:西安电子科技大学出版社,2005
    [71]龚岩栋,汤慧君,郭尚平等.石英光纤中的强光自聚焦效应[J],北方交通大学学报.1996,20(1):24-27
    [72]Roger L.Farrow,Dahv A.V.Kliner,G.Ronald Hadley,et al.Peak-power limits on fiber amplifiers imposed by self-focusing[J].Optics Letters,2006,31(23):3423-3425
    [73]G P Agrawal.Nonlinear fiber optics[M].Beijing:世界图书出版公司,2005:97-130
    [74]R.G.Smith.Optical Power Handling Capacity of Low Loss Optical Fibers as Determined by Stimulated Raman and Brillouin Scattering[J].Applied Physics,1972,11(11):2489-2494
    [75]V.I.Kovalev and R.G.Harrison.Suppression of stimulated Brillouin scattering in high power single-frequency fiber amplifiers[J].Optics Letters,2006,31(2):161-163
    [76]R.H.Stolen,C.Lin.Self phase modulation in silica optical fibers[J].Physics Review A,1978,17(4):1448-1454
    [77]C.N.Pannell,P.St.J.Russell,T.P.Newson.Stimulated Brillouin scattering in optical fibers:the effects of optical amplification[J].J.Opt.Soc.Am.B,1993,10(4):684-690
    [78]Nathan A.Brilliant.Stimulated Brillouin scattering in a dual -clad fiber amplifier[J].J.Opt.Soc.Am.B,2002,19(11):2551-2557
    [79]B.N.Upadhyaya,Usha Chakravarty,A.Kuruvilla,et al.Mechanisms of generation of multi-peak and mode locked resembling pulses in Q-switched Yb-doped fiber lasers[J].Optics Express,2007,15(18):11576-11588
    [80]M.J.Ablowitz,H.Segur.Solitons and the inverse scattering transform[C].SIAM,Philadephia,1981
    [81]V.I.Kruglov,A.C.Peacock,J.M.Dudley et al.Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers[J].OPTICS LETTERS.2000.25(24):1753-1755
    [82]V.I.Kruglov,A.C.Peacock,J.D.Harvey et al.Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers[J].J.Opt.Soc.Am.B,2002,19(3):461-469

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700