旋转机械振动故障诊断的图形识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结合国家自然科学基金课题“基于数学形态学图形识别的旋转机械故障诊断方法”和课题组承担的实际应用课题“大型旋转机械故障诊断技术研究”,研究了基于数学形态学图形识别技术的旋转机械振动故障诊断方法。
     为了应用三维谱图进行旋转机械故障诊断,从图形识别的角度出发,在详细分析三维谱图纹理特征的基础上,根据旋转机械周期激振的特点,研究了利用转子动力学理论构造其振动响应基函数对图形进行插值重构处理的方法,在理论研究的基础上,开展了汽轮机三维谱图的插值预处理的应用研究,结果表明所提出的图形插值预处理方法具有良好图形处理效果。
     在分析旋转机械振动三维谱图中各倍频及亚次倍频处出现的随转速起伏变化“峰谷”特征及倍频之间幅值的悬殊变化规律的基础上,研究了基于正弦函数的复合灰度非线性量化算法,实现了故障敏感区域的灰度值加强,提高了图形的信噪比。为了使处理后的图形灰度直方图在较大的动态范围内趋于均衡,提出了自适应直方图均衡化的图形增强方法,提高图形整体对比度,扩大了像素灰度值的动态范围,改善了图形灰度分布的概貌,增强了图形的辨析程度。应用所提出的量化、增强方法对旋转机械实际图形进行了实例分析。
     在分析旋转机械灰度图形纹理的特点、现有图形边缘纹理提取方法的局限性的基础上,提出了图形边缘纹理检测的模糊软形态学方法,构造了模糊软形态滤波增强算子,平滑图形的轮廓、消除图形边缘毛刺和孤立点及滤除图形背景上的噪声等,有效的对图形进行了滤波增强;设计了适合于旋转机械灰度图形处理的模糊软结构元素,提取了边缘纹理特征,确定了图形的几何与拓扑结构,并进行了仿真和实例算法分析。
     针对旋转机械参数图形的特点,研究了基于纹理的统计法、结构法及表征图形纹理方向的梯度方法的灰度-梯度-基元三维共生矩阵描述图形纹理数字特征方法,精确地反映了图形纹理的粗糙程度、重复方向和空间复杂度及纹理方向;准确地描述了图形灰度空间分布特性(概率)、空间统计相关性和图形内各像素点梯度的分布规律。描述了灰度统计和空间结构的纹理特征,有效地提取旋转机械状态参数图形中纹理特征信息。
     在对免疫系统反面选择机理及现有反面选择算法进行分析的基础上,提出了适于旋转机械振动参数图形识别的可变实阈值免疫反面选择算法。研究了检测器变异算法、检测器的检测半径、数量等参数的确定准则,应用可变实阈值免疫反面选择诊断方法分别对Iris模式识别数据和汽轮机故障数据进行了诊断分析,结果表明所提出的方法能准确地检测出汽轮机的各种故障,取得了较好的应用效果。
     为了克服任何单一性质故障特征、单一诊断方法难以实现在整个故障状态空间上准确诊断的局限性,提出了基于遗传算法的融合诊断方法,充分利用了各种不同性质故障特征和不同诊断方法,使其发挥各自的优点,从而提高了诊断的准确率。提出了利用遗传算法将人工免疫诊断方法、神经网络诊断方法及小波包特征、双谱特征融合起来进行诊断,使每一个诊断方法及故障特征都在其优势空间发挥作用,并结合实际汽轮机样本进行融合诊断分析。
     为了验证本文提出的基于图形识别技术的诊断方法的有效性,在600MW超临界模化汽轮机转子实验台上进行了正常状态和转子不平衡、转子不对中、汽流激振、轴承松动及动静碰磨等故障的实验研究,结合本文所提出的基于图形识别的诊断方法对图形样本进行了诊断,获得较高的准确率。
Combined with the project of National Natural Science Foundation of China Fault Diagnosis Method Based on Mathematical Morphology Graphic Recognition of Rotating Machinery and the practical project named Study of Fault Diagnosis Technology of Large-scale Rotating Machinery, the approaches of fault diagnosis based on the mathematical morphology graphic recognition for rotating machinery is investigated in this dissertation.
     In order to apply three-dimensional spectrum to diagnose the fault of rotating machinery, from the perspective of graphic recognition, based on the detailed analysis of graphic texture characteristic, according to the characteristic of periodic excited of the rotating machinery, the method of applying rotor dynamics theory to construct the basic function of the vibration response so as to deal with graph by means of interpolation reconstruction treatment is studied. On the basis of theoretical research, the application research of pretreatment interpolation of the three-dimensional spectrum graph of turbine is developed, the results indicates that the effect is good when applying the proposed method to treating the graph.
     On the basis of the analysis of changing law that the amplitude ranges rise and fall with the changes of rotating speed in the three-dimensional vibration graph of rotating machinery. The complex non-linear gray-scale algorithm based on the sine function is studied. Gray scale value of the region which is sensitive to fault is strengthend, improved signal-to-noise ratio. In order to make the treated gray scale histogram tend to be balanced in great dynamic range, the adaptive histogram equalization method is proposed to enhance the graph, improve the overall graphic contrast ratio, expand the dynamic range of pixel grayscale vale and improve graphic grayscale distribution profile. Example analysis on actual graph of rotating machinery is carried on by means of the proposed quantization and enhanced method.
     On the basis of the analysis of grayscale graphics of rotating machinery and the limitations of extraction method of the texture of the existing graphics edge, the fuzzy soft morphology method of the graph edge texture extraction is proposed. The fuzzy soft morphology filter is constructed to smooth the graph outline, eliminate the graph edge burr and the isolated point, filter the graph background noise and so on. The fuzzy soft structural element that is suited to processing the grayscale graphic for rotating machinery is designed. The edge textural property is extracted, the graph geometrical and topological structure is determined, and the simulation and the instantial algorithmic analysis are carried on.
     In view of the rotating mechanical parameter graph characteristic, the grayscale-gradient-primitive three dimensional co-occurrence matrix based on the statistical method, the structural method based on texture and the gradient method which characterize the graphic textural direction is studied for describing graphic textural digital characteristic. The rough degree, direction and spatial complex degree and direction of texture are reflected precisely. The graphic grayscale spatial distribution characteristic, spatial statistical dependence and pixel point gradient distributed rule are described accurately. Textural feature information in rotating mechanical state parameter graph is extracted effectively.
     On the basis of the analysis of the immune negative selection mechanism and the existing negative selection algorithm, variable real threshold immune negative selection algorithm which is suited to rotating machinery vibration parameter graph recognition. The detector’s mutation algorithm, are studied. The variable real threshold immue negative selection diagnosis method is applied to analyze the“Iris”data and fault data of turbine. The result shows that the proposed method can detect various faults of turbine accurately.
     In order to overcome the limitation that the single nature fault characteristic and the single diagnosis method are difficult to be diagnosed accurately in the entire fault state space, the integration diagnosis method based on genetic algorithm is proposed, faults characteristic of different property and different diagnosis methods are fully used to exert each one’s advantages, so the accuracy of diagnosis is increased. In this paper, a weighted matrix is established by integrating neural network and artificial immune diagnoses, Wavelet Packet energy and Bispectrum features using genetic algorithm. Experimental results indicate that both diagnosis accuracy and robustness of diagnosis system can be improved by the method.
     In order to verify the effectiveness of the proposed diagnosis method based on graphic recognition technology, experimental study is carried out on 600MW supercritical modeling turbine rotor bearing system for test-bed, simulating normal state and different faults such as rotor’s unbalance, rotors’misalignment, steam-excited vibration, bear’s looseness, dynamic static rub and impact ,and so on. Relatively higher accuracy is obtained, when diagnosing faults with diagnosis method based on graphic recognition which is proposed in the article.
引文
1黄文虎,夏松波,刘瑞岩等.设备故障诊断原理、技术及应用.北京.科学出版社,1996:3~5
    2吴今培.智能故障诊断技术的发展和展望.振动、测试与诊断.1999, 19(2):79~86
    3程道来,吴茜,吕庭彦等.国内电站故障诊断系统的现状及发展方向.动力工程.1999,19(1):53~57
    4史铁林,陈勇辉,李巍华等.提高大型复杂机电系统故障诊断质量的几种方法.机械工程学报.2003,39(9):1~10
    5冯志鹏,宋希庚,薛冬新.旋转机械振动故障诊断理论与技术进展综述.振动与冲击.2001,20(4),36~41
    6 J. S. Sohre. Operating Problems with High Speed Turbomachinery, Causes and Correction. ASME Petroleum Mech. Eng. Conf., Dallas, Texas, September 23,1968
    7白木万博等(日).旋转机械振动的安全监测装置.风机技术.1984,(3):56~63
    8 B. S. Yang, D. S. Lim and A. C. C. Tan. VIBEX: An Expert System for Vibration Fault Diagnosis of Rotating Machinery Using Decision Tree and Decision Table. Expert Systems with Applications. 2005, 28(4):735~742
    9陈予恕.非线性动力学理论与大型火电机组振动故障综合治理技术.中国机械工程.1999,10(9):1063~1068
    10屈梁生,史东锋.全息谱十年:回顾与展望.振动、测试与诊断.1998,18(4): 235~242
    11高金吉.高速涡轮机械振动故障机理及诊断方法的研究.清华大学博士学位论文.1993,10~25
    12杨叔子.时序模型的诊断方法.中国机械工程.1986,Z1:2~3
    13韩捷,张瑞林等.旋转机械故障机理及诊断技术.机械工业出版社,1997:13~18
    14 J. Y. Yang, Y. Y. Zhang and Y. S. Zhu. Intelligent Fault Diagnosis of Rolling Element Bearing Based on Svms and Fractal Dimension. Mechanical Systems and Signal Processing. 2007, (21):2012~2024
    15 B. Samanta, k. R. Albalushi. Artificial Neural Network Based Fault Diagnostics of Rolling Element Bearings Using Time-Domain Features. Mechanical Systems and Signal Processing. 2003,17(2):317~328
    16 A. A. K. Mohsen, M. F. A. E. Yazeed. Selection of Input Stimulus for Fault Diagnosis of Analog Circuits Using ARMA Model. International Journal ofElectronics and Communications.2004,58(3):212~217
    17 M. Marseguerra, S. Minoggio and A. Rossi. Neural Networks Prediction and Fault Diagnosis Applied to Stationary and Non-stationary ARMA Modeled Time Series. Progress in Nuclear Energy. 1992,27(1):25~36
    18 L. Gelman, J. D. Gould. Time–frequency Chirp-Wigner Transform for Signals with any Nonlinear Polynomial Time Varying Instantaneous Frequency. Mechanical Systems and Signal Processing. 2007, 21(8):2980~3002
    19 L. V. White, B. Boashash. On Estimating the Instantaneous Frequency of a Gaussian Random Signal by Use of the Wigner-Ville Distribution. IEEE Transactions on Signal Processing. 1988,36(3):417~420
    20 C. D. Wang, Y. Y. Zhang and Z. Y. Zhong. Fault Diagnosis for Diesel Valve Trains Based on Time-Frequency Images. Mechanical Systems and Signal Processing. 2008,22(8):1981~1993
    21 G. Niu, A. Widodo and J. D. Son. Decision-level Fusion Based on Wavelet Decomposition for Induction Motor Fault Diagnosis Using Transient Current Signal. Expert Systems with Applications. 2008,35(3):918~928
    22 J. Sanz, R. Perera, C. Huerta. Fault Diagnosis of Rotating Machinery Based on Auto-Associative Neural Networks and Wavelet Transforms. Journal of Sound and Vibration. 2007, 302(4~5):981~999
    23 J. D. Wu, C. H. Liu. Investigation of Engine Fault Diagnosis Using Discrete Wavelet Transform and Neural Network. Expert Systems with Applications. 2008,35(3):1200~1213
    24 R. W. Barker, G. A. Klute and M. J. Hinich. Monitoring Rotaing Tool Wear Using High Order Spetral Features. Transactions of the ASME:J. Engineering for Industry.1993,115:23~29
    25 J. J. González de la Rosa, R. Piotrkowski and J. Ruzzante. Third-order Spectral Characterization of Acoustic Emission Signals in Ring-type Samples from Steel Pipes for the Oil inDustry.Mechanical Systems and Signal Processing. 2007, 21(4):1917-1926
    26 J. W. A. Fcakrell, P. R. White and J. K. Hammond. The Interpretation of the Bispectra of Vibration Signal-Ⅰ.Theory. Mechanical System and Signal Processing.1995,9(3):257~266
    27 W. A. Gardner, W. A. Brown. Fraction-of Time Probability for Time-Series that Exhitbit Cyclostationarity. Signal Processing.1991,(23):273~292
    28 A. J. Gonzalez, R. L. Osborne and S. Lowenfeld. On-Line Diagnosis of Turbine Generators Using Artificial Intelligence. IEEE Traps. On Energy Conversion. l986, 1(2):68~73
    29 M. S. Fox, S. Lowenfeld and P. Kleinosky. Techniques for Sensor-BasedDiagnosis. Proceedings of IJCAI-83,1983: 158~163
    30 R. V. Beard. Failure Accommodation in Linear Systems Through Self-Reorganization. PhD Dissertation, Massachusetts Inst Tech. 1971,55~82
    31 R. Davis. Diagnostic Reasoning Based on Structure and Behavior. Artificial Intelligence.1984,24(1~3):347~410
    32 R. Reiter. A Theory of Diagnosis from first Principles. Artificial Intelligence.1987,32:57~95
    33 B. S. Yang, S. K.J eong and Y. M. Oh. Case-based Reasoning System with Petri Nets for Induction Motor Fault Diagnosis. Expert Systems with Applications. 2004,27(2):301~311
    34 B. S. Yang, T. Han and Y. S. Kim. Integration of ART-Kohonen Neural Network and Case-Based Reasoning for Intelligent Fault Diagnosis. Expert Systems with Applications. 2004,26(3):387~395
    35李青,史雅琴,周扬.基于案例推理方法在飞机故障诊断中的应用.北京航空航天大学学报,2007,33(5):622~626
    36 C. R. Weisbin, G. D. Saussur and J. Barhen. Minimal Cut-set Methodology for Artificial Intelligence Applications. conference on artificial intelligence applications, Denver, CO, USA, 5 Dec 1984,DE-85004779
    37 N. Narayanan, N. Viswanadham. Methodology for Knowledge Acquisition and Reasoning in Failure Analysis of Systems. IEEE Transactions on System, Man and Cybernetics. 1987, 17(2):274~288
    38 J. P. Wang, H.T.Hu. Vibration-based Fault Diagnosis of Pump Using Fuzzy Technique. Measurement. 2006,39(2):176~185
    39班凌潇,陈新轩.基于模糊理论的机械设备故障诊断方法.中国工程机械学报,2006,4(1):79~82
    40吴翠娟,陈莹,王致杰等.现代大型设备故障智能诊断技术的现状与展望.电子工程师.2003,29(12):41~43
    41 T. Mitoma, H. Q. Wang and P. Chen. Fault Diagnosis and Condition Surveillance for Plant Rotating Machinery Using Partially-Linearized Neural Network. Computers & Industrial Engineering.2008,55(4):783~794
    42 X. Q. Xiang, J. Z. Zhou and X. L. An. Fault Diagnosis Based on Walsh Transform and Support Vector Machine. Mechanical Systems and Signal Processing. 2008,22(7):1685~1693
    43 H. J. Shin, D. H. Eom and S. S. Kim. One-class Support Vector Machines—an Application in Machine Fault Detection and Classification. Computers & Industrial Engineering. 2005,48(2):395~408
    44于德介,陈淼峰,程军圣.一种基于经验模式分解与支持向量机的转子故障诊断方法.中国电机工程学报,2006,26(16):162~167
    45 Z. Pawlak. Rough Sets. International Journal of Information and Computer Science. 1982,(I1):341~356
    46 A. Kusiah, J. A. Kern and K. H. Kernstine. Autonomous Decision-Making: A Data Mining Approach. IEEE Transactions on Information Technology in Biomedicine. 2000,4(4):274~284
    47黄启明,钱宇,林伟璐等.化工过程故障诊断研究进展.化工自动化及仪表.2000,27(3):1~5
    48李培玉,谭大鹏,李具中.基于CLIPS与ANN的嵌入式故障诊断专家系统.振动工程学报,2007,20(5):523~527
    49 J. D. Wu, Y. H. Wang and M. R. Bai. Development of an Expert System for Fault Diagnosis in Scooter Engine Platform Using Fuzzy-Logic Inference. Expert Systems with Applications. 2007,33(4):1063~1075
    50丁永生,任立红.人工免疫系统:理论与应用.模式识别与人工智能.2000, 13(1):52~59
    51 S. N. Omkar, R. Khandelwal, S. Yathindra. Artificial Immune System for Multi-Objective Design Optimization of Composite Structures. Engineering Applications of Artificial Intelligence. 2008, 21(8):1416~1429
    52 N. K.J erne. Toward a Network Theory of the Immune System. Annual Immunology. 1974,125c:373~389
    53 J. D. Farmer, N. H. Packard and A. Perelson. The Immune System, Adaptation, and Machine Learning. Physica. 1986,22D:187~204
    54 A. S. Perelson. Immune Network Theory. Immunological Review. 1989, 10:5~36
    55 H. Bersini, F. J. Varela. Hints for Adaptive Problem Solving Gleaned from Immune Networks. Proceedings of the First Workshop on Parallel Problem Solving from Nature. 1990:343~354
    56 F. J. Varela, J. Stewart. Dynamics of a Class of Immune Network, Theoretical Biology. 1990, 144(1):93~101
    57 Y. Ishida, F. Mizessyn. Learning Algorithms on an Immune Network Model: Application to Seneor Diagnosis. Proceedings of the International Conference on Neural Networks. China,1992,1:33~38
    58 Y. Ishida. An Immune Network Model and Its Applications to Process Diagnosis. Systems and Computers in Japan. 1993,24(6):646~651
    59 Y. Ishida. An Immune Network Approach to Sensor-Based Diagnosis By Self-organization. Complex Systems.1996, (10):73~90.
    60 S. Forrest, A. S. Perelson and L. Allen. Self-Nonself Discrimination in a Computer. Proceedings of the IEEE Symposium on Research in Security and Privacy. Okaland, CA, 1994,202~212
    61 D. Dasgupta, S. Forrest. Artificial Immune Systems in Industrial Applications.Volume 1, Second International Conference on Intelligent Processing and Manufacturing of Materials (IPMM). Honolulu, Hawaii: July, 1999. 257~267
    62 D. Dasgupata, F. Gonzalez. An Immunity Based Technique to Characterize Intrusions in Computer Networks. IEEE Transactions on Evolutionary Computation. 2002, 6(3):58~62
    63 D. Dasgupta, K. KrishnaKumar and D. Wong. Negative Selection Algorithm for Aircraft Fault Detection. 3rd International Conference on Artificial Immune Systems Catania, Sicily.Italy, September 13~16 2004:1~14
    64 D. Dasgupta, S. Forrest. Artificial Immune Systems in Industrial Applications. Proc. 2nd International Conference on Intelligent Processing and Manufacturing of Materials, Honolulu,1999:257~267
    65 F. Gonzalez, D. Dasgupta. Anomaly Detection Using Real-valued Negative Selection. Genetic Programming and Evolvable Machines, 2003, 12(4): 383~403.
    66 J. Timmis, M. Neat. An Artificial Immune System for Data Analysis. BioSystems. 2000,55(1/3):143~150
    67 J. Timmis, M. Neal. A Resource Limited Artificial Immune System for Data Analysis. Knowledge Based Systems.2001,14(3~4):121~130
    68 L. N. Castro, F. Zuben. The Clonal Selection Algorithm with Engineering Applications. Proceedings of GECCO. 2000: 36~37
    69 L. N. Castro, F. Zuhen. Immune and Neural Network Models: Theoretical and Empirical Comparisons. Computational Intelligent and Application. 2001,1(3):239~257
    70 L. N. Castro, F. Zuben. Learning and Optimization Using the Clonal Selection Principal. IEEE Transaction on Evolutionary Computation. 2002,6(3):239~251
    71 L. N. Castro, J. Timmis. Artificial Immune Systems: A New Computing Intelligent Approach. Springer-Verlag, London, 2002: 1~20
    72 A. Ishiguro, Y. Watanabe and Y. Uchikawa. Fault Diagnosis of Plant Systems Using Immune Networks. Proc. IEEE International Conference on Multi-Sensor Fusion and Integration for Intelligent Systems, LasVegas, N V,1994:34~42
    73 A.Tarakanov. Mathematical Models of Bio-molecular Information Processing: Formal Peptide Instead of Formal Neuron.Journal of Problem of Information. 2001,1(2):46~51
    74 A. Tarakanov, S. Sokolova and B. Abramov. Immunocomputing of the Natural Plague Foci. Proceedings of the Genetic and Evolutionary Computation Conference. Las Vegas,2000:38~41
    75 M. Kayama, Y. Sugita and Y. Morooka. Distributed Diagnosis System Combining the Immune Network and Learning Vector Quantization. Proc. 1995 IEEE 21st Int. Conf. on Industrial Electronics, Control, and Instrumentatioin, Orlando,FL,USA,1995,2:1531~1536
    76 P. J. B. Costa, J. A. Dente and R. M. Vilela. Using Immunology Principles for Fault Detection. IEEE Trans. on Industrial Electronics, 2003,4(2):50~53
    77 G. C. Luh, W. C. Cheng. Immune Model-based Fault Diagnosis. Mathematics and Computers in Simulation, 2004,7:5~6
    78 S. Taniguchi, Y. Dote. Sensor Fault Detection for Uninterruptible Power Supply Control Systems Using Fast Fuzzy Neural Network and Immune Network. Proc. of the SMC’2001, USA, Oct, 2001:7~10
    79 D. F McCoy. V. Devarajan. Artificial Immune Systems and Aerial Image Segmentation. In: Proc1997 IEEE Int. Conf. on Systems, Man, and Cybernetics, Orlando, FL, USA, 1997, 1:879~884
    80 S. Sathyanath, F. Sahin. An AIS Approach to a Color Image Classification Problem in a Real Time Industrial Application.IEEE,2001,2285~2290
    81刘树林,张嘉钟,王日新.基于免疫系统的旋转机械在线故障诊断.大庆石油学院学报,2001,25(4):69~71
    82李蓓智,杨建国,杨江云.基于自我-非我识别机理的状态监测与故障诊断.上海工程技术大学学报,2004,18(1):24~27
    83杨江云,李蓓智,杨建国.人工免疫机理在故障诊断中的应用.东华大学学报,2004,30(4):41~44
    84杜海峰,王孙安.基于ART-人工免疫网络的多级压缩机故障诊断.机械工程学报,2002,38(4):88~90
    85殷桂梁,肖丽萍,吴长奇.免疫原理用于异步电动机故障诊断的研究.中国电机工程学报,2003,23(6):132~136
    86孟庆华,周晓军,吴跃成.基于小波免疫系统的车辆总成故障检测.汽车工程,2004,26(5):619~622
    87窦唯,于楷,孟庆武.基于免疫系统机理的距离函数故障诊断方法.大庆石油学院学报,2003,27(3):54~56
    88窦唯,刘树林,孙明.生物免疫机理在往复压缩机在线状态监测中的应用.流体机械,2004,32(5):16~19
    89 G. Hong, Y. Zhang. Wavelet-based Image Registration Technique for High-resolution Remote Sensing Images.Computers & Geosciences, 2008, 34(12):1708~1720
    90 H.J. Li, L. Zheng and Y.P. Lei. Estimation of Water Consumption and Crop Water Productivity of Winter Wheat in North China Plain Using Remote Sensing Technology. Agricultural Water Management,2008,95(11):1271~1278
    91 Y. Zhai, J. A. Thomasson and J. E. Boggess III. Soil Texture Classification withArtificial Neural Networks Operating on Remote Sensing Data. Computers and Electronics in Agriculture, 2006,54(2):53~68
    92 C. Vijayakumar, G. Damayanti and R. Pant.Segmentation and Grading of Brain Tumors on Apparent Diffusion Coefficient Images Using Self-Organizing Maps. Computerized Medical Imaging and Graphics, 2007,31(7):473~484
    93滕宏春,张志强,胡平.板材冲裁和翻口工艺特征识别及图形转换的研究.上海大学学报,2004,10(6):574~579
    94 S. Prabhakar, M. R .Henderson. Automatic form Feature Recognition Using Neural-Network Based Techniques on Boundary Representations of Solid Models .Computer-Aided Design, 1992,24(7):381~393
    95谢建华,刘春梅,井元伟.军事地图等高线的识别与提取.东北大学学报,2006,27(8):831~834
    96严云洋,郭志波,杨静宇.基于多尺度奇异值特征的人脸识别.清华大学学报.2008,48(10):1692~1696
    97 C.H. Lu, Z.Y. Lu. Local Feature Extraction for Iris Recognition With Automatic Scale Selection.Image and Vision Computing.2008,26(7):935~939
    98吴成东,樊玉泉,张云洲.基于改进KPCA算法的车牌字符识别方法.东北大学学报,2008,29(5):629~633
    99王惠明,史萍.图像纹理特征的提取方法.中国传媒大学学报, 2006, 13(1): 49~52
    100 A. Goldman, I. Cohen. Anomaly Detection Based on an Iterative Local Statistics Approach. Signal Processing, 2004,84(7):1225~1229
    101 X.C. Gan, A. W. C. Liew and H. Yan.A Smoothness Constraint Set Based on Local Statistics of BDCT Coefficients for Image Postprocessing. Image and Vision Computing, 2005,23(8):731~737
    102赵锋,赵荣椿.纹理分割及特征提取方法综述.中国体视学与图像分析,1998,3(4):238~246
    103 N. Sarker, B. B. Chaudhuri. An Efficient Approach to Estimate Fractal Dimension of Textural Imag. Pattern Recognition, 1992, 25(9):1035~1041
    104 G. Cross, A. Jain. Markov Random Fields Texture Models. IEEE Trans. on Systems Man Cybernet, SMC-17(1987):1087~1095
    105 F. Zhou, J. Feng and Q. Shi. Image Segmentation Based on Local Fourier Coefficients Histogram. Proc. SPIE 2nd Int. Conf. on Multispectral Image Processing and Pattern Recognition, Wuhan, China, November, 2001, Vol.4550:40~45
    106 F. Zhou, J. Feng and Q. Shi. Texture Feature Based On Local Fourier Transform. Proc. of International Conference on Image Processing 2001, (ICIP01),II:610~613
    107 L. Wang, D. C. He. Texture Classification Using Texture Spectrum. Pattern Recognition, 1990,(23):905~910
    108 D.C. He, L. Wang. Texture Features Based on Texture Spectrum. Pattern Recognition, 1991,(24):391~399
    109 A. J.Abdulrahman. Performance Evaluation of Cross-diagonal Texture Matrix Method of Texture Analysis. Pattern Recognition, 2001,(34):171~180
    110 S. E. Grigeorescu, N. Petkov and P. Kruizinga. Comparison of Texture Features Based on Gabor Filters. IEEE Trans. on Image Processing. 2002, 11(10):1160~1167
    111 R. M. Haralick, K. Shanmugam and I. DinStein. Texture Features for Image Classification. IEEE Trans. On Systems Man Cybernet. SMC-3(1973):610~621
    112 W. Li, I. Hagiwara and T. Yasui. A Method of Generating Scratched Look Calligraphy Characters Using Mathematical Morphology. Journal of Computational and Applied Mathematics.2003,159(1):85~90
    113 J. Serra, Lipschitz Lattices and Numerical Morphology, SPIE-The International Society for Optical Engineering, Image Algebra and Morphological Image Processing II San Diego, CA, USA 1991,Vol.1568:54~65
    114 L. H. I. Todd, S. Hirohisa. Image Filtering Edge Detection and Edge Tracing Using Fuzzy Reasoning. IEEE Trans. on Pattern Analysis and Machine Intelligence. 2006,18(5):481~491
    115胡爱军,唐贵基.基于数学形态学的旋转机械振动信号降噪方法,机械工程学报,2006,42(4)127~130
    116岳洪伟,李扬,蔡肯等.数学形态学在图像处理中的应用与展望.影像技术.2006,2(4):19~21
    117 A. Sopharak, B. Uyyanonvara, S. Barman. Automatic Detection of Diabetic Retinopathy Exudates from Non-dilated Retinal Images Using Mathematical Morphology Methods. Computerized Medical Imaging and Graphics. 2008,32,(8):720~727
    118 J. Serra. Image analysis and Mathematical Morphology. London: Academic Press, 1992:32~45
    119 S. R. Sternberg. Grayscale Morphology. Computer Vision. Graphics and Image Processing. 1986,35(1):333~355
    120 E. Decenciere, S. R. Sternberg and X. Zhuang. Image Analysis Using Mathematical Morphology. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000,9(7):532~550
    121 D. R. Cecilia, D. Andrew and K. Shahid. Analysis of Infected Blood Cell Images Using Morphological Operators. Image and Vision Computing. 2002, 20(2):133~146
    122 M. Tsubai, T. Nishimura and A. Sasaki. Morphological Image Sharpening by Double Structuring Elements for Ultrasound Images. Proceedings of the 26th Annual International Conference of the IEEE EMBS San Francisco, CA, USA, September 1~5, 2004:1509~1512
    123 A. Sobania, J. P. O. Evans. Morphological Corner Detector Using Paired Triangular Structuring Elements. Pattern Recognition. 2005, 38(7):1087~1098
    124 F. Safa, G. Flouzat. Speckle Removal on Radar Imagery Based on Mathematical Morphology. Signal Processing. 1989,16(4):319~333
    125 I. Pitas, A.N. Venetsanopoulos. Morphological Shape Decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 1990,12(1),38~45
    126 P. Zhang, L. H. Chen. Document Filters Using Morphology and Geometrical Feature of Characters. Image and Vision Computing. 2001, 19(12):847~855
    127扈海波,王迎春,刘伟东.气象灾害事件的数学形态学特征及空间表现.应用气象学报.2007,18(6):802~809
    128李晓飞,马大玮,范小麟.基于数学形态学的遥感图像多感兴趣区域提取.计算机技术与发展.2007,17(12):56~59
    129李雪,贺昱曜,伯绍波.基于数学形态学的灰度图像车牌字符提取算法.微电子学与计算机.2007, 24(12):157~160
    130董妍,高新波,王颖.一种基于Top-hat的乳腺图像中钙化点的检测方法.中国图象图形学报.2006,11(12):1839~1843
    131王建彬,纪玉波,李依令.基于多结构元素的数学形态学图像边缘检测.辽宁石油化工大学学报.2006,26(2):79~82
    132陈延梅,吴勃英.基于数学形态学的图像增强方法.哈尔滨工业大学学报.2006,38(6):906~908
    133葛平俱,苏平,王秀丽,张艳.基于数学形态学的混合消噪法.计算机工程与设计.2007,28(7):1584~1591
    134崔屹.图象处理与分析—数学形态学方法及应用.北京:科学出版社,2002:23~30
    135龚炜,石青云.数字空间中的数学形态学理论与应用.北京:科学出版社,1997:78~86.
    136 P. Soille. Morphological Image Analysis: Principles and Applications. Berlin, Heidelberg: Springer-Verlag. 2003, 34(2):232~239.
    137戴青云,余英林,数学形态学在图象处理中的应用进展,控制理论与应用,2001,18(4):478~482
    138 D. Sinha, E. R. Dougherty. Fuzzy Mathematical Morphology. J. Vision. Communication and Imagine and Representation. 1992, 3(3):286~302
    139 I. Bloch, A. Saffiotti. Why Robots Should Use Fuzzy Mathematical Morphology.Proc of the 1st Int., ICSC2NAISO Congress on Neuron Fuzzy Technologies. La Havana Cuba. 2002,8(6):97~128
    140 M. Koppen, K. Franke and O. Unold. A Survey on Fuzzy Morphology. Pattern Recognition and Image Analysis. 2001, 11(1):195~197
    141 L. H. I. Todd, S. Hirohisa. Image Filtering, Edge Detection and Edge Tracing Using Fuzzy Reasoning. IEEE Trans. on Pattern Analysis and Machine Intelligence. 2006, 18(5):481~491.
    142 B. B. De Fuzzy Morphology: A Logical Approach. Pattern Recognition and Image Analysis. 2006,56(2):124~127
    143 L. K?hler, P. Jensch. Feature extraction using Fuzzy Mathematical Morphology. SPIE Vol.2434:238~249
    144 X. T. Zhou, P. F. Shi. Fuzzy Mathematical Morphology Theory and Applications. Shanghai: Shanghai Jiaotong University. 1998,45(2):34~37
    145 L. Cao. Fractal Coding Based on Mathematical Morphology. Acted Automatic Sinica. 2006,123(1):226~231
    146 M. Nachtegael, E. E. Kerre. Decomposing and Constructing Fuzzy Morphological Operations Overcuts: Continuous and Discrete Case. IEEE Transactions on fuzzy systems,2000, 8(5):615~626
    147 S. K. Pal, A. Rosenfeld. Image Enhancement and Thresholding by Optimization of Fuzzy Compactness. Pattern Recognition Letters.1988, 7(3):77~86
    148 M. Yuba, M. M. Gupta. Uncertainty Analysis in Engineering and Sciences: Fuzzy Logic, Statistics, and Neural Network Approach. Norwell MA:Kluwer.2007, 44(2):53~67
    149 Y. Lain. Applications of Multiorientation Morphological Structure Elements in Edge Detection. J. Yunnan University. 2007,21(25):392~394
    150 D. Sinha, E.R. Dougherty. Fuzzification of Set Inclusion: Theory and Applications, to Appear in International Journal of Fuzzy Sets and Systems.2004,45(2):345~349
    151 D. Sinha, E.R. Dougherty. A General Axiomatic Theory of Intrinsically Fuzzy Mathematical Morphologies. IEEE Transactions on Fuzzy Systems. 2005,3(4):23~29
    152 L. Koskinen, J. Astola and Y. Neuvo. Soft Morphological Filters. Proc. SPIE Int. Society of Optical Engineering. 2001,1568(4):262~270
    153 C. X. Shu, Y. L. Mo. Robust Edge Detection Based on Soft Morphology. Journal of Image and Graphics. 1999, 4(2):139~142
    154 Y. Frank. Analysis of the Properties of Soft Morphological Filtering Using Threshold Decomposition. IEEE Trans. On Signal Processing. 2005, 43(2):539~544
    155 Y. Z. Dong. Edge Detection of Ir Ship Images Based on Soft Morphology. Proceedings of SPIE, Applications of Digital Image Processing, San Diego, CA, USA, 2003,Vol.5203:581~ 589
    156 T.Y. Ji, Z. Lu and Q.H. Wu. Optimal Soft Morphological Filter for Periodic Noise Removal Using a Particle Swarm Optimiser with Passive Congregation. Signal Processing .2007,87(11):2799~2809
    157 S. Marshall, K. Hough. Soft Morphological Filters Applied to the Removal of Noise from CCTV Footage, IEE International Symposium on Imaging for Crime Detection and Prevention, 2005,(3):61~66
    158 C. H. Zhao. Optimization Design of Soft Morphological Filters Based on Improving Genetic Algorithm. IEEE Int. Conf. Neural Networks & Signal Processing Nanjing. China, December 14~17, 2003:491~494
    159赵于前,陈真诚,李凌云.基于柔性数学形态学的医学图像边缘提取.计算机工程与应用.2005,(25):20~22
    160 A. Gasteratos, S. T. Salides. Fuzzy Soft Mathematical Morphology. Image Signal Processing. 1998, 145(1):41~49
    161 P. Maragos. Tutorial on Advances in Morphological Image Processing and Analysis. Optical Engineering. 1997, 26(7):623~632
    162 L. J. Zhang, J. W. Xu and J.H. Yang. Multiscale Morphology Analysis and Its Application to Fault Diagnosis. Mechanical Systems and Signal Processing. 2008, 22(3):597~610
    163周柏清.基于纹理分析的刀具磨损状态监测技术.计算机应用,2006,25(10):17~19
    164翁桂荣.形态学在机械工具识别中的应用.新技术新工艺.2006(7):23~25
    165胡爱军,唐贵基,安连锁.振动信号采集中剔除脉冲的新方法.振动与冲击,2006,25(1):126~127
    166唐贵基,王维珍,胡爱军.数学形态学在旋转机械振动信号处理中的应用.汽轮机技术.2005,47(4):271~318
    167 F. Y. Shih, Y. T. Wu. Decomposition of Arbitrary Gray-Scale Morphological. Pattern Recognition. 2005,38(4):2323~2332
    168 F. Y. Shih, Y. T. Wu. Decomposition of Binary Morphological Structuring Elements Based on Genetic Algorithms. Computer Vision and Image Understanding. 2005, 99(3):291~302
    169 H. Park, J. Yoo. Structuring Element Decomposition for Efficient Implementation of Morphological Filters. Computer Vision and Image Understanding. 2006, 78(2):344~348
    170 X. Y. Yang, Y. J. Zhang Wavelet Boundary Descriptors and Its Application inImage Querying. Chinese Computers. 1999, 22(7):752~757
    171 J. B. Xu, G. Wei. Moving Range Estimate Moving Image Coding Based on Mathematical Morphology. Journal of South China University of Technology. 1999, 26(7):129~135
    172王广庆,万书亭.基于改进图形不变线矩的转子轴心轨迹形状的自动识别,矿山机械.2006,34(11):109~111
    173刘占生,张新江,杨建国.转子轴心轨迹故障诊断特征识别方法研究,哈尔滨工业大学学报.1998,30(6):22~25
    174吴健辉,许朝侠,杨坤涛.指纹图像预处理中的关键技术研究.计算机工程与应用.2008,44(3):223~226
    175 A. J. Willis, L. Myers. A Cost Effective Fingerprint Recognition System for Use with Low Quality Prints and Damaged Fingertips .Pattern Recognition. 2001,34(2):255~270
    176 E. K. Yun, S. B. Cho. Adaptive Fingerprint Image Enhancement with Fingerprint Image Quality Analysis. Image Vision Computing. 2006,(24):101~110
    177常宁.指纹识别预处理算法研究.中国人民公安大学学报.2007,54(4):68~73
    178马吉权,马培军,苏小红.基于X射线的焊点图像预处理方法及应用.哈尔滨工业大学学报.2008,40(3):397~400
    179刘蓉蓉,林子瑜.遥感图像的预处理.吉林师范大学学报.2007,(4):6~10
    180金海丁,周孝宽.数字图像自适应插值法.激光与红外.2006,36(9):907~910
    181孟晋宇,舒华忠,鲍旭东.基于形状的二维灰度图象插值.中国图象图形学报.2003,8(3):311~316
    182 K. S. Chuang, C. Y. Chen and L. J. Yuan. Shape-based Grey-Level Image Interpolation. Phus. Med. Bio, 1999,44(6):1565~1577
    183 A. Goshtasby, D. A. Turner and L. V. Ackerman. Matching Tomographic Slices for Interpolation. IEEE Trans. Med. Imaging, 1992,11(4):507~516
    184 W. E. Higgins, C. Morice and E. L. Ritman. Shape-based Interpolation of Tree-like Structures in Three-dimensional Images. IEEE Trans. Med. Imaging, 1993, 12(3):439~450
    185 G. J. Grevera, J. K. Udupa. An Objective Comparison of 3-D Image- Interpolation Methods. IEEE Trans. Med. Imaging, 1998,17(4):642~652
    186钟一锷,何衍宗.转子动力学.北京:清华大学出版社,1987,5~15
    187 O. Lillesaeter. Complex Contrast, a Definition for Structured Targets and Backgrounds. Journal of Optical Society of America ,1993, 10(12):2453~2457
    188杨词银,黄廉卿.基于正弦灰度变换的X光图像增强.2002,28(5):407~408
    189 S. Pizer. Adaptive Histogram Equalization and Its Variations. CVCIP, 1987,39(3):355~368
    190危疆树.结合局部对比度增强的直方图均衡化图像增强算法.计算机与信息技术.2005,(10):30~33
    191 A. Sughaiyer, A. Imad. Arabic Morphological Analysis Techniques: A Comprehensive Survey, Journal of the American Society for Information Science and Technology. 2004,55(3):189~213
    192 C. J. Handley. Bit Vector Architecture for Computational Mathematical Morphology. IEEE Transactions on Image Processing. 2003, 12(2):153~158.
    193 H. Li. An Improved Image Segmentation Approach Based on Level Set and Mathematical Morphology, Proceedings of SPIE-The International Society for Optical Engineering. 2003, 5286(2):851~854
    194 Y. Balagurunathan, E. R. Dougherty. Morphological Quantification of Surface Roughness. Optical Engineering, 2003, 42(6):1795~1804
    195 H. Stelios, B. Taxiarchis and R. Maria Automatic Detection of Clustered Microcalcifications in Digital Mammograms Using Mathematical Morphology and Neural Networks. Signal Processing. 2007,87(7):1559~1568
    196 P. Soille, M. Pesaresi. Advances in Mathematical Morphology Applied to Geo Science and Remote Sensing. IEEE Trans on Geosci Remote Sensing. 2002, 40(9):2043~2055
    197 P. Pedro, R. Luis and M. Fernando. A mathematical Morphology Contribution to Study Some Aspects of Hydrogeological Systems. Computers & Geosciences. 2001, 27(9):1061~1069
    198 D. Sinha, E. R. Dougherty. A General Axiomatic Theory of Intrinsically Fuzzy Mathematical Morphologies. IEEE Transactions on Fuzzy Systems. 1995,3(4):389~403
    199 B. Isabelle, M. Henri. Fuzzy Mathematical Morphologies: a Comparative Study. Pattern Recognition. 1995,28(9):1341~1387
    200 S. Olivier, C. Frédéric. Variable Structuring Element Based Fuzzy Morphological Operations for Single Viewpoint Omnidirectional Images. Pattern Recognition. 2007,40(12):3578~3596
    201 M. E. Valle, P. Sussner. A General Framework for Fuzzy Morphological Associative Memories. Fuzzy Sets and Systems. 2008, 159(7):747~768
    202 C. M. Maria. Fuzzy Mathematical Morphology: Concepts and Applications. Vistas in Astronomy. 1996,40(4):469~417
    203 A. J. Koskinen, Y. Neuvo. Soft Morphological Filter. SPIE Symp.In: Image Algebra and Morphological Image Processing, San Doego, USA, 1991:262~270
    204 Y. Z. Dong, X. D. Zhou and C. Wang. Application of Soft Mathematical Morphology in Image Segmentation of IR Ship Image. ICSP’O4Proceedings:729~732
    205杨琨,曾立波,王殿成.数学形态学腐蚀膨胀运算的快速算法.计算机工程与应用.2005,(34):54~56
    206 F. Y. Shih, Y. T. Wu. Decomposition of Binary Morphological Structuring Elements Based on Genetic Algorithms.Computer Vision and Image Understanding. 2005, (99)291~302
    207 F. Y. Shih, Y. Wu. Decomposition of Binary Morphological Structuring Elements Based on Genetic Algorithms. Pattern Recognition. 2005, (38) 2323~2332
    208杨照华,浦昭邦,祁振强.基于数学形态学和遗传优化的图形去噪.光学技术,2004,30(3):330~332
    209叶德荣,汪伟,武文芳.基于多尺度形态学的医学图像局部对比度增强.北京生物医学工程. 2005,24(3):190~194
    210刘晓民.纹理研究及其应用综述.测控技术,2008,27(5):4~9
    211 J. Rishi, D. A. Clausi.Preserving Boundaries for Image Texture Segmentation Using Grey Level Co-Occurring Probabilities . Pattern Recognition,.2006, 39(2):234~245
    212 A. Vadivel, S. Sural and A. K.Majumdar.An Integrated Color and Intensity Co-occurrence Matrix. Pattern Recognition Letters.2007,28(18):974~983
    213张腊梅,王国喜,庄雪晶.薄膜褶皱的纹理特征分析.哈尔滨工业大学学报.2006,38(9):1419~1421
    214白雪冰,王克奇,王辉.基于灰度共生矩阵的木材纹理分类方法的研究.哈尔滨工业大学学报.2005,37(12):1667~1670
    215 E. S. Gadelmawla. A Vision System for Surface Roughness Characterization Using the Gray Level Co-occurrence Matrix. NDT&E International. 2004, 37(7):577~588.
    216张恒博,欧宗瑛.一种基于颜色基元共生矩阵的图像检索方法.计算机工程.2007,33(14):171~173
    217王亮申,王文友,王红梅.基于灰度-基元共生矩阵的图像检索.辽阳石油化工高等专科学校学报.2002,18(1):21~24
    218周德龙,申石磊,蒲小勃等.基于灰度-梯度共生矩阵模型的最大熵阈值处理算法.小型微型计算机系统.2002,23(2):136~138
    219洪继光.灰度-梯度共生矩阵纹理分析方法.自动化学报.1984,10(1):22~25
    220白雪冰,邹丽晖.基于灰度-梯度共生矩阵的木材表面缺陷分割方法.森林工程.2007,23(2):16~18
    221符玲,何正友,麦瑞坤.小波熵证据的信息融合在电力系统故障诊断中的应用.中国电机工程学报.2008,28(13):64~69
    222 F. Kimura, M. Shridhar. Handwritten Numeral Recognition Based on Multiple Algorithms. Pattern Recogn. 1991,24 (10):969~983
    223 S.B. Cho, J.H. Kim. Multiple Network Fusion Using Fuzzy Logic, IEEE Trans. Neural Netw. 1995, 6 (2) 497~501
    224 Y.S. Huang, K. Liu and C.Y. Suen. A Neural Network Approach for Multi-classifier Recognition Systems, Proc. of 4th IWFHR, 1994,235~244
    225 J. Kittler, M. Hatef and R.P.W. Duin. Combining Classifiers, Proc. IEEE Conf. ICPR, 1996,897~901
    226 K. Eunju, K. Wooju and L. Yillbyung. Combination of Multiple Classifiers for the Customercs Puchase Behavior Prediction. Decision Support Sytems. 2002,(34):167~175
    227叶强,邹鹏,尚维.基于多分类器融合的客户细分研究.管理科学.2004, 17(2):15~17
    228 F. Yamaoka, Y. Lu and A. Shaout. Fuzzy Integration of Classification Results in Handwritten Digit Recognition System, Proc. of 4th IWFHR, (1994):255~264
    229 S. L. Vincent, W. Cheung. Group Decision Makingin a Multiple Criteria Environment: a Case Using the AHP in Software Selection. European Journal of Operational Research. 2002, 137(2):134~144
    230 N. Ueda. Optimal Linear Combination of Neural Networks for Improving Classification Performance. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000,11(6):207~215
    231 K. Cao, X. Feng and H. Ma. Pinch Multi-agent Genetic Algorithm for Optimizing Water-using Networks. Computers & Chemical Engineering. 2007, 31(12): 1565~1575
    232 A. Kamrani. A Genetic Algorithm Methodology for Data Mining and Intelligent Knowledge Acquisition. Computers &Industrial Engineering,2001, 40(4): 361~377
    233窦唯,刘树林,孙明等.往复压缩机故障诊断的信息融合方法研究.压缩机技术.2004(1),总第183期:11~13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700