骨髓间充质干细胞体外定向分化为神经样细胞的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脊髓损伤(spinal cord injury, SCI)后所引起的神经源性膀胱症状严重影响患者的生活质量,但目前尚无有效的治疗手段,并且多数研究集中在尿流动力学及神经功能损伤等方面。随着近年来干细胞研究的突飞猛进,干细胞移植用于治疗血液系统恶性肿瘤、神经系统自身免疫疾病并取得有效成果,甚至已经应用于临床,这使通过干细胞联合组织工程移植增加脊髓神经数量、减少胶质瘢痕和空洞的形成成为可能,采用干细胞接种至组织工程进行移植可望成为一种有效治疗SCI后神经源性膀胱的新方法。然而,在组织工程构建中选择合适的种子细胞成为治疗的重要环节。全能干细胞和多能干细胞具有高度自我更新能力和多向分化的潜能,是组织工程中重要的靶细胞。胚胎干细胞移植存在伦理道德和免疫排斥等问题,神经干细胞、嗅鞘细胞及雪旺细胞的来源均有限,且取材不便,很难应用于临床。BMSCs在体外具有强大的增殖能力,而且可以在不同的理化环境和细胞因子的诱导下向骨、脂肪、腱和肌肉等组织分化,还可以跨胚胎分化为神经组织,展示出良好的研究和应前用景。
     实验目的:
     通过对SD大鼠BMSCs的体外分离纯化和培养扩增,采用免疫荧光染色法对BMSCs进行形态学观察及表型鉴定,并利用其生物学特性进行Nestin免疫细胞化学分析、诱导分化及分化鉴定,探讨BMSCs定向分化为神经样细胞的潜能,为利用BMSCs治疗SCI所引起的神经源性膀胱提供一种理想的种子细胞和一定的理论依据。
     实验方法:
     1.采用全骨髓贴壁分离法体外提取、分离及纯化大鼠BMSCs,并进行传代扩增;
     2.绘制BMSCs的生长曲线,并进行免疫荧光染色观察其形态结构;
     3.流式细胞分析仪检测细胞表面抗原CD29、CD34、CD105的阳性表达率;
     4.在成骨细胞诱导剂和神经细胞诱导剂条件下定向诱导BMSCs向成骨细胞和神经样细胞分化,并分别行茜素红、Nestin免疫细胞化学染色鉴定;
     5.将诱导形成的神经球样细胞团进一步培养分化,并进行MAP-2、GFAP免疫细胞化学染色鉴定分化形成的神经元、星形胶质细胞结构。
     实验结果:
     1.全骨髓贴壁分离法获得的BMSCs在接种后24~36小时贴壁,梭形,核质比大,呈漩涡状生长,增殖能力强;
     2.细胞生长经过潜伏适应期、对数增长期、平台期阶段;免疫荧光染色后在荧光显微镜下可见全部细胞均呈绿色荧光,细胞为梭形或多边形,细胞核未染荧光,保持了良好的形态;
     3.流式细胞分析仪显示P3~P5代细胞表面抗原CD29、CD105表达阳性,而CD34表达阴性;
     4.在两种不同诱导剂诱导下BMSCs能分化形成成骨细胞和神经样细胞并表达相应的特异性抗原;
     5.进一步培养分化所形成的细胞能表达神经元标志物MAP-2或神经胶质细胞标志物GFAP。
     结论:
     1.全骨髓贴壁分离法可分离出较纯的BMSCs,经培养扩增后能获取大量的BMSCs,细胞呈贴壁生长,增殖能力强;
     2.BMSCs具有多向分化的潜能,在体外可诱导分化为成骨细胞及神经样细胞;
     3.分化形成的神经球样细胞能进一步分化为神经元和神经胶质细胞,是干细胞移植治疗的理想种子细胞,具有极大的应用前景。
Symptoms of neurogenic bladder caused by spinal cord injury affect the quality of patient life severely, but there is no effective treatment currently, futhermore, most studies focused on the area of urodynamic and neurological damage. With the rapid development of stem cell research, not only stem cell transplantation has been used to treat the blood system cancer and autoimmune disease of nervous system, but also has achieved effective results, Even has been used in clinical. It is possible that the addition of the number of spinal nerves and the reduction of glial scar transplanted by stem cell together with tissue engineering, which will become the effective method of treatment of neurogenic bladder caused by spinal cord injury. However, suitable choice on seeding cell become important treatment in the construction of tissue engineering. All stem cells and pluripotent stem cells have a high degree of self-renewal ability and potential capability of differentiation, which is an important target cells in tissue engineering. Embryonic stem cells exist ethical issues and immune rejection, source of neural stem cells and schwann cell are limited, and cells derived inconvenience. Therefore , clinical application is difficult. BMSCs have the power ability of proliferation in vitro, moreover, can be differentiated into bone, fat, tendon and muscle in different physical and chemical environment, even can be differentiated into nerve tissue across embryos, which show the favorable prospect of research and application.
     Objective
     Used the whole bone marrow adherent method, BMSCs of SD rat were isolated, purified and amplified in vitro. To observe the structure of morphology and phenotypic identification, we conduct immunofluorescence dyeing and detection of flow cytometry. Biological characteristics of BMSCs were used to conduct analysis of immunocytochemistry, induction and identification of differentiation. then we explore potential ability of BMSCs which differentiate into neural-like cells. The experimental study provides an ideal seeding cells and a theoretical basis for the treatment of neurogenic bladder caused by spinal cord injury.
     Methods
     1. BMSCs of SD rat were extracted, isolated, purified and amplified by the whole bone marrow adherent method in vitro;
     2. We drew the growth curve of BMSCs, and conduct immunofluorescence dyeing for observation on the structure of BMSCs;
     3. The positive expression of cell surface antigens CD29, CD34 and CD105 were detected by flow cytometry;
     4. BMSCs were induced to differentiate into osteoblasts and nerve cell under the inducer of osteoblast and nerve cell conditions, moreover,were stained by alizarin red and nestin immunocytochemistry staining respectively;
     5. The neurospheres of induced formation were cultured and differentiated furtherly. To identify the formation of neurons and glial cells, BMSCs were stained by MAP-2, GFAP immunocytochemistry staining.
     Results
     1. BMSCs obtained by the whole bone marrow adherent method attachs the bottle after 24~36 hours, showed the growth of spindle whirlpool and the power ability of proliferation, nuclear-cytoplasmic ratio of BMSCs is large;
     2. Cell growth pass the potential adaptation period, the increased logarithmic phase and plateau phase, the whole cells show green fluorescent and good shape, nucleus was not stained fluorescence;
     3. Flow cytometry showed the positive expression of the 3~5 passage cell surface antigens CD29 and CD105,while CD34 expression was negative;
     4. Under the different inducer conditions, BMSCs can be differentiated into osteoblast and nerve-like cells, moreover, expressed the corresponding antigen;
     5. The neurospheres of induced formation furtherly were able to express neuronal markers MAP-2 or the glial marker GFAP.
     Conclusion
     1. The Whole bone marrow adherent method can separate BMSCs of high purity and obtain a large number of BMSCs adhered to the wall and owned the power ability of proliferation;
     2. BMSCs have more potential to differentiate, and can be differentiated into osteoblast and nerve-like cells in vitro;
     3. The neurospheres of induced formation can be differentiated into osteoblast and nerve-like cells futherly, BMSCs is an ideal seed cells in the transplantation of stem cell, which possess glorious prospects.
引文
1. Stokic DS, Curt A. Stem cells in the treatment of chronic spinal cord injury: evaluation of somatosensitive-evoked potentials in 39 patients. Spinal Cord. 2010 Jan 19. [Epub ahead of print]
    2. Kwon BK,Fisher CG,Dvorak MF,et al. Strategies to promote Neural repair and regeneration after spinal cord injury. Spine,2005,30(17 Suppl):3-13.
    3. Del Popolo G, Panariello G, Del Corso F, De Scisciolo G, Lombardi G. Diagnosis and therapy for neurogenic bladder dysfunctions in multiple sclerosis patients. Neurol Sci. 2008 Dec;29 Suppl 4:S352-5.
    4.李建军,周红俊,刘根林,等.唐山地震26年后幸存脊髓损伤患者的社会调查[J].中国康复理论与实践,2005,11(2):110-112.
    5.李建军,周红俊,洪毅,等.2002年北京市脊髓损伤发病率调查[J].中国康复理论与实践,2004,10(7):412-413.
    6. Koubaa S, Ben Salah FZ, Miri I, Ghorbel S, Lebib S, Dziri C, Rokbani L. Neurogenic bladder in diabetes mellitus.Tunis Med. 2009.Apr;87(4):279-82.
    7. Song CH, Honmou O, Ohsawa N, Nakamura K, Hamada H, Furuoka H, Hasebe R, Horiuchi M. Effect of transplantation of bone marrow-derived mesenchymal stem cells on mice infected with prions. J Virol. 2009 Jun;83(11):5918-27.
    8. Smith LL,Niziolek PJ,Haberstroh KM,Nauman EA,Webster TJ. Decreased fibroblast and increased osteoblast adhesion on nanostructured NaOH-etched PLGA scaffolds.Int J Nanomedicine. 2007;2(3):383-8.
    9. McCullen SD, Stevens DR, Roberts WA, Clarke LI, Bernacki SH, Gorga RE,Loboa EG. Characterization of electrospun nanocomposite scaffolds and biocompatibility with adipose-derived human mesenchymal stem cells.Int J Nanomedicine. 2007;2(2):253-63.
    10. Qian LM, Zhang ZJ, Gong AH, Qin RJ, Sun XL, Cao XD, Liu JB, Jiang P, Chen YC. A novel biosynthetic hybrid scaffold seeded with olfactory ensheathing cells for treatment of spinal cord injuries.Chin Med J (Engl). 2009 Sep 5;122(17):2032-40.
    11. Jabbarzadeh E, Starnes T, Khan YM, Jiang T, Wirtel AJ, Deng M, Lv Q, Nair LS, Doty SB, Laurencin CT. Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: a combined gene therapy-cell transplantation approach. Proc Natl Acad Sci U S A. 2008 Aug 12;105(32):11099-104.
    12. Kotsar A, Isotalo T, Mikkonen J, Juuti H, Martikainen PM, Talja M, Kellom?ki M, T?rm?l? P, Tammela TL. A new biodegradable braided self-expandable PLGA prostatic stent: an experimental study in the rabbit.J Endourol. 2008 May;22(5):1065-9.
    13. Pan CJ, Tang JJ, Weng YJ, Wang J, Huang N. Eparation and characterization of rapamycin-loaded PLGA coating stent.J Mater Sci Mater Med. 2007 Nov; 18(11):2193-8.
    14. Bao C, Ding F, Mei J. Experimental studies on tissue engineered esophagus reconstructed with artificial biodegradable scaffold]Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2006 Dec;20(12):1235-9. Chinese.
    15. Ankeny DP,McTique DM,Jakeman LB,et al. Bone marrow transplants provide tissue protection and directional guidance for axon after contusive,pinal cord injury in rats.Exp Neurol,2004,190(1) :17 -31.
    16. Numano F, Inoue A, Enomoto M, Shinomiya K, Okawa A, Okabe S. Critical involvement of Rho GTPase activity in the efficient transplantation of neural stem cells into the injured spinal cord. Mol Brain. 2009 Nov 28;2(1):37.
    17. Sundback C, Hadlock T, CheneyM, et al. Manufacture of porous polymer nerve conduits by a novel low-pressure injection molding process[ J]. Biomaterials, 2003, 24(5): 819- 830.
    18. Woodhall E,West AK, Chuah MI, et al. Cultured olfactory ensheathing ensheathing cells express nerve growth factor, brain- derived neurotrophicfactor, glia cell line- derived neurotrophic factor and their receptors[J].Brain Res, 2001, 88( 1- 2) : 203-213.
    19. Santos- Benito FF, Ramon- Cueto A.Olfactory ensheathing glia transplantation: a therapy to promote repair in the mammalian central nervous system[J].Anat Rec, 2003, 271B( 1) : 77-85.
    20. Choi B H, Zhu S J, Kim B Y, et al.Transplantation of cultured bone marrow stromal cells to improve peripheral nerve regeneration [J] . Int J Oral Maxillofac Surg,2005, 34(5):537-542.
    21. Hu J, Zhu Q T, Liu X L, et al. Repair of extended peripheral nerve lesions in rhesus monkeys using acellular allogenic nerve grafts implanted with autologous mesenchymal stem cells[J].Exp Neurol,2007,204(2):658-666.
    22. Walczak P, Kedziorek DA , Gilad AA . Applicability and limitations of MR tracking of neural stem cells with asymmetric cell division and rapid turnover: the case of the shiverer dysmyelinated mouse brain. Magn Reson Med, 2007, 58(2): 261-269.
    23. Hisanaga E, Park KY, Yamada S, Hashimoto H, Takeuchi T, Mori M, Seno M, Umezawa K, Takei I, Kojima I. A simple method to induce differentiation of murine bone marrow mesenchymal cells to insulin-producing cells using conophylline and betacellulin-delta4. Endocr J. 2008 Jul;55(3):535-43.
    24. Bexell D,Gunnarsson S,Tormin A,Darabi A,Gisselsson D,Roybon L, Scheding S,Bengzon J. Bone marrow multipotent mesenchymal stroma cells act as pericyte-like migratory vehicles in experimental gliomas.Mol Ther. 2009 Jan;17(1):183-90.
    25. Tsai HH, Macklin WB, Miller RH. Distinct modes of migration position oligodendrocyte precursors for localized cell division in the developing spinal cord. J Neurosci Res. 2009 Nov 15;87(15):3320-30
    26. arr AM, Kulbatski I, Zahir T, Wang X, Yue C, Keating A, Tator CH. Transplanted adult spinal cord-derived neural stem/progenitor cells promote early functional recovery after rat spinal cord injury.Neuroscience. 2008 Aug 26;155(3):760-70.
    27.吴坚,刘炎,王洁,等.自体骨髓基质细胞组织工程化神经修复坐骨神经缺损的研究[J].交通医学,2006,20(6):639-647.
    28. Chen C J , Ou Y C , Liao S L , et al . Transplantation of bone marrow st romal cellsfor peripheral nerve repair [ J ] . Exp Neurol , 2007 ,204 (1) :443-453.
    29. Kemp SW, Walsh SK, Midha R.Growth factor and stem cell enhanced conduits in peripheral nerve regeneration and repair. Neurol Res. 2008 Dec;30(10):1030-8.
    30. Pan H, Zhao K, Wang L, Zheng Y, Zhang G, Mai H, Han Y, Yang L, Guo S.Mesenchymal Stem Cells Enhance the Induction of Mixed Chimerism and Tolerance to Rat Hind-Limb Allografts after Bone Marrow Transplantation.J Surg Res. 2008 Nov 4. [Epub ahead of print]
    31. Gan GG, Zakaria Z, Sangkar JV, Haris AR, Bee PC, Chin E, Teh A. Adult allogeneic haematopoietic stem cell transplantation: a single centre experience in Malaysia.Med J Malaysia. 2008 Oct;63(4):281-7.
    32. García-Castro J, Trigueros C, Madrenas J, Pérez-Simón JA, Rodriguez R, Menendez P.Mesenchymal stem cells and their use as cell replacement therapy and disease modelling tool.J Cell Mol Med. 2008 Dec;12(6B):2552-65.
    33. Croft AP, Przyborski SA. Mesenchymal stem cells expressing neural antigens instruct a neurogenic cell fate on neural stem cells.Exp Neurol. 2009 Apr;216(2):329-41. Epub 2008 Dec 29.
    34. Offen D, Barhum Y, Levy YS, Burshtein A, Panet H, Cherlow T, Melamed E.Intrastriatal transplantation of mouse bone marrow-derived stem cells improves motor behavior in a mouse model of Parkinson's disease.J Neural Transm Suppl. 2007;(72):133-43.
    35. Hildebrandt C, Büth H, Thielecke H. Influence of cell culture media conditions on the osteogenic differentiation of cord blood-derived mesenchymal stem cells.Ann Anat. 2009 Jan;191(1):23-32. Epub 2008 Nov 17.
    36. Ng AM, Kojima K, Kodoma S, Ruszymah BH, Aminuddin BS, Vacanti AC.Isolation techniques of murine bone marrow progenitor cells and their adipogenic, neurogenic and osteogenic differentiation capacity.Med J Malaysia. 2008 Jul;63 Suppl A:121-2.
    37. Abdallah BM, Boissy P, Tan Q, Dahlgaard J, Traustadottir GA, Kupisiewicz K, Laborda J, Delaisse JM, Kassem M.dlk1/FA1 regulates the function of human bone
    marrow mesenchymal stem cells by modulating gene expression of pro-inflammatory cytokines and immune response-related factors.J Biol Chem. 2007 Mar 9;282(10): 7339-51.
    38. Woodbury D , Schwarz EJ , Prockop DJ ,et al . Adultrat and human marrow st romal cells differentiate in2to neurons[J ] . J NeurosciRes ,2000 ,61 :364– 370.
    39. Crigler L , Robey R C , Asawachaicharn A , et al . Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis [J ] . Exp Neurol , 2006 ,198 (1) :54-64.
    40. Caddick J , Kingham P J , Gardiner N J , et al . Phenotypic and functional. characteristics of mesenchymal stem cells differentiated along a Schwann cell lineage [J ] . Glia , 2006 ,54 (8) :840-849.
    41. Mehlhorn AT, Niemeyer P, Kaiser S, Finkenzeller G, Stark GB, Südkamp NP, Schmal H.Differential expression pattern of extracellular matrix molecules during chondrogenesis of mesenchymal stem cells from bone marrow and adipose tissue.Tissue Eng. 2006 Oct;12(10):2853-62.
    42. Liu CT, Yang YJ, Yin F, Wang X, Yu XH, Wang QH, Wang XL, Xie M.The immunobiological development of human bone marrow mesenchymal stem cells in the course of neuronal differentiation.Cell Immunol. 2006 Nov;244(1):19-32.
    43. Tassi E, Al-Attar A, Aigner A et al. Enhancement of fibroblast growth factor ( FGF) activity by an FGF- binding p rotein. J Biol Chem, 2001; 276: 40247 - 40253
    44. Huang HX, Chen YY, Cang H et al. Isolation, culture and biological character studies on human fetal pancreatic nestin positive cells. Shi Yan ShengWu Xue Bao, 2003; 36: 23 - 31
    45. Hu JL, Jiang XD, Zou YX, Guo YW, Zhou DX, Xu RX. Culture and identification of neural stem cells derived from the subventricular zone of adult mice.Nan Fang Yi Ke Da Xue Xue Bao. 2008 Nov;28(11):1942-6.
    46. Duan RP, Wu L, Lin YF, Liu L, Tian W.[The gene expression patterns of bone-marrow mesenchymal stem cells under different osteogenic induction]Sichuan Da Xue Xue Bao Yi Xue Ban. 2006 Nov;37(6):856-9.
    47. Nandoe Tewarie RD, Hurtado A, Levi AD, Grotenhuis JA, Oudega M. Bone marrow stromal cells for repair of the spinal cord: towards clinical application.Cell Transplant. 2006;15(7):563-77.
    48. UrdzíkováL, JendelováP, GlogarováK, Burian M, Hájek M, SykováE.Transplantation of bone marrow stem cells as well as mobilization by granulocyte-colony stimulating factor promotes recovery after spinal cord injury in rats.J Neurotrauma. 2006 Sep;23(9):1379-91.
    1. Guo X, Zheng Q, Kulbatski I, Yuan Q, Yang S, Shao Z, Wang H, Xiao B, Pan Z, Tang S. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous beta-TCP ceramic scaffolds.Biomed Mater. 2006 Sep;1(3):93-9.
    2. Baron F, Gothot A. Mesenchymal stem cells: a new versatile therapeutic option. Rev Med Liege. 2007;62 Spec No:9-14.
    3. Meseguer-Olmo L, Bernabeu-Esclapez A, Ros-Martinez E, Sánchez-Salcedo S, Padilla S, Martín AI, Vallet-RegíM, Clavel-Sainz M, Lopez-Prats F, Meseguer-Ortiz CL.In vitro behaviour of adult mesenchymal stem cells seeded on a bioactive glass ceramic.Acta Biomater. 2008 Jul;4(4):1104-13.
    4. Tae SK, Lee SH, Park JS, Im GI. Mesenchymal stem cells for tissue engineering and regenerative medicine.Biomed Mater. 2006 Jun;1(2):63-71.
    5. Nirmalanandhan VS, Dressler MR, Shearn JT, Juncosa-Melvin N, Rao M, Gooch C, Bradica G, Butler DL. Mechanical stimulation of tissue engineered tendon constructs: effect of scaffold materials.J Biomech Eng. 2007 Dec;129(6):919-23.
    6. Lemon G, Waters SL, Rose FR, King JR. Mathematical modelling of human mesenchymal stem cell proliferation and differentiation inside artificial porous scaffolds.J Theor Biol. 2007 Dec 7;249(3):543-53.
    7. Okumoto K, Saito T , Hattori E , et al. Differentiation of bone marrow cells into cells that express liverspecific genes in vitro : implication of the notch signals in differentiation. Biochem Biophys ResCommun , 2003 , 304 (4) : 691-695.
    8. Lee KD , Kuo TK, WhangPeng J , et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology , 2004 , 40(6) : 1275-1284.
    9. Woodbury D, Schwarz EJ, Prockop DJ, et al. Adultrat and human marrow stromal cells differentiate into neurons[J] . J Neurosci Res ,2000 ,61 :364– 370
    10. Eslaminejad MB, Mirzadeh H, Mohamadi Y, Nickmahzar A. Bone differentiation of marrow-derived mesenchymal stem cells using beta-tricalciumphosphate-alginate-gelatin hybrid scaffolds.J Tissue Eng Regen Med. 2007 Nov-Dec; 1(6):417-24.
    11. Gao K, Lu Y, Li S, Cong C, Yuan Y, Zhang J, Cheng J, Li H, Wang L. Isolation, culturing and growth characteristics of mesenchymal stem cells from bone marrow of Rhesus monkey, Macaca mulatta.Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2007 Dec;24(6):1343-7.
    12. Sanchez-Ramos J, Song S, Cardozo-Pelaez F. Adult bone marrow stomal cells differentiate into neural cells in vivo.Exp Neurol,2000,164:247.
    13. ItoT, SuzukiA,ImaiE,et al.Bone marrow is a reservoir of repopulating mesangial cells during glomerular remodeling. [J]. J Am SocNephrol, 2001, 12(12): 2625- 2635.
    14. Rookmaaker MB, Smits AM, Tolboom H,et al. Bone - marrow- derived cells contribute to glomerular endothelial repair in experimental glomerulonephritis. [J]. Am J pathol, 2003, 163(2):553– 562
    15. Kwon BK,Fisher CG,Dvorak MF,et al. Strategies to promote Neural repair and regeneration after spinal cord injury. Spine,2005,30(17 Suppl):3-13.
    16. Del Popolo G, Panariello G, Del Corso F, De Scisciolo G, Lombardi G. Diagnosis and therapy for neurogenic bladder dysfunctions in multiple sclerosis patients. Neurol Sci. 2008 Dec;29 Suppl 4:S352-5.
    17.黎鳌,盛志勇,王正国主编.现代战伤外科学.北京:人民军医出版社,1998:856.
    18. Guo JS, Zeng YS, Li HB. Cotransplant of neural stem cells and NT-3 gene modified schwann cells promote the recovery of transected spinal cord injury. Spinal Cord, 2007,45(1): 15-24.
    19. Hofstetter CP, Schwarz EJ , Hess D, et al. Marrow stromal cellsfrom guiding strands in the injured spinal cord and promo terecovery. Proc NatlA cad Sci USA , 2002, 99 (4) : 2199-2204.
    20. Satake K, Lou J , Lenke L G. Migration of mesenchymal stemcells through cerebro spinal fluid into injured spinal cord tissue. Spine, 2004, 29 (18) : 1971-1979.
    21.步星耀,张永福.骨髓间质干细胞移植治疗脊髓损伤.实用诊断与治疗杂志,2004,18 (14) : 259-261.
    22. Ren T, Ren J, Jia X. The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds. Biomed Mater Res A 2005,74:562-569.
    23. Day RM, Boccaccini AR, Maquel V. In vivo characterisution of a novel bioresorbable poly (lactide-co-glycolide) tubular foam scaffold for tissue engineering applications. Mater Sci Mater Med,2004,15:729-734.
    24. Badami AS, Kreke MR, Thompson MS. Effect of fiber diameter on spreading, proliferation,and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials,2006,27:596-606.
    25. Doyeob Kim, Gregory R, Dressler. Nephrogenic Factors Promote Differentiation of Mouse Embryonic Stem Cells into Renal E pithelia. JAm Soc Nephrol, 2005, 16: 3527 - 3534.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700