基于化学活化法的污泥衍生吸附剂的制备及应用基础理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以城市污水生物法处理产生的剩余污泥为原料,针对传统污泥资源化利用过程中的缺点与弊端,采用化学活化方法对城市污水厂剩余污泥进行热解来获得多孔含炭吸附材料,对其制备过程中的相关问题进行了研究,将产生的污泥衍生多孔吸附材料应用到有害气体及废水的处理中,并对应用过程中的有关条件进行了详细研究,开拓出污泥资源化利用的又一新工艺。
     化学活化方法制备污泥衍生吸附材料中,化学活化药剂的选取是制备多孔吸附材料的关键因素。在磷酸、硫酸、ZnCl_2及KOH四种活化药剂中,通过S_(BET)面积、碘的吸附量和亚甲基兰吸附量作为衡量活化药剂性能的因素。实验结果表明,无论从S_(BET)面积还是碘的吸附量以及亚甲基兰的吸附量,都可以看出,磷酸和ZnCl_2作为活化药剂产生的污泥衍生吸附材料性能都明显的好于硫酸和KOH;然后结合磷酸和ZnCl_2作为活化药剂的优缺点,最终确定采用ZnCl_2作为活化药剂。然后,利用正交实验和单因素实验研究了ZnCl_2作为活化药剂产生污泥衍生多孔吸附材料的有关影响因素,包括热解温度、热解停留时间及活化药剂的浓度。证明了活化药剂浓度为3mol/L、热解温度850℃及停留时间60min是最适宜制备污泥衍生多孔吸附材料的。并利用中心复合设计研究了热解停留时间和热解温度对吸附材料的特性参数的影响,证明了正交实验的正确性。活化药剂在污泥制备多孔吸附材料中的作用也通过热重分析进行了研究,研究结果表明,氯化锌对污泥原料中的有机质起润胀、胶溶以至溶解的作用。药液渗透到原料的内部,溶解有机质成分而形成孔隙,使原料中的氢、氧原子以水的形式分离出来,使更多的碳保留在原料中,提高了多孔吸附材料的产率。
     利用热分析仪研究了单纯污泥及经过ZnCl_2活化的污泥在氮气气氛下的热解特性,并结合FTIR光谱对不同阶段的逸出气体进行了研究,实验发现,单纯污泥的热解有明显的3阶段反应,而ZnCl_2活化的污泥热解存在明显的4阶段反应,其各个阶段产生逸出气体是不同的。并对污泥热解反应的机理进行了研究,同时利用微分法对污泥热解反应的机理函数进行了求解。
     材料的有关特性参数对材料的吸附性能有很大的影响。对污泥衍生材料的特性的进一步研究,发现材料无论从外观,形貌及表面酸碱特性都发生了很大的变化,这些参数的变化与热解温度有很大的关系,低温时材料的表面呈酸性,而高温时产生的材料表面呈碱性。另外,通过氮气的吸附可以证明污泥衍生材料的孔隙特性与热解温度、热解停留时间及活化药剂的浓度有很大的关系。通过孔径分
The residual sewage sludge produced through biologic method treatment domestic sewage is taken as raw material, based on the disadvantages of all kinds of traditional sewage sludge treatment, the chemical activation method is applied to paralysis sewage sludge to obtain porous adsorption materials. The correlative problems during the preparation are worked out. And then, the adsorbent derived from sewage sludge is applied to the sulfur dioxide and metal ions treatment process, and the concerned conditions are worked out during the applications, and developed a new process for sewage sludge resource application.The key factor is the selection of the chemical activation reagent during the adsorbent preparation through the chemical activation method. The activation reagent is selected among the Phosphoric acid, Sulphuric acid, Chloride Zinc and Potassium hydroxide, and Sbet, iodine adsorption value and methylene blue adsorption value are taken as the factors to reflect the activation reagent performance, the experimental results show that the effect of the phosphoric acid and Chloride Zinc on materials performances as activation reagent is favourable than sulphuric acid and potassium hydroxide, whether Sbet and iodine adsorption value or methylene blue adsorption value. Where after, combined with other advantages and disadvantages between the phosphoric acid and Chloride Zinc activation, the Chloride Zinc is selected as activation reagent finally. And utilized the orthogonal experiment and single factor experiment to research correlative effect factors of produced porous adsorbent derived from sewage sludge. When ZnCl2 is taken as activation reagent, effect factors include pyrolysis temperature, pyrolysis dwell time and the concentration of activation reagent. The experimental results show that the most feasible conditions to produced adsorbents is the concentration of activation reagent 3mol/L, pyrolysis temperature 850 ℃ and the pyrolysis dwell time 60 min. And utilized center complex design to research the effect of pyrolysis temperature and pyrolysis dwell time on the characteristics of adsorbent derived from sewage sludge, the simulation experimental results show that the correctness of the orthogonal experiment. And then, the function of the activation reagent ZnCl2 is worked out through thermal analysis apparatus, the
    experimental result shows that the function of ZnCl2 is to accelerate the organic component of the sewage sludge wetness and swell, mucus dissolve and dissolution, the reagent solution penetrates to the interior of the sewage sludge and dissolves organic components to produce small opening, and the reagent ZnCl2 can promote the H and O atom production and be separated to become H2O, so more C can be reserved in the sewage sludge to increase the yield of the adsorbent.The thermal analysis apparatus was utilized to study the pyrolysis characteristics of the sewage sludge with ZnCb activation sewage sludge and without ZnCh activation sewage sludge under N2 atmosphere, and combined with FTIR spectrum to research produced gases in all kinds of stages, the experimental results show that the three stages pyrolysis reactions appeared for sewage sludge pyrolysis without ZnCl2 activation, but the four stages pyrolysis reaction appeared for ZnCb activation sewage sludge, and then the pyrolysis mechanism were studied through combined FTIR, simultaneity, the differential coefficient method was applied to question the reaction mechanism functions.The performances of the adsorbent derived from sewage sludge through chemical activation method are mainly affected by the characteristic parameters of the adsorbent including the appearance, shape and the acidic and basic characteristic change and so on. So the keys of the next research are the analysis of characteristic parameters. The experiment shows that the appearance, shape and the acidic and basic characteristics change obviously when pyrolysis temperature changed, these parameters relate to pyrolysis temperature, when the temperature is low, the acidic groups are favorite, and when the pyrolysis temperature is high, the basic groups are favorite. The porous characteristics of adsorbent derived from sewage sludge can be represented through N2 adsorption isotherm, and the porous characteristics are related to pyrolysis temperature, pyrolysis dwell time and the concentration of activation reagent. According to pore diameter distributing curve, it can be obtained that the pore diameter of adsorbent derived from sewage sludge is mainly mesporous. And utilized related apparatus to measure adsorbent density, it is found that the true density is 2.8 g/cm3, the Sbet area is 347 m2/g, the total porous volume is 0.289 cmVg and 0.312cm3/g before and after through hydrochloric acid rinse, respectively, and the microporous volume is 0.0876 cm / g and 0.098 cm3 / g, respectively, before and after through hydrochloric acid rinse, and
引文
[1] 赵庆祥.污泥资源化技术.北京:化学工业出版社,2002:1-2
    [2] 顾夏生,黄铭荣,王占生等.水处理工程.北京:清华大学出版社,1985:159-160
    [3] 万洪云.利用活性污泥制造活性炭的研究.干旱环境监测,2000,14(4):202-206
    [4] 牛樱,陈季华.剩余污泥处理技术进展.工业用水与废水,2000,31(5):4-6
    [5] 熊振湖.我国污水厂污泥的处理与资源化研究.天津城市建设学院学报,1999;5(3):6-9
    [6] 周少奇.城市污泥处理处置与资源化.广州:华南理工大学出版社,2002:1
    [7] 何品晶,顾国维,李笃中.城市污泥处理与利用.北京:科学出版社,2003;39-41
    [8] 肖锦.城市污水处理及回用技术.北京:化学工业出版社,2002;178-189
    [9] 周寿荣.草坪植被与人类环境.成都:四川科学技术出版社,1996;214-256
    [10] 何品晶,顾国维.污水厂污泥热化学转化制油关键技术研究.上海市环境保护科学技术发展基金报告,上海:同济大学,1998:80-82
    [11] 乔显亮,骆永明,吴胜春.污泥的土地利用及其环境影响.土壤,2000,(2):79-85
    [12] 赵丽君,张大群,陈宝柱.污泥处理与处置技术进展.中国给水排水,2001,17(6):23-25
    [13] Tay J H, Hong S Y, Show K Y. Reuse of sewage sludge as palletized aggregate. Journal of Environmental Engineering, 2000, 126(3): 279-286
    [14] Hall J E. Sewage sludge production, treatment and disposal in the European Union. J. Chartered Institution of Water and Environmental Management, 1995, 19(8): 335-343
    [15] 王诗元,崔玉波,王翠兰等.污泥处理技术展望.吉林建筑工程学院学报,2000,14(1):25-28
    [16] 姚刚.德国的污泥利用和处置(Ⅱ)(续).城市环境与城市生态,2000,13(3):24-26
    [17] RAJ Arthur. Sludge disposal where next. W & WT, 1992, 35(9): 135-142
    [18] Bjarne Paulsrud, Kjell Terje Nedland. Strategy for land application of sewage sludge in Norway. Water Science and Technology, 1997, 36(11): 283-290
    [19] Hudson J A. Current Technologies for sludge treatment and disposal. J CIWEM, 1996, 1(2): 10
    [20] 陈鸣.城市污水处理厂污泥最终处置途径探讨.中国给水排水,2000,16(8):23-24
    [21] 袁守军,朱宛华.合肥市污水处理厂污泥处置途径探讨.合肥工业大学学报(自然科学版),2001,24(4):538—542
    [22] 杨朝晖,杨霞.污水处理厂的污泥处置.坏境科学与技术,1995,18(4):40-42
    [23] Hanbivlvardi K R. Sludge ash as fine aggregate for concrete mix. Journal of Environmental Engineering, 1995, 101(9): 635-638
    [24] Okuno Nand Takahashi S. Full scale application of manufacturing bricks from sewage. Water Science and Technology, 1997, 36(11): 243-250
    [25] Endo H. Production of glass ceramics from sewage sludge. Water Science and Technology, 1997, 36(11): 235-241
    [26] Reale R J. Sludge reuses strategies changing. Environmental Protection, 1981, 2(1): 20-25
    [27] EPA. Process Design Manual: Land Application of Municipal sludge, PB90-187048, Department of Commoner, Land Technical Information Service 1983
    [28] Wang Min Jin. Land application of sewage sludge in China. The Science of the total Environment, 1997, 197(1-3): 149-160
    [29] 莫测辉,吴启堂,蔡全英等.论城市污泥资源化与可持续发展.应用生态学报,2000,11(1):157-160
    [30] 朱小山,孟范平,赵希锦.城市污泥的处理技术及资源化展望.四川环境,2002,21(4):8-12
    [31] 周立祥,胡蔼常,戈乃玢等.城市污泥土地利用研究.生态学报,1999,19(3):185-193
    [32] 郭媚兰,田若淘,王雁卿等.城市污泥和污泥垃圾堆肥作为肥源对作物重余属积累的影响.农业环境保护,1995,14(2):67-71
    [33] 周立祥.胡霭堂.戈乃玢.苏州市生活污泥成分性质及其对蔬菜和菜地土壤的影响.南京农业大学学报,1994,17(2):54-59
    [34] Keefer R F. Metal-organic associations in two extracts from nice soils amends with three sewage sludge. Agriculture, Ecosystem and Environment, 1994, 16(5): 151-165
    [35] Hall J E. Soil ingestion of sewage sludge and animal slurries. Fertilizer, 1988, 22(4): 63-68
    [36] 张天红,薛澄泽.西安市污水污泥林地施用效果的研究.西北农业大学学报,1994,22(2):67-71
    [37] 张增强,薛澄泽.几种草本植物对污泥堆肥的生长响应研究.西北农业大学学报,1996,24(1):65-69
    [38] 林春野,董克虞,李萍.污泥农用对土壤及作物的影响.农业环境保护,1994,13(1):23-25
    [39] 谭启玲,胡承孝,赵斌等.城市污泥的特性及其农业利用现状.华中农业大学学报,2002,21(6):587-592
    [40] 曹仁林,霍文瑞,贾晓葵.园林绿地施用污泥堆肥对环境影响研究.环境科学研究,1997,10(3):46-50
    [41] McLaren R G, Taylor M, Hendry T, et al. Leaching of metals and nutrients from soils treated with metal-amended sewage sludge. In: Currie L Ded. Best Management Practices for Production. Palmereston North, New Zealand: Massey University, 1999: 251-260
    [42] 城市污泥施入土壤后营养元素的淋洗及对土壤肥力和地下水的影响,中国土壤学会第九次代表大会论文集,山西土壤学会,1999:1182-1187
    [43] 邱宏俊,郝以琼.国外污泥处置技术.重庆建筑大学学报,1998,20(6):12
    [44] Kelly W D, Martens D C, Simpson T W. Agriculture use of Sewage Sludge: A Literature Review Virginia polytechnic institute and state university, 1984: 16-18
    [45] 蒋成爱,黄国锋,吴启堂.城市污水污泥处理利用研究进展.农业环境与发展,1999,16(1):13-17
    [46] 薛栋森.美国污水污泥的研究和利用概述.国外农业环境保护,1991,(1):20
    [47] 张天红.市政污泥用于城市绿化的可行性研究.环境杂志,1992,(1):44
    [48] 张增强.污泥堆肥对几种花卉的生长影响研究.环境污染与控制,1996,18(5):1-4
    [49] 邓晓林,王国华,任鹤云.上海城市污水处理厂的污泥处置途径探讨.中国给水排水,2000,16(5):19-22
    [50] 尹军,谭学军,张立国.城市污水污泥的土地利用.吉林建筑工程学院学报,2003,20(1):1-6
    [51] 张自杰,林荣忱,金儒霖.排水工程(第四版).北京:中国建筑工业出版社,1999:296-299
    [52] 张清敏,陈卫平,胡国臣等.污泥有效利用研究进展.农业环境保护,2000,19(1):58-61
    [53] Okazawa K, M Henmi and K. Sota. Energy Saving in sewage sludge Incineration with Indirect Heat Drying. In: Processing of 1986 National Waste Processing Conference. Denver, ASME, 1986, 177-191
    [54] Bayer B and Kutubuddin M. Temperature conversion of sludge and Waste to Oil from: KJ thome—Kozmiendsy, Eds. Proceedings of the International Recycling Congress. Berlin: EF Verlag, 1978: 314-318
    [55] Campbell H W. Sewage Sludge Treatment and Use: New Development. London: Elsevier Applied Science, 1989: 281-290
    [56] Bridle T R, Hammerton I, Hertle C K. Control of heavy metals and organochlorines using the oil from sewage process. Wat. Sci. Tech., 1990, 22(12): 249-258
    [57] Frost R C, Bruce A. M. Alternative Uses for Sewage Sludge. Oxford: Pergamon Press, 1991: 323-341
    [58] 何品晶,顾国维,邵立明等.污水污泥低温热解处理技术研究.中国环境科学,1996,16(4):254-257
    [59] 欧国荣,陈奇洲,生活水污泥油化试验研究.环境污染与防治,1996,18(4):20-21
    [60] 何品晶,邵立明,陈正夫等.污水厂污泥低温热化学转化过程机理研究.中国环境科学,1998,18(1):39-42
    [61] 胡光坝,洪云希.城市污泥合成燃料的应用研究.中国给水排水,1996,12(2):13-15
    [62] 汪恂.污泥热化学处理的试验研究.武汉理工大学学报,2002,24(6):35-37
    [63] Shen Lilly, Zhang Dong-Ke. An experimental study of oil recovery sewage sludge by low temperature pyrolysis in a fluidised-bed. Fuel, 2003, 82(4): 455-472
    [64] Dominguez A, Menendez J A, Inguanzo M, et al. Gas chromatographic-mass spectrometric study of the oil fractions produced by microwave-assisted pyrolysis of different sewage sludges. Journal of Chromatography A, 2003, 1012(2): 193-206
    [65] 邵立明,何品晶,李国建.污水厂污泥低温热解过程能量平衡分析.上海环境科学,1996,15(6):19-21
    [66] 何品晶.城市污水处置厂污泥直接热化学液化处理技术.环境科学,1999,16(4):75-80
    [67] Holliday J. The effect of surplus activated sludge on the sludge thickening strategy for a large sewage-treatment works, In European conf. on sludge and organic waste, University of Leeds, 1994: 4-12
    [68] 王敦球,谢庆林,李金城.城市污水污泥农用资源化研究.重庆环境科学,1999,21(6):50-52
    [69] 国家环境保护局编.水污染防治及城市污水资源化技术(成果汇编).北京:科学出版社,2002:220-235
    [70] 唐黎华,朱子彬,赵庆祥.活性污泥作为汽化用型煤黏结剂—污泥在粉煤灰中的分散性与型煤质量的关系.华东理工大学学报,1998,24(5):506-509
    [71] 唐黎华.活性污泥作为气化用型煤黏结剂的研究.环境科学学报,1999,19(1):87-90
    [72] 蔡文金.城市污泥的处理利用的探索.环境工程,1991,9(4):22-23
    [73] Hudson J A. Treatment and disposal of sewage sludge in the mid-1990s. JCIWEN, 1995, 9(3): 93-99
    [74] 朱建平,常钧,芦令超等.利用城市垃圾、污泥烧制生态水泥.硅酸盐通报,2003,22(2):57-61
    [75] Heart S. Protecting the environment from waste disposal: the cement kiln option. Environmental Protection Engineering, 1997, 23(1): 25-35
    [76] 卞华松,张仲燕,刘芝玲.有机污泥改制含炭吸附剂工艺及应用.环境科学,1999,20(6):56-59
    [77] Chiang P C, You J H. Use of sewage sludge for manufacturing adsorbents. J. Chem. Eng. (Canada), 1987, 65(3): 922-930
    [78] Chen Xiaoge, Jeyaseelan S. Study of sewage sludge pryolysis mechanism and mathematical modeling. Journal of Environmental Engineering, 2000, 126(7): 585-592
    [79] Lu G Q, Low J F, Liu C Y, et al. Surface area development of sewage sludge during pyrolysis. Fuel, 1995, 74(3): 344-348
    [80] Lu G Q, Lau D D. Characterization of sewage sludge-derived adsorbents for H_2S removal. Part 2: Surface and pore structural evolution in chemical activation. Gas Sep. Purif., 1996, 10(2): 103-111
    [81] Jeyaseelan S, Lu Gao Qing. Development of Adsorbent/Catalyst from Municipal Wastewater Sludge. Wat. Sci. Tech., 1996, 34(3-4): 499-505
    [82] Lu (max) G Q. Preparation and Evaluation of Adsorbents from Waste Carbonaceous Materials for SOx and NOx Removal. Environmental Progress, 1995, 15(1): 12-18
    [83] Tay J H, Chen X G, Jeyaseelan S, et al. A Comparative Study of Anaerobically Digested and Undigested sewage sludges in Preparation of Activated Carbon. Chemosphere, 2001, 44(1): 53-57
    [84] Sutherland J. Preparation of activated carbonaceous materials from sewage sludge and sulfuric acid. U. S. Patent 3,998,757(1976)
    [85] Lewis F M. Method of pyrolyzing sewage sludge to produce activated carbon. US Patent 4,122,036(1977)
    [86] Chiang Hung Lung, Chao Ching Guan, Shih-Yu Chen. The Reuse of Biosludge as an Adsorbent from a Petrochemical Wastewater Treatment Plant. J. Air & Waste Manage. Assoc., 2003, 53(9): 1042-1051
    [87] Nasrin R. Khalili, Marta Campbell, Giselle Sandi, et al. Production of Micro- and Mesoporous activated carbon from paper mill sludge Ⅰ. Effect of zinc chloride activation. Carbon, 2000, 38(14): 1905-1915
    [88] 吴键,乔华.利用污水污泥制取活性炭的试验研究.见:给水与废水处理国际会议论文集.1994:7-12
    [89] 马志毅,侯红娟,刘瑞强等.污水厂污泥作为吸附剂的试验研究.中国给水排 水,1997,13(4):10-13
    [90] 卞华松,张仲燕,刘芝玲.有机污泥改制含碳吸附剂工艺及应用.环境科学,1999,19(6):56-59
    [91] 胡华龙,韩梅,黄秉禾等.利用石化污泥生产新型除油吸附剂的试验研究.交通环保,2001,22(4):12-14
    [92] Lu D D. Development of adsorbent from waste materials for air pollution control: [dissertation]. Singapore: Nanyang Technological University, 1994:85-94
    [93] Bagreev A, Bashkova S, Locke D C, et al. Sewage Sludge-Derived Materials as Efficient Adsorbents for Removal of Hydrogen Sulfide. Environ. Sci. Technol., 2001, 35(17): 1537
    [94] Andrey Bagreeve, Teresa J, Bandosz. H_2S Adsorbent/Oxidation on Materials Obtained Using Sulfuric Acid Activation of Sewage sludge-Derived Fertilizer. Journal of Colloid and Interface Science, 2002, 252(1): 188-194
    [95] Otero M, Rozada K Calvo L F, et al. Elimination of organic water pollutions using adsorbents obtained from sewage sludge. Dyes and Pigments, 2003, 57(1): 55-56
    [96] Rozada F, Calvo L F, Carcia A I. Dye adsorption by sewage sludge-based activated carbons in batch and fixed-bed systems. Bioresource Technology, 2003, 87(3): 221-230
    [97] Maria J Martin, Adriana Artola, M. Dolors Balaguer, et al. Activated carbons developed from surplus sewage sludge for the removal of dyes from dilute aqueous solutions. Chemical Engineering Journal, 2003, 94(3): 231-239
    [98] Otero M, Rozada F, Calvo L F, et al. Kinetic and equilibrium modelling of the methylene blue removal from solution by adsorbent materials produced from sewage sludge. Biochemical Engineering Journal, 2003, 15(1): 59-68
    [99] Jain A K, Suhas, Bhatnagar A. Methylphenols Removal from Water by Low Cost Adsorbents. Journal of Colloid and Interface Science, 2002, 251(1): 39-45
    [100] Graham N, Chen XG, Jeyaseelan S. The potential application of activated carbon from sewage sludge to organic dyes removal. Water Sci. Technol., 2001, 34(2): 245-252
    [101] 杨昌竹.环境工程原理.北京:冶金工业出版社,1998:221-244
    [102] 朱步瑶.界面化学基础.北京:化学工业出版社,1993:189-196
    [103] 陈中兰.固体吸附剂在环保中的应用.四川师范学院学报,1997,18(3):142-145
    [104] 章艳豪.吸附作用.上海:上海科学技术出版社,1989:210-247
    [105] 江口良友.分子筛作用持活性炭.化学工场,1969,13(9):49
    [106] 凯利H,巴德E.活性炭及其工业应用.北京:中国环境科学出版社,1990;46
    [107] 芮延年,刘文杰.活性炭纤维滤布与吸附机理的研究.黄金,2000,21(4): 34-45
    [108] 李立清.吸附与变压吸附处理挥发性有机蒸汽的实验与理论研究.[湖南大学博士学位论文].湖南:湖南大学环境科学与工程系,2004:14-15
    [109] 允庄,刘震.Nax沸石吸附剂的性能与应用.上海交通大学学报,2001,35(5):729-731
    [110] 田建民.生物吸附法在含重金属废水处理中的应用.太原理工大学学报,2000,31(1):74-77
    [111] 黄民生,郑乐平.微生物对重金属的吸附与解吸.化工装备技术,2000,21(2):17-22
    [112] Geene B. Interaction of Gold (Ⅰ) and gold (ⅱ) Complexes with Algat Biomass. Environ. Sci. Technol., 1986, 20(4): 627-632
    [113] Tsezos M. A batch reactor mass transfer kinetic model for immobilized biomass biosorption. Bioteehnol. Bioeng., 1998, 32(4): 545-550
    [114] Mark Spinti. Evaluation of immobilized biomass beads for removing heavy metals from wastewaters. Water Environment Research, 1995, 67(6): 943-952
    [115] 郑礼胜,王士龙.矿渣对废水中铅、铬的吸附去除实验.上海环境科学,1999,18(4):165-172
    [116] 叶正华.化工吸附分离过程.北京:中国石化出版社,1992,311-320
    [117] Weiner Kast. Adsorption aus der Gasphase. Weinheim Verlag, Berlin, 1998: 197-206
    [118] Ariyadejwanich P, Tanthapanichakoon W, Nakagawa K., Mukai S R, Tamon H. Preparation and characterization of mesoporous activated carbon from waste tires. Carbon, 2003, 41(1): 157-164
    [119] Bernardo E C, Egashira R, Kawasaki. J. Decolorization of molasses' wastewater using activated carbon prepared from cane bagasse. Carbon, 1997, 35(9): 1217-1221
    [120] Tsai W T, Chang C Y, Lee S L. A low cost adsorbent from agricultural waste corncob by zinc chloride activated carbon. Bioresource Technology, 1998, 64(3): 211-216
    [121] Guo Jia, Lua Aik Chong. Microporous activated carbons prepared from palm shell by thermal activation and their application to sulfur dioxide adsorption. Journal of Colloid and Interface Science, 2002, 251(1): 242-247
    [122] Helleur R, Popovic N, Ikura M, et al. Characterization and potential applications of pyrolytic char from ablative pyrolysis of used tires. Journal of Analytical and Applied Pyrolysis, 2001, 58-59(not defined): 813-824
    [123] Tay T J, Chen X G, Jeyaseelan S, et al. Optimising the preparation of activated carbon from digested sewage sludge and coconut husk. Chemosphere, 2001, 44(1): 45-51
    [124] Tsai W T, Chen H P, Lai C W, et al. Preparation of adsorbents from sugarcane manufacturing by-product filter-mud by thermal activation. Journal of Analytical and Applied Pyrolysis, 2003, 70(2): 399-411
    [125] Guo Jia, Lua Aik Chong. Textural and Chemical Characterizations of Adsorbent Prepared from Palm Shell by Potassium Hydroxide Impregnation at Different Stages. Journal of Colloid and Interface Science, 2002, 254(1): 227-233
    [126] Chen Xiaoge, Jeyaseelan S, Graham N. Physical and chemical properties study of activated carbon made from sewage sludge. Waste Management, 2002, 22(7): 755-760
    [127] Rozada F, Calvo L. F, Garcia A I, et al. Dye adsorption by sewage sludge-based activated carbons in batch and fixed-bed systems. Bioresource Technology, 2003, 87(3): 221-230
    [128] 北川浩,北川睦夫.日本活性炭生产的工艺流程.化学装置,1978,20(9):75-79
    [129] 国外活性炭,中国林业科学研究院林产化学工业研究所第七研究室编,北京:中国林业出版社,1984:93-98
    [130] 北川睦夫,柳井弘.日本活性炭工业.1975:29-40
    [131] J. A. Menendez, M. Inguanzo, L. J. Pis. Microwave induced pyrolysis of sewage sludge. Water Research, 2002, 36(9): 3261-3264
    [132] Kriegerbrocjett B. Microwave pyrolysisi of biomass. Res. Chem. Intermed., 1994, 20 (1): 39-49
    [133] Caballero J A, Front R, Marcilla A. Characterization of sewage sludges by primary and secondary pyrolysis. Journal of Analytical and Applied Pyrolysis, 1997, 40-41(not defined): 433-450
    [134] Calvo L F, Otero M, Moran A, et al. Upgrading sewage sludge for adsorbent preparation by different treatments. Bioresource Technology, 2001, 80(2): 143-148
    [135] Martin M J, Balaguer M D, Rigolar M. Feasibility of activated carbon production from biological sludge by chemical activation with ZnCl_2 and H_2SO_4. Environ. Technol. 1996, 17(4): 667-672
    [136] Gonzalez J C, Sepulveda-Escribano A, Molina-Sabio M, et al. Characterization of porous Solids, vol. Ⅳ. The Royal Society of Chemistry, Cambridge, 1997: 9-16
    [137] Molina-Sabio M, Rodroguez-Reinoso F, Caturla F, et al. Porosity in granular carbons activated with phosphoric acid. Carbon, 1995, 33(8): 1105-1113
    [138] Wigmans T. Industrial aspects of production and use of activated carbon. Carbon, 1989, 27(2): 13-22
    [139] Lopez-Gonzalez J D, Valenzuela-Calahorro C, Navarreteguijosa A, et al. Carbonisation of olive wood: Evoluation of surface area and porosity with treatment temperature. Adsorp. Sci. Tech. 1986, 4(3): 41-48
    [140] Bansal T, Donnet J B, Stoeckli F. Active carbon. New York: Dekker, 1988:163-172
    [141] Smisek M, Cerny S. Active Carbon: Manufacture, Properties and Applications. Amsterdam: Elsevier, 1970
    [142] Jankowska H, Swiathowski, Choma A. Journal of Activated Carbon. Ellis Horwood, 1991
    [143] Bevia F R, Rico D P, Gomis, et al. Activated carbon from Almond shells: Chemical activation, activateding reagent selection and variables influence. Ind. Eng. Chem. Prod. Res. 1984, 23(2): 266-269
    [144] Catural F, Molina-Sabio M, Rodriguez-Reinoso F. Preparation of activated carbon by chemical activation with zinc chloride. Carbon, 1991, 29(3): 999-1007
    [145] 王同华,朱英华,徐铭等.废植物炭制备活性炭的研究.大连理工大学学报,1999,39(1):73-76
    [146] 高尚愚,周建斌,左宋林等.碘值、亚甲基兰及焦糖脱色力与活性炭孔隙结构的关系.南京林业大学学报,1998,22(4):23-27
    [147] 煤质颗粒活性炭试验方法.北京:中国标准出版社.1997:32-66
    [148] 杨润昌,周书天.石油炼厂废水污泥硫酸催化炭化研究.环境科学,1996,17(4):54-57
    [149] 柳丽芳,赵树昌,邓贻钊.废水污泥催化研究.环境科学,1990,11(2):45
    [150] 杨润昌,周天书.硫酸对草浆造纸黑液催化作用的研究.环境科学,1994,15(5):46
    [151] 戴安邦等.无机化学教程(上册).北京:人民教育出版社,1958:220-228
    [152] 万洪云.利用活性污泥制造活性炭的研究.干旱环境监测,2000,14(4):202-205
    [153] 中华人民共和国国家标准GB/T13803-92、13804-92、13805-92
    [154] Marc R, Stammbach, Bruno Kraaz, Roland Hagenbucher, et al. Pyrolysis of sewage sludge in a fluidized bed. Energy & Fuels, 1989, 3: 255-259
    [155] Jun'ichi Hayashi, Atsuo Kazehaya, Katsuhiko Muroyama, et al. Preparation of activated carbon from lignin by chemical activation. Carbon, 38(13): 1873-1878
    [156] 周润兰,喻胜华.应用概率统计.北京:科学出版社,1999:211-235
    [157] 张德见,魏先勋,曾光明等.化学活化法制取污泥衍生吸附剂的实验研究.安全与环境学报,2003,3(5):44-46
    [158] Box G; Hunter W G; Hunter J S. Statics for experimenters an introduction to design, data analysis and model building. New York: Wiley, 1978:306-604
    [159] Rivera-Utrilla J, Utrera-Hidalgo E, Ferro-Garcia M A, et al. Comparison of activated carbons prepared from agricultural raw materials and Spanish lignites when removing chlorophenols from aqueous solutions. Carbon, 29(2): 613-619
    [160] Wachter R, Cordery A. Response surface methodology modeling of diamond-like carbon film depositions. Carbon, 1999, 37(10): 1529-1537
    [161] Bacaoui A, Yaacoubi A, Dahbbi A. Optimization of conditions for the preparation of activated carbons from olive-waste cakes. Carbon, 2001, 39(3): 425-432
    [162] 蒙哥马利著(汪仁官,陈荣昭译).实验设计与分析.北京:中国统计出版社,1998:602-610
    [163] Mayers R H, Montgomery D C. Response surface methology: process and production optimization using designed experiments. New York: John Wiley & Sons, 1995
    [164] Wu D F, Li Y D, Zhang J P, et al. Effects of the number of testing speciments and the estimation methods on the weibull parameters of solid catalysts. Chemical Engineering Science, 2001, 56(24): 7035-7044
    [165] Doehlert D H. Uniform shell designs. Applied Statistics, 1986, 19(3): 231-239
    [166] Zhu W Y, Duan X D, Tang M. The application of the optimization design in industry. Shenyang: Liaoning Science & Technology Press, 1993:185-192
    [167] Zhai yunbo, Wei xianxun, Zeng guangming. Effect of pyrolysis temperature and hold time on the characteristic parameters of adsorbent derived from sewage sludge. Journal of Environmental Sciences, 2004, 16(4): 683-686.
    [168] Chen Xiaoge, Jeyaseelan S. Study of sewage sludge pyrolysis mechanism and mathematical modeling. Journal of Environmental Engineering, 2001, 7: 585-592
    [169] Shinji Itoh, Akira Suzuki, Tadashi Nakaura et al. Production of heavy oil from sewage sludge by direct thermochemical liquefaction. Desalination, 1994, 98(1-3): 127-133
    [170] Conesa J A, Marcilla A, Prats D et al. Kinetic study of the pyrolysis of sewage sludge. Waste Management & Research, 1997, 15(3): 293-305
    [171] Dumplemann R, Richarz W, Stammbach W M R Kinetic studies of the sewage sludge by TGA and comparison with fluidized beds. J. Chem. Eng. (Canada), 1991, 64(9): 953-963
    [172] 翟云波,魏先勋,曾光明等.氮气气氛下城市污水厂污泥热解特性.现代化工,2004,24(2):36-38
    [173] 刘振海,化学分析手册.北京:化学工业出版社,2000:46-51
    [174] 陈继东,华卡龙,孙路石等.污水污泥的燃烧特性.燃烧科学与技术,2001,7(3):271-274
    [175] 王红,周浩生,孙学信等.应用TGA-FTIR研究污泥与煤的热解规律.华中理工大学学报,1999,27(9):38-40
    [176] Ahuja P, Singh P C, Upadhyay S N, et al. Kinetics of biomass and sewage sludge pyrolysis: Thermogravimetric and sealed reactor studies. Int. J. Chem. Technol., 1996, 25(3): 306-312
    [177] 刘振海.化学分析手册—热分析.北京:化学工业出版社,2000;255-289
    [178] 陈镜泓,李传儒.热分析及其应用.北京:科学出版社,1985:336-348
    [179] 赵由才,宋立杰,张华.实用环境工程手册(固体废物污染控制与资源化).北京:化学工业出版社,2002:255-268
    [180] 李昌贤.煤质活性炭.北京:煤炭工业出版社,1993;147-152
    [181] Duggan O, Allen, S J. Study of the physical and chemical characteristics of a range chemically treated, lignite, based carbons. Wat. Sci. Tech., 1997, 35(7): 21-27
    [182] 范延臻,王宝贞.活性炭表面化学.煤炭转化,2000,23(4):26-30
    [183] Tessmer C H, Vidic R D, Uranowski L J, et al. Impact of oxygen containing surface functional groups on activated carbon adsorption of phenols. Environ. Sci. Technol., 1997, 31(12): 1872-1878
    [184] Suzuki M. Adsorption engineering. Amsterdam: Elsevier, 1990: 356-392
    [185] 严继民,张启元.吸附与凝聚—固体的表面与孔.北京:科学出版社,1979,120-133
    [186] Tsai W T, Chang C Y, Lin M C, et al. Adsorption of acid dye onto activated carbons prepared from agricultural waste bagasse by ZnCl_2 activation. Chemosphere, 2001, 42(1): 51-58
    [187] M.杰罗尼克,R.麦狄著,加珞,程代云,王广昌译.非均匀固体上的物理吸附.北京:化学工业出版社,1997:311-342
    [188] 张力,刘伟.活性炭吸附烟气脱硫的展望.辽宁化工,1996,5:16-17
    [189] 倪建宁,洪业汤.原煤燃烧前脱硫技术的研究进展.地质地球化学,1997,24(3):64-69
    [190] 大连化物所八0二组.活性炭催化剂用于消除和回收烟气中的低浓度二氧化硫.催化学报.1982,3(2):198-204
    [191] 郝吉明,马广大.大气污染控制工程.北京:高等教育出版社,2002:336-348
    [192] 电源开发(株).活性炭式干式同时脱硫脱销技术资源化环境对策,1994,30(7):46-47
    [193] 冯治宇,金应培.活性炭吸附法脱除烟气中SO_2的实验研究.环境保护科学,1994,20(4):37-39
    [194] Ruhland F. The kinetics of the absorption of sulfur dioxide in calcium in calcium hydroxide suspension. Chem. Eng. Sci., 1991, 46(4): 939-947
    [195] 姚玉英.化工原理.天津:天津科学技术出版社,1999:352-395
    [196] Paolo D. The effect of certain metallic derivatives on the adsorption of sulfur dioxide on activated carbon. Carbon, 2001, 39(2): 419-424
    [197] Zhai yunbo, Wei xianxun, Zeng guangming, et al. Effects of metallic derivatives in adsorbent derived from sewage sludge on adsorption of sulfur dioxide. Journal of Central South University of Technology, 2004, 11(1): 55-58.
    [198] Daley M A, Mangun C L, DeBarr J A et al. Adsorption of SO_2 onto oxidized and heat-treated activated carbon fibers (ACFS). Carbon, 1997, 35(3): 411-417
    [199] Moreno-Castilla C, Carrasco Marin F, et al. Effect of non-oxidant and oxidant acid treatments on the surface properties of an activated carbon with very low ash content. Fuel, 1997, 36(2): 145-151
    [200] Mangun C L, Daley M A, Braatz R D, et al. Effect of pore size on adsorption of hydrocarbons in phenolic-based activated carbon fibers. Carbon, 1998, 36(1-2): 123-129
    [201] 程振民,蒋正兴.活性炭脱硫研究(Ⅰ):SO_2-N_2-O_2体系中SO_2的氧化反应机理.环境科学学报,1997,17(3):268-272
    [202] 程振民,蒋正兴.活性炭脱硫研究(Ⅱ):水蒸气存在下SO_2氧化反应机理.环境科学学报,1997,17(3):273-277
    [203] 吉林大学化学系《催化作用基础》编写组.催化作用基础,北京:科学出版社,1983:310-311
    [204] 王绍文,姜风有.重金属废水治理技术.北京:冶会工业出版社,1993:12-16
    [205] 丁明,曾恒兴.铁氧体工艺处理含重金属污水现状及展望.环境科学,1992,13(7):59-62
    [206] Cheng Jiayong, Yun Shuqiu, Liu Huizhou, et al. New mixed solvent systems for the extraction and separation of ferric ion in sulphate solutions, Hydrometallurgy, 1992, 30(1-3): 401-408
    [207] Bleam W F, Mcdride M B. Chemistry of adsorption Cu (Ⅱ) in aqueous titanium dioxide suspensions. Journal of Colloid and Interface Science, 1985, 115(2): 335-346
    [208] Takeda M, Koizomi J, Matsuora H, et al. Factors affecting the activity of fermentation and bioflocculant produced by nocardia amarae. Journal of Fermentation and Bioengineering, 1992, 74(6): 408-409
    [209] Domingues L. Construction of a flocculent Saaharomyces cereoisial fermenting lactose. Appl. Microbiol. Biotechnol., 1999, 51(5): 621-626
    [210] Zhai yunbo, Wei xianxun, Zeng guangming, et al. Study of adsorbent derived from sewage sludge for the removal of Cd~(2+), Ni~(2+) in aqueous solutions. Separation and Purification Technology, 2004, 38(2): 191-196
    [211] Kadirvelu K, Thamaraiselvi K, Namasivayam C. Adsorption of nickel from aqueous solution onto activated carbon prepared from coirpith. Separation and Purification

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700