喜树幼苗氮代谢和喜树碱代谢对不同氮素营养的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喜树(Camptotheca acuminata)是中国特有树种,因其次生代谢产物喜树碱具有显著的抗癌和抗反转录病毒活性而备受关注。本文研究了不同氮素水平和形态下砂培喜树幼苗生长发育过程中氮素及喜树碱代谢的动态变化过程,分析了喜树幼苗氮素及喜树碱代谢对环境氮素营养的响应,总结和探讨了提高喜树幼苗幼叶中喜树碱含量的氮素营养条件。研究结果可为喜树次生代谢与环境关系的研究提供基础资料,对于以获取高含量喜树碱为目的的喜树培育等生产实践也有一定的指导意义。研究的主要结果如下:
     1.施氮显著提高了喜树幼苗生物量,16 mmol·L~(-1)为适合喜树幼苗生长的供氮水平。氮供给不足时,喜树幼苗的根系优先生长,以增强养分吸收能力。施氮也明显提高喜树幼苗的氮浓度,叶片的氮浓度最高,随氮素水平增加的变化幅度也最大,说明施氮促进幼苗对氮的吸收,并且优先分配给叶片。营养液中NO_3~--N比例的增加有利于喜树幼苗生长,NH_4~+-N/NO_3~--N为25/75时幼苗生物量最大,NO_3~--N为唯一氮源时又下降,单一NH_4~+-N下生物量显著降低。同样,NH_4~+-N/NO_3~--N为25/75时喜树幼苗吸收更多的氮,植株体内养分积累也最多。
     2.随着氮素供给的增加,喜树幼苗叶绿体色素、可溶性蛋白含量、叶片硝酸还原酶(NR)和谷氨酰胺合成酶(GS)活性显著增加(根中酶活性远低于叶片),但继续提高(32 mmol·L~(-1))时喜树幼苗并未积累更多的可溶性蛋白。叶片NR和GS活性在处理中前期较高,而在后期相对下降。营养液中NO_3~--N比例增加可显著诱导叶片的NR活性,NH_4~+-N/NO_3~--N为50/50的GS活性最大,而NH_4~+-N/NO_3~--N为25/75的最有利于叶绿体色素和可溶性蛋白的合成与积累。
     3.喜树幼苗幼叶的喜树碱含量随氮素水平的增加而明显减小,氮素水平为4mmol·L~(-1)时幼叶的喜树碱含量最高(6.72‰),是16 mmol·L~(-1)的1.1倍。适当的低氮胁迫能够显著地增加喜树幼苗幼叶的喜树碱含量。NH_4~+-N/NO_3~--N为25/75时最有利于喜树碱在幼叶中的合成和积累,且在处理的前30天呈上升趋势而随后下降。短期NH_4~+-N/NO_3~--N为25/75的处理可诱导幼叶中高含量的喜树碱。
     4.喜树幼苗的色氨酸合酶(TSB)活性以幼叶最高,茎皮、成叶和根依次减弱,并且与喜树碱含量呈现良好的器官对应性。色氨酸脱羧酶(TDC)活性的最高部位为茎皮,其次为幼叶,成叶和根的很低,与喜树碱含量缺乏器官对应性。幼叶的TSB活性随时间进程先升后降再趋于平稳。后期在不同浓度氮素处理间差异不显著。茎皮的TDC活性随时间进程持续下降,且随着氮素水平降低而明显增加,氮素水平为4 mmol·L~(-1)
Camptotheca acuminata, a tree species native to China, has gained great attention for its secondary metabolites camptothecin (CPT) which has remarkable anticancer and antiretrovirus activities. The change of nitrogen and CPT metabolism during the development of the seedlings supplied with different nitrogen concentrations and forms were studied by sand culture, and its responses to environmental nitrogen were analyzed. The nitrogen nutrition conditions to increase the CPT concentration in seedlings young leaves were also summarized and discussed. The results may provide some basic information for the research of the relationship between secondary metabolism in C. acuminata and its environment, and they also have some guidance significance in the practice of C. acuminata cultivation in order to gain high CPT concentration. The main results are as follows.1. Increase nitrogen supply significantly increased biomass of C. acuminata seedlings, 16 mmol.L~(-1) may be the optimal nitrogen concentration for the seedlings growth. When the seedlings were supplied with deficient nitrogen, the growth of roots was preferential to absorb more nitrogen nutrition. Increase nitrogen supply significantly increased nitrogen concentration in the seedlings, and leaf nitrogen concentration was highest and had the most change extent with the increase of nitrogen supply, which suggest increase nitrogen supply may enhance the seedlings to absorb more nitrogen nutrition and preferentially partition to the leaves. Increase NO3-N ratio in nutrition solution was of advantage to the seedlings growth, the biomass was highest when NH_4~+-N/NO_3~--N ratio was 25/75, and decreased when NO_3~--N was the sole nitrogen source, and significantly reduced when the seedlings were supplied only with NH_4~+-N. Similarly, the seedlings absorbed more nitrogen nutrition and accumulated the most nutrition when NH_4~+-N/NO_3~--N ratio was 25/75.2. Pigments, soluble protein, nitrate reductase (NR) and glutamine synthetase (GS) activities in leaves significantly increased with the increase of nitrogen supply (enzyme activity in roots was far lower than that in leaves), but excessive nitrogen supply (32 mmol . L~(-1)) didn't result in more soluble protein in the seedlings. NR and GS activities in leaves were relatively higher during early and middle stage of treatment, while relatively declined during late stage of treatment. Increase NO_3~--N ratio in nutrition solution may significantly induced leaf NR activity, the highest GS activity presented when NH_4~+-N/NO_3~--N ratio was 50/50, while the optimal nitrogen conditions (NH_4~+-N/NO_3~--N ratio was 25/75) was the most advantageous for pigments and soluble protein accumulation.3. CPT concentration in seedlings young leaves obviously declined with the increase of nitrogen supply, and it was the highest (6.72‰) when nitrogen supply was 4 mmol . L~(-1), equal to 1.1 times of that when nitrogen supply was 16 mmol . L~(-1). Proper deficient nitrogen stress can significantly increase the CPT concentration in seedlings young leaves. When NH_4~+-N/NO_3~(-1)-N ratio was 25/75, CPT accumulation in young leaves displayed the best advantages
    and increased in the early 30 days of treatment and then declined. A short-term treatment that NH4+-N/NO3-N ratio was 25/75 may gain high CPT concentration in young leaves.4. Tryptophan synthase (TSB) activity was the highest in young leaves and decreased sequentially in the stem bark, the mature leaves and the roots, which paralleled to CPT concentration. Tryptophan decarboxylase (TDC) activity was the highest in the stem bark, then in the young leaves, and the lowest in the mature leaves and the roots, which didn't parallel to CPT concentration. TSB activity increased and then declined to constant level with the time course. There was no significant difference between different nitrogen concentration treatments at late stage of treatment. TDC activity in stem barks decreased continuously along with treatment days increasing, and presented obvious increase with decrease nitrogen supply, and it was the highest when nitrogen supply was 4 mmol ? L"1. There was some parallelism between TDC activity in stem barks and CPT concentration in young leaves. TDC activity in the stem bark was the highest when NH/-N/NCV-N ratio was 25/75, and the change of TDC activity paralleled to CPT concentration in young leaves.To sum up, 16 mmol ? L"1 may be the optimal nitrogen concentration for the growth of C. acuminata seedlings, whease CPT concentration in young leaves was the highest when nitrogen supply was 4 mmol ? L"1. The optimal nitrogen conditions (NH4+-N/NO3-N ratio was 25/75) for seedlings growth was also the best advantageous for CPT accumulation. Therefore, it is an efficient method to increase CPT concentration in young leaves that proper short-term nitrogen deficient stress was conducted after a period of vigorous growth.
引文
[1] Frink CR, Waggoner PE, Ausubel JH. Nitrogen fertilizer: retrospect and prospect. Proccedings of National Academy of Sciences USA. 1999, 96:1175-1180
    [2] Inokuchi R, Kuma K, Miyata T, Okada M. Nitrogen-assimilating enzymes in land plants and algae: phylogenic and physiological perspectives. Physiol Plantarum. 2002, 116:1-11
    [3] Cassman KG, Kropf MJ, Caunt J, Peng S. Nitrogen use efficiency of rice reconsidered: what are the key constraints? Plant Soil. 1993, 155/156:359-362
    [4] Crawford NM, Class DMA. Molecular and physiological aspect of nitrate uptake in plants. Trends Plant Sci.1998, 3:389-395
    [5] Wang YH, Garvin DF, Kochian LV. Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiol. 2001, 127: 345-359
    [6] Malagoli M, Canal D, Quaggiotti S. Differences in nitrate and ammonium uptake between Scotspine and European larch. Plant Soil. 2000, 221:1-3
    [7] Ruan JY, Zhang FS, Ming HW. Effect of nitrogen form and phosphorus source on the growth, nutrient uptake and rhizoaphere soil property of Camellia sinensis L. Plant Soil. 2000, 20:265-270
    [8] 陆景陵.植物营养学.北京:中国农业大学出版社,2001:17-25
    [9] 印莉萍,刘祥林,洪剑明,邱泽生,林忠平.非固氮植物初级氮同化相关的基因及其表达调控.走向21世纪的植物分子生物学.(林忠平主编)北京:科学出版社,2000:271-287
    [10] 吴平,印莉萍,张立平.植物营养分子生理学.北京:科学出版社,2001:1-32
    [11] 肖焱波,李文学,段宗颜.植物对硝态氮的吸收及其调控.中国农业科技导报.2002,4(2):56-58
    [12] Jiang Z, Sullivan WM, Hull RJ. Nitrate uptake and metabolism in Kentucky bluegrass as affected by nitrate levels. Int Turfgrass Soc Res. 2001, 9: 303-310
    [13] Larcher W. Physiological Plant Ecology. Third Edition. New York: Springer, 1995: 190-191
    [14] Tischner R. Nitrate uptake and reduction in higher and lower plants. Plant, Cell Environ. 2000, 23(10): 1005
    [15] Ritsuko I, Kei-ichi K,Takashi M, Mitsumasal O. Nitrogen-assimilating enzymes in land plants and algae: phylogenic and physiological perspectives. Physiologia Plantarum. 2002, 116(1): 1-10
    [16] 陈微,张德颐.植物组织中硝酸还原酶的提取测定和纯化.植物生理学通讯.1980,(4):45-49
    [17] Campbell WH. Nitrate reductase and its role in nitrate assimilation in plants. Physiol Plant. 1988, 74: 214-219
    [18] Vogel CS, Dawson JO. Nitrate reductase activity, nitrogenase activity and photosynthesis of black alder exposed to chilling temperatures. Physiol Plant. 1991, 82:551-558
    [19] Black B, Fuchigami L, Coleman G. Partitioning of nitrate assimilation among leaves, stems and roots of poplar. Tree Physiol. 2002, 22:717-724
    [20] Claussen W, Lenz F. Effect of ammonium or nitrate nutrietion on net photosynthesis, growth, and activity of the enzymes nitrate reductase and glutamine synthetase in blueberry, raspberry and strawberry. Plant Soil. 1999, 208:95-102
    [21] Castle ML, Rowarth JS. In vivo nitrate reductase activity in ryegrass (Lolium perenne) and white clover (Trifolium repens): differences due to nitrogen supply, development, and plant part. New Zealand J Agr Res. 2003, 46: 31-36
    [22] Jin SN, Lee HJ, Oh SD. Growth, leaf nitrogen contents, and nitrate reductase activity in pear (Pyrus pyrifolia cv. Niitaka) trees as affected by ammonium and nitrate nitrogen supply. J Kor Soc Hort Sci. 2003, 44(1): 82-86
    [23] 陈煜,朱保葛,张敬,梁宗锁.不同氮源对大豆硝酸还原酶和谷氨酰胺合成酶活性及蛋白质含量的影响.大豆科学.2004,23(2):143-145
    [24] 余让才,李明启,范燕萍.高等植物硝酸还原酶的光调控.植物生理学通讯.1997,33(1):61-65
    [25] 王月福,于振文,李尚霞等.小麦开花后不同器官中硝酸还原酶和谷氨酰胺合成酶的活性比较.植物生理学通讯.2003,39(3):209-210
    [26] Callaci J J, Smarrelli JJ. Regulation of the inductase isoform from soybeans. Biochemical Biophysiology Acta. 1991, 1088:127-130
    [27] Kronzucker HJ, Siddiqi MY, Glass ADM. Compartmentation and flux characteristics of ammonium in spruce. Planta. 1995, 196:691-698
    [28] 孙曦.植物营养原理.北京:中国农业出版社,1997:70-85
    [29] Zozaya-Hinchliffe M, Potenza C, Ortega JL, Sengupta-Gopalan C. Nitrogen and metabolic regulation of the expression of plastidic glutamine synthetase in alfalfa(Medicago sativa). Plant Sci. 2005:1-12
    [30] 莫良玉,吴良炊,陶勤南.高等植物GS/GOGAT循环研究进展.植物营养与肥料学报.2001,7(2):223-231
    [31] Cren M, Hirel B. Glulamine synthetase in higher plant: Regulation of gene and protein expression from the organ to the cell. Plant Cell Physiol. 1999, 40:1187-1193
    [32] Zhang CF, Peng SB, Bennett J. Glutamine syntetase ferredoxin dependent glutanate synthase in maize. Plant Cell Physiol. 1992, 33:1193-1198
    [33] Hausler RE, Blackwell RD, Lea PJ, Leegood RC. Control of photosynthesis in barley leaves with reduced activities of glutamine synthetase or glutamate synthase. Ⅰ. Plant characteristics and changes in nitrate, ammonium and amino acids. Planta. 1994, 6: 406-417
    [34] 柴小清,印丽萍,刘祥林,于宝霞,韩秋娥等.不同浓度NO_3~-和NH_4~+对小麦根谷氨酰胺合成酶及其相关酶的影响.植物学报.1996,38(10):803-808
    [35] 李常健,林清华,张楚富.高等植物谷氨酰胺合成酶研究进展.生物学杂志.2001,18(4):1-3
    [36] 田霄鸿,李生秀,王朝辉.冬小麦等4种作物对铵、硝态氮的吸收能力.西北植物学报.2000,20(1):29-37
    [37] Peuke DA,Tischner R. Nitrate uptake and reduction of aseptically cultivated spruce seedlings, Picea abies (L.) Karst. J Exp Bot. 1991, 239:723-728
    [38] Kronzucker HJ, Siddiqi MY, Glass ADM. Conifer root discrimination against soil nitrate and the ecology of forest succession. Nature. 1997, 358:59-61
    [39] 张彦东,范志强,王庆成,王政权.不同形态N素对水曲柳幼苗生长的影响.应用生态学报.2000,11(5):665-667
    [40] 张彦东,白尚斌.氮素形态对树木养分吸收和生长的影响.应用生态学报.2003,14(11):2044-2048
    [41] Stadler J, Gebauer G. Nitrate reduction and nitrate content in ash trees(Fraxinus excelsior L.): distribution between compartments, site comparison and seasonal variation. Trees. 1992, 6:236-240
    [42] Wink M. Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Thor Appl Genet. 1988, 75:225-233
    [43] 陈晓亚,叶和春.植物次生代谢及其调控.植物科学进展(第一卷),北京:高等教育出版社.1998,293-304
    [44] Josep P, Joan L. Effects of carbon dioxide, water supply, and seasonally on terpene content and emission by Rosmarinus officinalis. J Chem Ecol. 1997, 23:979-993
    [45] Fraser LH, Grime JP. Aphid fitness on 13 grass species: a test of plant defence theory. Can J Bot. 1997, 7:1783-1789
    [46] Wink M. Functions of plantsecondary metabolites and their exploitation in biotechnology. Annual plant reviews. Vol. 3 Boca Raton, CRC Press. 1999
    [47] Shelton, AL. Variable chemical defences in plants and their effects on herbivore behaviour. Evol Ecol Res. 2000, 2:231-249
    [48] 阎秀峰.植物次生代谢生态学.植物生念学报,2001,25:639-640.
    [49] Leech MJ, May K, Hallard D, Verpoorte R, de Luca V, Christou P. Expression of two consecutive genes of a secondary metabolic pathway in transgenic tobacco: molecular diversity influences levels of expression and product accumulation. Plant Mol Biol. 1998, 38:765-774
    [50] Mitchell-Olds T, Pedersen D. The molecular basis of quantitative genetic variation in central and secondary metabolism in Arabidopsis. Genetics. 1998, 149:739-747
    [51] Geerlings A, Martinez-Lozano IM, Memelink J, van der Heijden R, Verpoorte R. Molecular cloning and analysis of strictosidine-D-glucosidase, an enzyme in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. J Biol Chem. 2000, 275:3051-3056
    [52] Almeida-Cortez JA. Shipley B, Arnason JT. Effects of nutrient availability on the production of pentaynene, a secondary compound related to defense, in Rudbeckia hirta. Plant Species Biology. 2003, 18:85-96
    [53] Matt P, Krapp A, Haake V, Mock HP, Stitt M. Decreased Rubisco activity leads to dramatic changes of nitrate metabolism, amino acid metabolism and the levels of phenylpropanoids and nicotine in tobacco antisense RBCS transformants. Plant J. 2002, 30(6): 663-677
    [54] Mattson WJ, Kuokkanen K, Niemela P, Julkunen-tiittor, Kellomaki S, Tahvanainen J. Elevated CO_2 alters birch resistance to Lagomorpha herbivores. Glob Change Biol. 2004, 10:1402-1413
    [55] Gershenzon J. Changes in the levels of plant secondary metabolites under water and nutrient stress. Recent Adv Phytochem. 1984, 18:273-320
    [56] Copley RR, Letunic I, Bork P. Genome and protein evolution in eukaryotes. Curr Opin Chem Biol. 2001, 6:39-45
    [57] Kainulainen P, Holopainen J, Palomaki V, Holopainen T. Effects of nitrogen fertilizationon secondarhy chemistry and ectomycorrhizal state of scots pine seedlings and on growth of grey pine aphid. J Chem Ecol. 1996, 22(4): 617-636
    [58] Stout MJ. Effect of nitrogen availability on expression of constitutive and inducible chemical defenses in Tomato, Lycopersicon esculentum. J Chem Ecol. 1998, 24(6): 945-963
    [59] Glynn C, Herms DA, Egawa M, Hansen R, Mattson WJ. Effects of nutrient availability on biomass allocation as well as constitutive and rapid induced herbivore resistance in poplar. Oikos. 2003, 101: 385-397
    [60] Keski-Saari S, Julkunen-Tiitto R. Resource. allocation in different parts of juvenile mountain birch plants: effect of nitrogen supply on seedling phenolics and growth. Physiol Plantarum. 2003, 118:114-126
    [61] Holl WHG, Vrieling K. Van Veen JA. Nutrients decrease pyrrolizidine alkaloid concentrations in Sececio jacobaea. New Phytol. 2003, 158(1): 175-186
    [62] Haukioja E, Ossipov V, Koricheva J, Honkanen T, Larsson S, Lempa K. Biosynthetic origin of carbon-based secondary compounds:cause of variable responses of woody plants to fertilization? Chemoecology. 1998, 8:133-139
    [63] Wink M. Evolution of secondary mctabolitcs from an ecological and molecular phylogenetic perpective. Phytochemistry. 2003, 64:3-19
    [64] Hashimoto T, Yamada Y. New genes in alkaloid metabolism and transport. Curr Opin Biotech. 2003, 14:163-168
    [65] De Luca V, St-Pierre B. The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci. 2000, 4: 168-173
    [66] Raskin I, Ribnicky DM, Komarnytsky S, Ilic N, Poulev A, Borisjuk N, Brinker A, Moreno DA, Ripoll C, Yakoby N et al. Plants and human health in the twenty-first century. Trends Biotech. 2002, 20: 522-531
    [67] 沃勒 G.R.,若瓦茨基EK.著.朱太平等译.生物铖的生物学及其在植物中的代谢作用.北京科学出版社,1987:89-123
    [68] Christiansen JL, Jornsgard B, Buskov S, Olsen CE. Effect of drought stress on content and composition of seed alkaloids in narrow-leafed lupin, Lupinus angustifolius L. Eur J Agron. 1997, 7(4): 1161-1171
    [69] Ralphs MH, Manners GD, Gardner DR. Influence of light and photosynthesis on alkaloid concentration of larkspur. J Chem Ecol. 1998, 24(1): 1167-182
    [70] 赵剑,朱蔚华,胡秋,王文科.长春花叶片愈伤组织诱导及培养过程中生物碱合成类型的变化和调节及有关酶的分析.中草药.1999,30(7):533-537
    [71] Baricevic D, Umek A, Kreft S B. Maticic, A. Zupancic. Effect of water stress and nitrogen fertilization on the content of hyoscyamine and scopolamine in the roots of deadly nightshade(Atropa belladonna). Environ Exp Bot. 1999, 42:17-24
    [72] Bensaddek L, Gillet F, Faucedo JEN. The effect of nitrate and ammonium concentrations on growth and alkaloid accumulation of Atropa belladonna hairy roots. J Biotechnol. 2001, 85:35-40
    [73] 张丽萍,陈震,马小军,赵杨景.不同氮素水平对黄连植株生长及根茎小檗碱含量的影响.中草药.1997,26(7):387-388
    [74] Gershemzon J. Changes in the levels of plant secondary metabolites under water and nutrient stress. Phytochemical Adaptations to Stress(Chapter Ten). New York and London: Plenum Press. 1984, pp 281-285
    [75] Khan MB, Harborne JB. Effect of nitrogen on alkaloid production in Atropa acuminate. Planta Med. 1990, 56:605-606
    [76] Sreevalli Y, Kulkarni RN, Baskaran K, Chandrashekara RS. Increasing the content of leaf and root alkaloids of high alkaloid content mutants of periwinkle through nitrogen fertilization, Ind crop prod. 2004, 19:191-195
    [77] 李贵生,陈良碧.矿质营养对烟草品质的营养.世界农业.2000,4(总252):31
    [78] 付开聪,徐明,杨礼攀.氮、磷、钾对嘉兰植株生长和秋水仙碱含量的影响.中国中药杂志.2000,25(3):58-60
    [79] 张丽萍,陈震,马小军,赵杨景.氮源对黄连植株生长、根茎小檗碱含量的影响.中国中药杂志.1995,26(7):394-396
    [80] 王义.中药材品质与植物生物学研究的关系.吉林农业大学学报.1996,18(3):112-116
    [81] Barlog P. Effect of magnesium and nitrogenous fertilizers on the growth and alkaloid content in Lupinus angustifolius L. Aust. J. Agric. Res. 2002, 53:671-676
    [82] Gerson E A, Kelsey R G. Piperidine alkaloids in nitrogen fertilized Pinus ponderosa. Journal of Chemical Ecology. 1999, 25: 2027-2039.
    [83] Richardson MD, Cabrera RI, Murphy JA, DE Zaurov. Nitrogen-form and endophyteinfection effects on growth, nitrogen uptake, and alkaloid content of chewings rescue turfgrass. Journal of Plant Nutrition. 1999, 22(1): 67-79
    [84] Demeyer K, Dejaegere R. Influence of nitrogen on the alkaloid content of Datura stramonium. Acta Horticulture. 1993, 331: 35-38
    [85] Nussbaumer P, Kapetanidis I, Christen P. Hairy roots of Datura candidaxD, aurea: effect of culture medium composition on growth and alkaloid biosynthesis. 1998, 17:405-409
    [86] Pan XW, Xu HH, liu X, Gao X, Lu YT. Improvement of growth and camptothecin yield by altering nitrogen source supply in cell suspension cultures of Camptotheca acuminate. Biotechnol Lett. 2004, 26(22): 1745-1748
    [87] Priel E, Showalter SD, Blair DG.Inhibition of human immunodeficiency virus(HIV-1) replication in vitro by non-cytotoxic doses of camptothecin, a topoisomerase Ⅰ inhibitor. AIDS Res Human Retroviruses. 1991, 7:65-72
    [88] Kjeldsen E, Stejstrup JQ, Gromova Ⅱ, Alsner J, Westergaard O. Camptothecin inhibits both the cleavage and relegation reactions of eukaryotic DNA topoisomerase I. J Mol Biol. 1992, 228: 1025-1030
    [89] Li CJ, Wang C, Pardee AB. Camptothecin inhibits Tat-mediated transactivation of type Ⅰ human immunodeficiency virus. J Biol Chem. 1994, 269:7051-7054
    [90] Lorence A, Medina-Bolivar F, Nessler CL. Camptothecin and 10-hydroxycamptothecin from Camptotheca acuminata hairy roots. Plant Cell Rep. 2004, 22: 437-441
    [91] Yamazaki Y, Urano A, Sudo H, Kitajima M, Takayama H, Yamazaki M, Aimi N, Saito K. Metabolite profiling of alkaloids and strictosidine synthase activity in camptothecin producing plants. Phytochemistry. 2003, 62: 461-470
    [92] Yamazaki Y, Kitajima M, Arita M, Takayama H, Sudo H, Yamazaki M, Aimi N, Saito K. Biosynthesis of Camptothecin In Silico and in Vivo Tracer Study from [1-~(13)C]Glucose. Plant Physiol. 2004, 134:161-170
    [93] Wall ME, Wani MC, Cook CE, Palmer AH, McPhail AT, Sim GA. Plant antitumor agents. Ⅰ. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibition from Camptotheca acuminata. J Amer Chem Soc. 1966, 88:3888-3890
    [94] Agarwal JS, Rastogi RP. Chemical constituents of Mappta foetida Miers. Indian J Chem. 1973, 11:969-973
    [95] Aimi N, Nishimura M, Miwa A, Hoshino H, Sakai S, Haginiwa J. Pumiloside and deoxypumiloside; plausible intermediates of camptothecin biosynthesis. Tetrahedron Lett. 1989, 30:4991-4994
    [96] Carte BK, Debrosse C, Eggelston D. Isolation and characterization of a presumed biosynthetic precursor of camptothccin from Camptotheca acuminata. Tetrahedron. 1990, 46: 2747-2760
    [97] Contin A, van der Heijden R, Lefeber AW, Verpoorte R. The iridoid glucoside secologanin is derived from the novel triose phosphate/pyruvate pathway in a Catharanthus roseus cell culture. FEBS Lett. 1998, 434:413-416
    [98] Hong SB, Hughes ER, Shanks JV, San KY, Gibson SI. Role of the non-mevalonate pathway in indole alkaloid production by Catharanthus roseus hairy roots. Biotechnol Prog. 2003, 19:1105-1108
    [99] 徐仟生,赵志远,林隆泽等.抗癌植物喜树化学成分的研究Ⅱ.树果中的化学成分.化学学报.1977,5:193-199
    [100] 林隆泽,沈积慧等.喜树中的吲哚生物碱.化学学报.1988,46:1207-1211
    [101] 林隆泽,沈积慧等.新生物碱10-羟基脱氧喜树碱.化学学报.1989,47:506-508
    [102] 林隆泽,宋纯情,徐任生.抗癌新生物碱11-羟基喜树碱.科学通报.1979,10:478-479
    [103] Adamovics JA, Cina JA. Minor alkaloids of Camptotheca acuminata. Phytochem. 1979, 18:1085-1086
    [104] Wani MC, Wall ME. Plant antitumor agents.Ⅱ. The structure of two new alkaloids from Camptotheca acuminata. J Org Chem. 1969, 34:1365-1367
    [105] Gunasekera SP, Badawi MM, Cordell GA, Farnsworth NR, Chitnis M. Plant anticancer agents Ⅹ Isolation of camptothecin and 9-methoxycamptothecin from Ervatamia heyneana. J Nat Prod. 1979, 42:475-477
    [106] Aimi N, Hoshino H, Nishimura M. Chaboside, first natural glycocamotothecin found from Ophiorrhiza pumila. Tetrahedron Lett. 1990, 31:5169-5172
    [107] Stockigt J, Zenk MH. Strichosidine (Isovincoside) the key intermediate in the biosynthesis of monoterpenoid indole alkaloids. J Chem Sco Chem Comm. 1977, 646-648
    [108] Stockigt J, Ruppert M. Strictosidine: the biosynthetic key to monoterpenoid indole alkaloids. In JW Kelly ed., Comprehensive Natural Products Chemistry, Vol 4. Elsevier Science Ltd, Amsterdam, 1999: pp 109-138
    [109] Noe W, Mollenschott C, Berlin J. Tryptophan decarboxylase from Catharanthus roseus cell suspension cultures: purification, molecular and kinetic data of the homogenous protein. Plant Mol Biol. 1984, 3:281-288
    [110] 欧阳剑,李家洋.拟南芥色氨酸与吲哚乙酸生物合成的研究进展.生物工程进展.1998,18:2-11
    [111] Delourme D, Lacroutc F, Karst F. Cloning of an Arabidopsis thaliana cDNA coding for famesyl diphosphate synthase by functional complementation in yeast. Plant Mol Biol. 1994, 26:1867-1873
    [112] Irmler S, Schroder G, St-Pierre B, Crouch N, Hotze M, Schmidt J, Strack D, Matern U, Schro der J. Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase. Plant J. 2000, 24:797-804
    [113] Yamamoto H, Katano N, Ooi A, Inoue K. Secologanin synthase which catalyzes the oxidative cleavage of loganin into secologanin is a cytochrome P450. Phytochemistry. 2000, 53:7-12
    [114] Collu G, Unver N, Peltenburg-Looman AMG, van der Heijden R, Verpoorte R, Memelink J. Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett. 2001, 508:215-220
    [115] Meijer AH, Cardoso, MIL, Voskuilen JT, de Waal A, Verpoorte R, Hoge JHC. Isolation and characterization of a cDNA clone from Catharanthus roseus encoding NADPH: cytochrome P450 reductase, an enzyme essential for reactions catalysed by cytochrome P450 mono-oxygenases in plaints. Plant J, 1993, 4:47-60
    [116] Van der Heijden R, Verpoorte R. Metabolic enzyme of 3-hydroxy-3-methylglutarylcoenzyme A in Catharanthus roseus. Plant Cell Tiss Org Cult. 1995, 43:85-88
    [117] Cane DE. Isoprenoid biosynthesis overview In. Comprehensive Natural Product Chemistry, Vol 2. Aansterdam: Elsevier Science Ltd. 1999: pp 1-13
    [118] Rohmer M. A mevalonate-independent route to isopentenyl diphosphate. Vol 2. In DE Cane, ed, Comprehensive Natural Product Chemistry. Amsterdam: Elsevier Science Ltd, 1999: pp 45-67
    [119] Kuzuyama T, Seto H. Diversity of the biosynthesis of isoprene units. Nat Prod Rep. 2003, 20:171-183
    [120] 陈大华,叶和春,李国凤等.植物类异戊二烯代谢途径的分子生物学研究进展.植 物学报.2000,42:551-558
    [121] Eisenreich W, Rohdich F, Bacher A. Deoxyxylulose phosphate pathway to terpenoids. Trends Plant Sci. 2001, 6: 78-84
    [122] Contin A, van der Heijdea R, Lefeber AW, Verpoorte R. The iridoid glucoside secologanin is derived from the novel triose phosphate/pyruvate pathway in a Catharanthus roseus cell culture. FEBS Lett. 1998, 434:413-416
    [123] Lorence A, Nessler CL. Molecules of interest Camptothecin, over four decades of surprising findings. Phytochemistry. 2004, (65): 2735-2749
    [124] Nabeta K, Kawae T, Saitoh T, Kikuchi T. Synthesis of chlorophyll a and β-carotene from ~2H and ~(13)C-labeled mevalonates and ~(13)C-labeled glycine in cultured cells of liverworts Heteroscyphus planus and Lophocolea heterophylla. J Chem Soc Perkin Trans. 1997, 1: 261-267
    [125] Lichtenthaler HK. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rcv Plant Physical Plant Mol Biol. 1999, 50:47-65
    [126] Rohmer M, Knani M, Simonin P, Sutter B, Sahm, H. Isoprenoid biosynthesis in bacteria: A novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J. 1993, 295:517-524
    [127] Schwender J, Seemann M, Lichtenthaler HK, Rohmer M. Biosynthesis of isoprenoids (carotenoids, sterols, prenyl sidechains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem J. 1996, 316:73-80
    [128] Sprenger GA, Schorken U, Wiegert T, Grolle S, de Graaf AA, Taylor SV, Begley TP, Bringer- Meyer S, Sahm H. Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-D-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol. Proc Natl Acad Sci USA. 1997, 94: 12857-12862
    [129] Bouvier F, d'Harlingue A, Suire C, Backhaus RA, Camara B. Dedicated roles of plastid transketolases during the early onset of isoprenoid biogenesis in pepper fruits. Plant Physiol. 1998,117: 1423-1431
    [130] Luttgen H, Rohdich F, Herz S, Wungsintaweekul J, Hecht S, Schuhr CA, Fellermeier, M, Sagner S, Zenk MH, Bacher A, Eisenreich M. Biosynthesis of terpenoids: YchB protein of Escherichia coli phosphorylates the 2-hydroxy group of diphosphocytidyl-2C-methyl- D-erythritol. Proc. Natl. Acad. Sci. U.S.A. 2000, 97: 1062-1067
    [131] Rohdich F, Wungsintaweekul J, Luttgen H, Fischer M, Eisenreich W, Schuhr CA, Fellermeier M, Schramek N, Zenk MH, Bacher A. Biosynthesis of terpenoids: 4- diphosphocytidyl- 2C-methyl-D-erythritol kinase from tomato. Proc Natl Acad Sci USA. 2000,97: 8251-8256
    [132] Ostrovsky D, Diomina G, Lysak E, Matveeva E, Ogrel O, Trutko S. Effect of oxidative stress on the biosynthesis of 2-C-methyl-D-erythritol-2,4-cyclopyrophosphate and isoprenoids by several bacterial strains. Arch Microbiol. 1998,171: 69-72
    [133] Herz S, Wungsintaweekul J, Schuhr CA, Hecht S, Luttgen H, Sagner S, Fellermeier M, Eisenreich W, Zenk MH, Bacher A, Rohdich F. Biosynthesis of terpenoids: YgbB protein converts 4-diphosphocytidyl-2Cmethyl-D-erythritol 2-phosphate to 2C-methyl-D- erythritol 2,4-cyclodiphosphate. Proc Natl Acad Sci USA. 2000, 97: 2486-2490
    [134] Rohdich F, Hecht S, Gartner K, Adam P, Krieger C, Amslinger S, Arigoni D, Bacher A, Eisenreich W. Studies on the nonmevalonate terpene biosynthetic pathway: metabolic role of IspH (LytB) protein. Proc Natl Acad Sci USA. 2002,99:1158-1163
    [135] Pasquali G, Goddijn OJM, de Waal A, Verpoorte R, Schilperoort RA, Hog, JHC, Memelink J. Corrdinated regulation of two indole alkaloid biosynthetic genes from Catharanthus roseus by auxin and elicitors. Plant Mol Biol. 1992,18: 1121-1131
    [136] Canel C, Lopes-Cardoso MI, Whitmer S, Van der Fits L, Van der Heijden R, Hoge JH, Verpoorte R. Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseu. Planta. 1998, 205: 414-419
    [137] Oscar JM, Goddijn OJ, Pennings EJ, Van der Helm P, Schilperoort RA, Verpoorte R, Hoge JH. Overexpression of tryptophan decarboxylase cDNA in Catharanthus roseus: purification and characterization of crown gall calluses results in increases tryptamine levels but not increased terpenoid indole alkaloid production. Transgenic Res. 1995, 4: 315-323
    [138] Menke FLH, Parchmann S, Mueller MJ, Kijne JW, Memelink J. Involvement of the octadecanoid pathway and protein phosphorylation in fungal elicitorinduced expression of terpenoid indole alkaloid biosynthetic genes in Catharanthus roseus. Plant Physiol. 1999,119: 1289-1296
    [139] Silvestrini A, Pasqua G, Botta B, Monacelli B, Van der Heijden R , Verpoorte R. Effects of alkaloid precursor feeding on a Camptotheca acuminata cell line. Plant Physiol. Biochem. 2002, 40:749-753
    [140] Zhengui Zheng, Madeline Wu. Cadmium treatment enhances the production of alkaloid secondary metabolites in Catharanthus roseus. Plant Sci. 2004, 166: 507-514
    [141] Byrbett RJ, Maldonado-Mendoza IE, McKnight TD. Expression of a 3-hydroxy-3-methylglutaryl coenzyme A reductase gene from Camptotheca acuminata is differentially regulated by wounding and methyl jasmonate. Plant Physiol. 1993, 103: 41-48
    [142] Maldonado-Mendoza IE, Vincent RM, Nessler CL. Molecular characterization of three differentially expressed members of the Camptotheca acuminata 3-hydroxy-3- methylglutaryl CoAreductase (HMGR) gene family. Plant Mol Biol. 1997, 34: 781-790
    [143] Denbow CJ, Lang S, Cramer CL. Targeting and membrane orientation of tomato 3- hydroxy-3- methylglutaryl coenzyme A reductase. Plant Physiol. 1995,108 (suppl.): 144
    [144] Merillon JM, Doireau P, Guillot A. Indole alkaloid accumulation and tryptophan decarboxylase activity in Catharanthus roseus cells cultured in three different media. Plant Cell Rep. 1986, 5: 23-26
    [145] Merillon JM, Ouelhazi L, Doireau P. Metabolic changes and alkaloid production in habituated and non-habituated cells of Catharanthus roseus growns in hormone-free medium: comparing hormone-deprived non-habituated cells with habituated cells. J Plant Physiol. 1989,134: 54-56
    [146] Meehan TD, Coscia CJ. Hydroxylation of geraniol and nerol by a monooxygenase from Vica rosea. Biochem Biophys Res Commun. 1973, 53: 1043-1048
    [147] Herrmann KM, Weaver LM.The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol. 1999, 50: 473-503
    [148] Bahar I, Jernigan RL. Cooperative fluctuations and subunit communication in tryptophan synthase. Biochemistry. 1999, 38: 3478-3490
    [149] Woel E, Dunn MF. Mechanisms of monovalent cation action in enzyme catalysis: the tryptophan synthase alpha-, beta-, and alpha beta-reactions. Biochemistry. 1999, 38(22): 7131-7141
    [150] Lopez-Meyer M, Nessler CL, Mcknight TD. Sites of acculation of the antitumor alkaloid camptothecin in Camptotheca acuminata. Planta Med. 1994, 60: 558-560
    [151] Lu Hua, Mcknight TD. Tissue-specific expression of the beta-subunit of tryptophan synthase in Camptotheca acuminata, an indole alkaloid-producing plant. Plant physiol. 1999, 120:43-51
    [152] L 6 pez-Meyer M, Nessler CL. Tryptophan decarboxylase is encoded by two autonomously regulated genes in Camptotheca acuminata which are differentially expressed during development and stress. Plant J. 1997, 11: 1167-1175
    [153] Poulsen C, Verpoorte R. Activities of chorismate utilizing enzymes and enzymes involved in indole alkaloid biosynthesis in cell suspension cultures. Plant Physiol Biochem. 1992,30: 105-113
    [154] Yamazaki Y, Sudo H, Yamazaki M, Aimi N, Saito K. Camptothecin biosynthetic genes in hairy roots of Ophiorrhiza pumila: cloning, characterization and differential expression in tissues and by stress compounds. Plant Cell Physiol. 2003, 44: 395-403
    [155] McKnight TD, Bergey DR, Burnett RJ, Nessler CL. Expression of enzymatically active and correctly targeted strictosidine synthase in transgenic tobacco plants. Planta. 1991, 185:148-52
    [156] Stevens LH, Blom TJM, Verpoorte R. Subcellular localization of tryptophan decarboxylase, strictosidine synthase and strictosidine glucosidase in suspension cultured cells of Catharanthus roseus and Tabernaemontana divaricata. Plant Cell Rep. 1993, 12: 563-576
    [157] Carretero-Paulet L, Ahumada I, Cunillera N, Rodriguez-Concepcion M, Ferrer A, Boronat A, Campos N. Expression and molecular analysis of the Arabidopsis DXR gene encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase, the first committed enzyme of the 2-C-methyl-D-erythritol 4-phosphate pathway. Plant Physiol. 2002, 129(4): 1581- 91
    [158] Lois LM, Rodryguez-Concepcion M, Gallego F, Campos N, Boronat A. Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-d-xylulose 5- phosphate synthase. Plant J. 2000,22: 503-513
    [159] Walter MH, Fester T, Strack D. Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the "yellow pigment" and other apocarotenoids. Plant J. 2000, 21: 571- 578
    [160] Mahmoud SS, Croteau RB. Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Proc Natl Acad Sci USA. 2001,98: 8915-8920
    [161] Rodriguez-Concepcion M, Ahumada I, Diez-Juez E, Sauret-Gueto S, Lois LM, Gallego F, Carretero-Paulet L, Campos N, Boronat A. 1-Deoxy-d-xylulose 5-phosphate reductoisomerase and plastid isoprenoid biosynthesis during tomato fruit ripening. Plant J. 2001, 27: 213-222
    [162] Niyogi KK, Fink GR. Two anthranilate synthase genes in Arabidopsis: defense-related regulation of the tryptophan pathway. Plant Cell. 1992, 4: 721-733
    [163] Li J, Last RL.The Arabidopsis thaliana trp5 mutant has a feedback-resistant anthranilate synthase and elevated soluble tryptophan. Plant Physiol. 1996,110(1): 51-59
    [164] Lu H, Gorman E, McKnight TD. Molecular characterization of two anthranilate synthase alpha subunit genes in Camptotheca acuminata. Planta. 2005, 12 http://springer.lib.tsinghua.edu.cn/media/H07CWMWRXJ4HJFH4UC5V/Contributions/ Q/6/4/B/Q64BMQY3926THJ9A_htmI/fulltext.htmI
    [165] Liu Z, Adams JC. Camptothecin yield within Camptotheca acuminata trees cultivated in Louisiana. Can J Botany. 1996, 74: 360-365
    [166] Liu Z, Carpenter SB, Constantin RJ. Camptothecin production in Camptotheca acuminata seedlings in response to shading and flooding. Can J Botany. 1997, 75: 368- 373
    [167] Liu Z, Carpenter SB, Bourgeois WJ, Yu Y, Constantin RJ. Variations in the secondary metabolite camptothecin in relation to tissue age and season in Camptotheca acuminata. Tree Physiol. 1998, 18:265-270
    [168] Liu Z, Adams JC, Viator HP, Constantin RJ, Carpenter SB. Influence of soil fertilization, Plant spacing, and coppicing on growth, stomatal conductance, abscisic acid, and camptothecin levels in Camptotheca acuminata seedlings. Physiol Plantarum. 1999, 105: 402-408
    [169] Liu ZJ. Drought-induced in vivo synthesis of camptothecin in Camptotheca acuminata seedlings. Physiol Plant. 2000, 110:483-488
    [170] Li S, Yi Y, Wang Y, Zhang Z, Beasley RS. Camptothecin accumulation and variations in Camptotheca. Planta Med. 2002, 68: 1010-1016
    [171] 冯建灿,张玉洁,张秋娟,李淑玲,胡湛.干旱胁迫与抗蒸腾剂对喜树几项生理指标及喜树碱含量的影响.河南农业大学学报.2002,36:138-142
    [172] Vincent RM, Lopez-Meyer M, McKnight TD. Nessler CL. Sustained Harvest of Camptothecin from the Leaves of Camptotheca acuminata. J Nat Prod. 1997, 60: 618-619
    [173] Yan XF, Wang Y, Yu T, Zhang YH, Dai SJ. Variation in camptothecin content in Camptotheca acuminata leaves. Bot Bull Acad Sin. 2003, 44:99-105
    [174] Liu Z, Adams JC. Seed source variation in camptothecin concentrations of nurserygrown Camptotheca acuminata seedlings. New Forest. 1998, 16(2): 167-175
    [175] 张玉红,王洋,阎秀峰.喜树种子萌发和幼苗发育过程中喜树碱含量的变化.2002,(6):575-577
    [176] 王洋,戴绍军,阎秀峰.光强对喜树幼苗叶片次生代谢产物喜树碱的影响.生态学报.2004,24(6):1118-1122
    [177] 戴绍军,王洋,阎秀峰,马梅芳.滤光膜对喜树幼苗叶片生长和喜树碱含量的影响.生态学报.2004,24(5):869-875
    [178] 王希成.生物化学.北京:华大学出版社,2001:p331
    [179] Utriainen J, Holopainen T. Nitrogen availability modifies the ozone responses of Scots pine seedlings exposed in an open-field system. Tree physiol. 2001, 21: 1205-1213
    [180] 张志良,瞿伟菁.植物生理学实验指导.北京:高等教育出版社,2003:33-36
    [181] Wellburn AR. The spectral determination of chlorophylls a and b, as well total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144:307-313
    [182] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Ana Biochem. 1976, 72:248-254
    [183] Shi-qin Sun, Xiu-feng Yan. Nitrate reductase activity and its diurnal variation rhythm for Camptotheca acuminata seedlings. J Forest Res. 2004, 15(3): 167-170
    [184] 孙世芹,阎秀峰.喜树叶片硝酸还原酶活性的测定方法.东北林业大学学报.2004, 32(3):83-84
    [185] Lea PJ, Blackwell RD, Chen FL, Hecht U. Enzymes of Ammonia Assimilation. Methods in plant biochemistry. London: Academic Press. 1990, 3:257-276
    [186] Zhang CF, Peng SB, Bennett John. Glutamine synthetase and its isoforms in rice spikelets and rachis during grain development. J plant physiol. 2000, 156:230-233
    [187] 董鸣,王义凤,孔繁志,蒋高明,张知彬.陆地生物群落调查观测与分析.北京:国标准出版社,1996:152-153
    [188] Last RL, Bissinger PH, Mahoney DJ, Radwanski ER, Fink GR. Tryptophan mutants in Arabidopsis: the consequences of duplicated tryptophan synthase β genes. The Plant Cell, Vol. 1991, 3:345-358
    [189] Aerts RJ, Alarco AM, De Luca V. Auxins induce tryptophan decarboxylase activity in radicles of Catharanthus seedlings. Plant Physiol. 1992, 100:1014-1019
    [190] Pennings EJM, Hegger I, van der Heijden R. Assay of tryptophan decarboxylase from Catharanthus roseus plant cell cultures by High-Performance Liquid Chromatography. Anal Biochem. 1987, 165:133-136
    [191] 阎秀峰,王洋,于涛.喜树叶中喜树碱含量的高效液相色谱分析.分析测试学报.2002,21(2):15-17
    [192] 唐启义,冯明光.实用统计分析及其DPS数据处理系统.北京:学出版社,2002:1-648
    [193] Lauchli A, Bieleski RL 著.张礼中,毛知耕译.植物的无机营养.北京:业出版社,1992:104-106
    [194] Coomes DA. Grubb PJ. Responses of juvenile trees to above- and belowground competition in nutrient-starved Amazoniam rain forest. Ecology. 1998, 79:768-782
    [195] Rothestein DE, Zak DR, Pregitzer KS. The kinetics of nitrogen uptake by Populus tremuloides grown under experimental atmospheric CO_2 and soil N availability treatments. Tree Physiol. 2000, 20:265-270
    [196] Constable JVH, bassirad H Lussenhop J. Influence of elevated CO_2 and mycorrhizae on nitrogen acquisition : concentrating responses in Pinus taeda and Liquidamber sraciflua. Tree Physiol. 2001, 21:83-91
    [197] Hawkins BJ, Henry G, Kiiskila SBR. Biomass and nutrient allocation in Douglas-fir and amabilis fir seedlings: influence of growth rate and nutrition. Tree Physiol. 1998, 91: 211-226
    [198] Ibrahim L, Proe MF, Cameron AD. Inteactive effects of nitrogen and water availabilities on gas exchange and whole-plant carbon allocation in poplar. Tree Physiol. 1998, 18: 481-487
    [199] 张福锁,林翠兰,曹一平.植物磷营养基因型差异的机理.土壤与植物营养研究新动态.1993,23-30
    [200] Knoepp JD. Urner DP. Tingey DT. Effects of ammonium and nitrate on nutrient uptake andactivity of nitrogen assimilating enzymes in western hemlock. Forest Ecol Manag. 1993, 59: 179-191
    [201] Mailland P, Guehl JM, Muller JF, Gross P. Interactive effects of elevated CO2 concentration and nitrogen supply on partitioning of newly fixed ~(13)C and ~(15)N between shoot and roots of pedunculate oak seedlings(Quercus robur L.).Tree Physiol. 2001, 21: 163-172
    [202] Farrar JF, Jones DL. The control of carbon acquisition by roots. New Phytol. 2000, 147: 43-53
    [203] Hogberg P, Hogbom L, Schinkel H. Nitrogen-related root variables of trees along an Ndeposition gradient in Europe. Tree Physiol. 1998, 18:823-828
    [204] Tan W, Hgan GD. Limitations to net photosynthesis as affected by nitrogen status in jack pine(pinus banksiana Lamb.)seedlings. J Exp Bot. 1995, 46:407-413
    [205] Ripullone F, Grassi G, Lauteri M, Borghetti M. Photosynthesis-nitrogen relationships: interpretation of different patterns between Pseudotsuga menziesii and Populus×euroamericana in a mini-stand experiment. Tree Physiol. 2003, 23:137-144
    [206] Nakaji T. Fukami M, Dokiya Y, Izuta, T. Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings. Trees. 2001, 15:453-461
    [207] Wu C, Wang ZQ, Fan ZQ. Effects of different concentrations and form ratios of nitrogen on chlorophyll biosynthesis, photosynthesis, and biomass partitionling in fraxinus mandshurica seedlings. Acta Phytoecol Sinica. 2003, 27:771-779
    [208] Chapin FS Ⅲ, Bloom AJ, Field CB. Plant responses to multiple environmental factors. Bioscience. 1987, 37(1): 49-57
    [209] Cao W, Tibbitts TW. Study of various NH_4~+/NO_3~- mixtures for enhancing growth of potatoes. J Plant Nutr. 1994, 16:1691-1704
    [210] Cabrera Ltt, Cid MC, Sivero JM, Ruano MC. Ammonium effects on NPK uptake, mineral content, and NR and GS activities of rose plant. Nitrogen in a sustainable ecosystem: from the cell to the plant. Section. N and growth regulation: environmental adaptation. Leiden. 2000: pp. 163-167
    [211] Cox WJ, Reisenauer HM. Growth and ion uptake by wheat supplied nitrogen as nitrate, or ammonium, or both. Plant Soil. 1973, 38:363-380
    [212] 曹翠玲,李生秀.氮素水平对冬小麦分蘖期某些含氮化合物及生物量的影响.西北农林科技大学学报(自然科学版).2002,30(6):11-15
    [213] 张其德,卢从明,张群,白克智,匡廷云.不同氮素水平下CO_2倍增对大豆叶片荧光诱导动力学参数的影响.植物营养与肥料学报.1997,3(1):24-30
    [214] 杨细明.施氮对杉木苗生物量及光合特性影响的研究.福建林学院学报.1996,16(3):278-281
    [215] 刘宛,徐正进,陈温福,张龙步,李磊鑫,宋桂云.氮素水平对不同穗型水稻品种植株衰老和产量的影响.沈阳农业大学学报.2001,32(4):243-246
    [216] 董彩霞,赵世杰,田纪春,孟庆伟,邹琦.不同浓度的硝酸盐对高蛋白小麦幼苗叶 片叶绿素荧光参数的影响.作物学报.2002,28(1):59-64
    [217] 钟安良,熊文愈.杉木人工林氮素营养的叶绿素诊断指标的研究.1994,30(4):289-295
    [218] Lusk CH, Contreras O, Figreroa J. Growth, biomass allocation and plant nitrogen concentration in Chilean temperatera in forest tree seedlings: effects of nutrient availability. Oecologia. 1997, 109:49-58
    [219] Niinemets U. Role foliar nitrogen in light harvest in gand shade tolerance of four temperate deciduous woody species. Funct Ecol. 1997, 11:518-531
    [220] Parry MAJ, Loveland JE, Andralojc PJ, 1999. Regulation of Rbuisco. In: Plant Carbohydrate Biochemistry, Bryant JA, Burrell MM, Kruger NJ, eds. BIOS Scientific Publishers, Oxford, p127-145
    [221] Sitt M, Schulze D. Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology. Plant Cell Environ. 1994, 17:465-487
    [222] Warren CR, Adams MA, Chen Z. Is photosynthesis related to concentrations of nitrogen and Rubisco in leaves of Australian native platns? Aust J Plant Physiol. 2000, 27: 407-416
    [223] 董彩霞,田纪春,赵世杰.不同形态氮素对高蛋白小麦幼苗叶绿素荧光特性的影响西北植物学报.2002,22(2):229-234
    [224] 李存东,董海荣,李金才.不同形态氮比例对棉花苗期光合作用及碳水化合物代谢的影响.棉花学报.2003,15(2):87-90
    [225] 宗会,温华东,张燕,宋玉川,屈生彬.氮肥形态、用量和种植密度对香料烟光合作用的影响烟草科技/栽培与调制.2004,1(总第198期):33-35
    [226] Evans JR. Photosynthesis and nitrogen relationships in leaves of C_3 plants. Oecologia. 1989, 78:9-19
    [227] 王月福,于振文,李尚霞.氮素营养水平对冬小麦氮代谢关键酶活性变化和子粒蛋白质含量的影响.作物学报.2002,28(6):743-748
    [228] Li ZS, Zhang CF, Lin QH, Peng J, Li CC, Peng SB, John B. Effect of exogenous ammonium on Gultamine Synthetase, glutamate Synthase, and Glutamae Dehydrogenase in the root of rice seedling. Wuhan Uni J Nat Sci. 1999, 4(3): 358-362
    [229] Li SY, Adair KT. Camptotheca acuminate Decaisne XI SHU 喜树(Chinese Happytree)a rpomising anti-tumor and anti-viral tree for the 21st century. Texas: The Tucker Center College of Forestry Stephen Fl Austin state University Nacogdoches, 1994
    [230] 张玉红.喜树果实中喜树碱含量的产地差异及季节变化.东北林业大学学报.2002,30(6):44-46
    [231] 吕立堂,朱冬雪,赵德刚.喜树快速繁殖与再生体系建立.分子植物育种.2003,1(5/6):829-830
    [232] 高桂珍,周吉源.喜树细胞悬浮培养中生理生化指标的测定.武汉植物学研究.2003,21(3):259-261
    [233] 间义哲,王自芬.喜树幼枝的喜树碱积累及其组织内定位.植物生理与分子生物学 学报.2004,30(4):405-412
    [234] 刘文哲,张爱新,Reinscheid UM.喜树内生菌与喜树碱的关系.西北植物学报.2003,23(7):1275-1278
    [235] 张显强,唐金刚,乙引.中国喜树资源及可持续开发对策.贵州师范大学学报(自然科学版).2004,22(1):36-39
    [236] 于海彬,蔡葆,王桂岚.甜菜氮营养对蔗糖积累转化及有关酶活性的调节.中国甜菜糖业.1995,6:39-42
    [237] 戴廷波,曹卫星,孙传范,姜东,荆奇.增铵营养对小麦光合作用及硝酸还原酶和谷氨酰胺合成酶的影响.应用生态学报.2003,14(9):1529-1532
    [238] 徐任生,赵志远,林隆泽,胥传凤.抗癌植物喜树化学成分的研究Ⅱ.喜树果中的化学成分.化学学报.1977,35(3,4):193-199
    [239] Al-Humaid AI.Effects of compound fertilization on growth and alkaloids of datura (Daturainnoxia Mill.) plants. Beihefte zu Der Tropenlandwirt. 2003, 104(2): 151-165
    [240] Khan MB. Effect of source of nitrogen on growth, alkaloid content and enzymes activities in Atropa acuminate. Pakistan J Forestry. 1991, 41(3): 147-156
    [241] Ruminska A, Gamal ESE. Effect of nitrogen fertilization on growth, yield and alkaloid content in Datura innoxia Mill. Acta Horticulture. 1978, 73: 173-179
    [242] Hoffland E, Dicke M, Van Tintelen W, Dijkman H,Van Beusichem ML. Nitrogen availability and defense of tomato against two-spotted spider mite. J Chem Ecol. 2000, 26(12): 2697-2711
    [243] St-Pierre B, Vazquez-Flota FA, De Luca V. Multicellular compartmentation of Catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate. Plant Cell. 1999, 11:887-900
    [244] Green TH, Mitchell RJ, Gierstad DH. Effects of nitrogen on the response of loblolly pine to drought Ⅱ: biomass allocation and C: N balance. New Phytol. 1994, 128:145-152
    [245] Seith B, George E, Marschner H, Wallenda T, Schaeffer C, Einig W, Wingler A, Hampp R. Effects of varied soil nitrogen supply on Norway spruce(Picea abies [L.] Karst. ). 1. Shoot and root growth and nutrient uptake. Plant Soil. 1996, 184:291-298
    [246] Paponov IA, Posepanov OG, Lebedinskai S, Koshkin EI. Growth and biomass allocation, with varying nitrogen availability, of near-isogenic pea lines with differing foliage structure. Ann Bot. 2000, 85(4): 563-569
    [247] 范燕萍,余让才,陈建勋,杨瑞陶.氮素营养胁迫对匙叶天南星生长及光合特性的影响.园艺学报.2000,27:297-299
    [248] Thomas M, Oseald O, Graham IA. Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon: nitrogen availability. Plant Physiol. 2002, 128: 472-481
    [249] 陆景陵.植物营养学.北京 京农业大学出版社.1994
    [250] 肖文发,徐德应著.森林能量利用与产量形成的生理生态基础.北京:国林业出版社,1999:34-39
    [251] Larigauderie A, Reynolds JF, Strain BR. Root response to CO_2 enrichment and nitrogen supply in loblooly pine. Plant Soil. 1994, 165:21-32
    [252] Mackie-Dawson LA, Millard P, Proe MF. The effect of nitrogen supply on root growth and development in Sycamore and Sitka spruce trees. Forestry. 1995, 68(2): 107-114
    [253] 李春喜,张根发,石惠恩等.氮肥对小麦硝酸还原酶活性和籽粒蛋白质含量变化动态的影响.西北植物学报.1995,15(4):276-281
    [254] 黄勤妮,印莉萍,柴晓清,刘祥林,洪剑明,赵微平.不同氮源对小麦幼苗谷氨酰胺合成酶的影响.植物学报.1995,37(11):856-862.
    [255] 关义新,林葆,凌碧莹.光、氮及其互作对于米幼苗叶片光合和碳、氮代谢的影响.作物学报.2000,26(6):806-812
    [256] Lambers H, Chapin FS, Pons TL. Plant physiological ecology. New York: SpringerVerlag New York Inc, 1998. 252-253
    [257] Aslam M, Travis RL, Rains DW. Diurnal fluctuations of nitrate uptake and in vivo nitrate reductase activity in Pima and Acala Cotton. Crop Sci. 2001, 41:372-378
    [258] Magalhase JR. The responses of ammonium assimilation enzymes to nitrogen form in different plant. J Plant Nutr. 1991, 14(2): 175-185
    [259] 封克,汪小丽,陈平.水稻苗期不同时段NO_3~-吸收特点及其受NH_4~+的影响.中国农业科学.2003,36(3):307-312
    [260] 张宏纪,马凤鸣,李文华.不同形态氮素对甜菜谷氨酰胺合成酶的影响.黑龙江农业科学.2001,(6):7-10.
    [261] Zhang CF, Peng SB, Bennett J. Changes of levels of Glutamine synthestse isoforms in roots and leaves in response to nitrogen fertilizer application at different growth stages in irrigated rice. Wuhan Uni J Nat Sci. 1998, 3(4): 476-480
    [262] Li CF, Ma FM. The Effect of Different Nitrogen Form on Key Enzyme Activity of Sugar beet(Vulgaris L.) Carbon and Nitrogen Metabolism. J Northeast Agr Uni. 2002, 9(1): 29-34
    [263] Theodore KR, Norman T. Carbon, nitrogen, and nutrient interactions in Beta vulgaris L. as influenced by nitrogen source, NO_3~- versus NH_4~+. Plant Physiol. 1995, 107:575-584
    [264] 李彩凤,马凤呜,赵越,李文华.氮素形态对甜菜氮糖代谢关键酶活性及相关产物的影响.作物学报.2003,29(1):128-132

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700