浮游植物胞外磷酸酶在富营养化湖泊磷循环过程中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浮游植物的过量生长(水华)是湖泊富营养化的重要特征,而磷通常为浮游植物生长的限制性营养元素,湖泊中浮游植物可利用的正磷酸盐含量往往难以满足其生长繁殖之需,由此引出下述极富生态学意义的问题:1、催化溶解有机磷水解产生正磷酸盐的胞外磷酸酶在富营养化湖泊的磷循环过程中是否具有重要作用?2、湖泊胞外磷酸酶主要由哪些浮游生物产生?3、浮游植物是否均能产生胞外磷酸酶?4、浮游植物对溶解态磷酸酶是否亦有贡献?5、水柱中浮游植物的生长与内源磷负荷是否有关?6、疏浚对水柱中磷的生物可利用性与浮游植物的生长具有什么影响?利用ELF(Enzyme Labelled Fluoresce)荧光标记方法能确定磷酸酶在细胞膜外的发生部位,从而辨识产生胞外磷酸酶的浮游生物。本文以上述问题为主线,以ELF 与经典技术的结合为主要实验方法,着重探讨了2001年11 月至2004 年5 月间长江中下游不同营养类型的16 个湖泊与2 个鱼塘中浮游植物胞外磷酸酶的来源、分布、特征及其在磷循环过程中的作用。结果表明,胞外磷酸酶在上述水体中均有发生,且能对已知的磷酸酶抑制剂(硫酸铜、硫酸锌、EDTA-2Na 和钨酸钠等)和表面活性剂(CTAB 和Triton X-100 等)产生不同的应答,这不仅佐证了胞外磷酸酶的发生,而且显示了其来源的多样性。2004年春季,汉阳7 个湖泊大颗粒(>3.0μm)所表现的碱性磷酸酶活性与溶解反应性磷(SRP)浓度大体负相关,这暗示酶与生物可利用性磷之间的联系。因此,在富营养化湖泊中,作为磷营养的重要补偿机制,胞外磷酸酶的作用仍异常活跃;荧光标记实验证实,异养鞭毛虫与浮游植物均为大颗粒磷酸酶活性的重要贡献者。因此,除浮游植物之外,浮游动物亦能大量产生附着于细胞膜外(而非溶解态)的磷酸酶;东湖甲藻、硅藻、绿藻门的33 种藻类能产生被ELF 标记的胞外磷酸酶,而蓝藻门的种类则未见标记。标记形式亦具种类特异性,或呈点状,或呈线状,或均匀遍布细胞膜,或散列其局部。弓形藻(Schroederia sp.)在SRP浓度较高的龙阳湖未见荧光标记,而在SRP 浓度较低的墨水湖却被标记。东湖甲藻(Peridiniopsis sp.)水华期间,SRP 浓度较低时,荧光标记的细胞较多(约25%),随着SRP 浓度的升高,其标记百分率逐渐降低(约5%)。因此,浮游植物
Algal bloom is one of the most typical symptom of eutrophication. Phosphorus is the most commonly limiting nutrient in freshwaters. It is well known that phytoplankton can only take up inorganic orthophosphate which is always far less than the amount needed for its metabolism. The following ecological questions arising therefrom remain unclear: 1. Does extracellular phosphatase catalyzing the liberation of orthophosphate from various organic phosphorus compounds play an important role in phosphorus cycling in eutrophic lakes? 2. What kinds of plankton produce extracellular phosphatase in lakes? 3. Can all kinds of phytoplankton produce extracellular phosphatase? 4. Does phytoplankton contribute to dissolved phosphatase? 5. Is the internal phosphorus loading connected with the growth of phytoplankton in water column? 6. How does dredging affect the phosphorus bioavailability and the growth of phytoplankton in water column? Aiming at these questions, the origin, distribution, characteristics of alkaline phosphatase activity (APA) and its role in phosphorus cycling were studied in 16 lakes and 2 fish ponds with different trophic levels from November 2001 to May 2004. The extracellular phosphatase produced by phytoplankton was emphasized. A new technique ELF (Enzyme Labelled Fluoresce) method, which allows an easy visualization of the sites of phosphatase activity under epifluorescence microscopy, and then detects the contributor of the enzyme, was applied together with the traditional method using pNPP as substrate. APA was detected in all lakes and ponds studied. Its sensitive responses to the specific inhibitors of phosphatase (CuSO_4, ZnSO_4, EDTA-2Na and NaWO_4) and surfactants (CTAB and Triton X-100) provided further evidences for the occurrence of the
    enzyme. The varying responding modes implied its different origin. Based on the data from 7 lakes in Hanyang District of Wuhan City, APA associated with coarser particles ( > 3.0μm) negatively related to soluble reactive phosphorus (SRP) concentrations in general, implying a connection between phosphatase and phosphorus bioavailablity. Thus, the action of phosphatase, as a mechanism of compensating phosphorus deficiency, was active even in the eutrophic lakes. As proven by ELF method, heterotrophic nanoflagellates and phytoplankton were the two main contributors of the extracellular phosphatase associated with the coarser particles. Thus, besides phytoplankton, zooplankton can produce cell bound phosphatase in addition to dissolved one. In Lake Donghu, the ELF labelled cells were detected in 33 algal taxa of many chlorophytes, dinoflagellates, and some diatoms altogether, but never among cyanobacteria. The pattern of ELF labelling was characteristic for some species and formed linear structures, dots or the whole cell surface was evenly labelled. Schroederia sp. was completely labeled in Lake Moshui, while completely non-labeled in Lake Longyang. Meanwhile, The SRP concentration in Lake Moshui was markedly lower than that in Lake Longyang. At the end of the dinoflagellate bloom in Lake Donghu, parts of labelled cells ( ~25% ) in Peridiniopsis sp., was detected, and the percentage of the labelled cells decreased to ~5% with the increase in SRP. Thus, the production of extracellular phosphatase by phytoplankton was regulated, at least partially by phosphorus bioavailability. For phytoplankton, this enzymatic mechanism for compensation of phosphorus deficiency functions at individual cell or species (rather than assemblage) levels. In all water bodies studied, dissolved APA generally accounted for lager parts of total APA. Fish culture has some influences on its occurrence. In fish ponds with Anabaena sp. dominated, dissolved APA was stimulated by Cu2+. The same effects were observed in the Anabaena sp. culture medium. Thus, There may be a relation between Anabaena sp. and dissolved phosphatase. From January to April 2004,SRP concentrations in both water column and interstitial water increased in Lake Taihu, when it was the highest in interstitial water, the phytoplankton density peaked in water column, with green algae dominated. At the site with lower SRP but higher dissolved organic phosphorus concentrations,
    the phytoplankton assemblage was dominated by green algae capable of producing extracellular phosphatase as evidenced by the ELF labeling. Thus, the phytoplankton development in water column was related to sediment phosphorus, directly available and phosphatase hydrolyzable. After dredging, interstitial water in Lake Taihu showed remarkably lower contents of total phosphorus, dissolved total phosphorus and SRP, while SRP concentrations in water column remained relatively higher. Phytoplankton was generally unchanged in density and composition. Thus, dredging significantly cut the internal phosphorus loading, but its ecological effectiveness was not observed in a short period. In summary, with the diverse producers (zooplankton, phytoplankton and bacteria plankton) and different forms (associated and dissolved), the extracellular phosphatase is of great ecological significance, which plays an important role in phosphorus cycling in eutrophic lakes. Its production by phytoplankton is species specific reflecting that the different species has distinct phosphorus demand and/or utilizing strategies. The internal phosphorus loading might be causatively linked to the phytoplankton development, but the relationship is so complex that it greatly affects the effectiveness of remediation, such as dredging.
引文
[1] Aaronson,S., 1971.The synthesis of extracellular macromolecules and membranes by a population of the phytoflagellate Ochromonas Danica. Limnol. Oceanogr. 16: 1-9.
    [2] Aaronson, S.and Patni, N.J., 1976. The role of surface and extracellular phosphatases in the phosphorus requirement of Ochromonas. Limnol. Oceanogr. 21:838-845.
    [3] Ahlgren, G., 1988. Phosphorus as regulating factor relative to other environmental factors in cultured algae. Hydrobiologia 170:191-210.
    [4] Aldridge, FJ., Schelske, CL., Carrick, HJ., 1993. Nutrient limitation in a hypereutrophic Florida lake. Archiv fur Hydrobiologie 127:21-37.
    [5] Andersson, G., Berggern, G., Cronberget, H. and Celin, C., 1978. Effects of planktivorous and benthivorous fish on organisms and water chemistry in europhic lakes. Hydrobiologia 59:9-15.
    [6] Andersson,G.,1988. Restoration of Lake Trummen, Sweden. Effects of sediment removal and fish manipulation. Eutrophication and lake restoration. French-Swedish Limnological Symp.Water Quality and biological impacts 205-214.
    [7] Annadotter, H., Cronberg, G., Aagren, R., Lundstedt, B., Nilsson, P. and Stroebeck, S., 1999. Multiple techniques for lake restoration. Hydrobiologia 395/396: 77-85.
    [8] Antia, N.J. and Watt, A.,1965. Phosphatase activity in some species of marine phytoplankters. Fish Res.Bd Can.22:793-799.
    [9] Baneras, L., Rodriguez-Gonzalez, J. and Garcia-Gil, LJ.1999. Contribution of photosynthetic sulfur bacteria to the alkaline phosphatase activity in anoxic aquatic ecosystems. Aquatic Microbial Ecology 18: 15-22.
    [10] Barik, SK., Purushothaman, CS. and Mohanty, AN., 2001. Phosphatase activity with reference to bacteria and phosphorus in tropical freshwater aquaculture pond systems. Aquaculture Research 32: 819-832.
    [11] Barnese, L. E. and Schelske, C. L., 1994. Effects of nitrogen, phosphorus and carbon enrichment on planktonic and periphytic algae in a softwater, oligotrophic lake in Florida, USA. Hydrobiologia 277: 159-170.
    [12] Bergquist , AM., Carpenter , SR. 1986. Limnetic herbivory: Effects on phytoplankton populations and primary production. Ecology 67:1351-1360.
    [13] Berman, T., 1970. Alkaline phosphatases and phosphorus availability in Lake Kinneret. Limnol. Oceanogr. 15: 663-674.
    [14] Berman,T.and Moses, G.,1972. Phosphorus availability and alkaline phosphatase activities in two Israeli fishponds. Hydrobiologia 40: 487-498.
    [15] Boavida, M.J. and Heath, R.T., 1984. Are the phosphatases released by Daphnia magna components of its food? Limnol Oceanogr. 29: 641-645.
    [16] Boge, G., Jamet, J., Richard, S., Jamet, D. and Jean, N., 2002. Contribution of copepods, cladocerans and cirripeds to phosphatase activity in mediterranean zooplankton. Hydrobiologia 468:147-154.
    [17] Boon, P.I., 1989. Organic matter degradation and nutrient regeneration in Australian freshwaters: I. Methods for exoenzyme assays in turbid aquatic environments. Arch. Hydrobiol. 115: 339–359.
    [18] Brandes, D. and Elston,R.N., 1956. An electron microscopic study of the histochemical localization of alkaline phosphatase in the cell wall of Chlorella vulgaris. Nature. Lond. 177:274-275.
    [19] Breuer, E., Sanudo-wilhelmy, S. A. and Aller R. C., 1999. Trace Metals and Dissolved Organic Carbon in an Estuary With Restricted River Flow and a Brown Tide Bloom. Estuaries 22: 603-615.
    [20] Brooks, JL. and Dodson, SI., 1965. Predation, body size and composition of plankton. Science 150:26-35.
    [21] Brown, E.J. and Button, D.K., 1979. Phosphate limited growth kinetics of Selenastrum capricornutum (Chlorophyceae). J.Phycol.15:305-311.
    [22] Brown, SE. and Goulder, R.,1996. Extracellular-enzyme activity in trout-farm effluents and a recipient river. Aquaculture Research 27: 895-901.
    [23] Buainain, LB., Kaowaki, MK., Maria, L. and Polizeli, 1998. Characterization of a conidial alkaline phosphatase from the thermophilic fungus Humicola grisea var. thermoidea. Basic Microbiol. 38:85-94.
    [24] Carr, OJ. and Goulder, R., 1990. Fish-farm effluents in rivers --1. Effects on bacterial populations and alkaline phosphatase activity. Water Research 24: 631-638.
    [25] Caruso G., Genovese L.; Mancuso M.and Modica A., 2003. Effects of fish farming on microbial enzyme activities and densities: Comparison between three Mediterranean sites. Letters in Applied Microbiology 37:324-328.
    [26] Caruso, G. and Zaccone, R., 2000.Estimates of leucine aminopeptidase activity in different marine and brackish environments. Journal of Applied Microbiology 89: 951-959.
    [27] Cembella, A.D., Antia, N.J. and Harrison, P.J., 1984. The utilization of inorganic and organic phosphorus compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: Part I. CRC Crit. Rev. Microbiol. 10: 317–391.
    [28] Christmas, M. and Whitton, BA., 1998.Phosphorus and aquatic bryophytes in the Swale -Ouse river system, north-east England. 1. Relationship between ambient phosphate, internal N:P ratio and surface phosphatase activity. Science of the Total Environment. 210-211: 389-399.
    [29] Chróst, R.J.,1991. In:Microbial Enzymes in Aquatic Environments.Spring-Verlag New York Inc., 317 PP.
    [30] Chróst, R.J. and Overbeck, J., 1987. Kinetics of alkaline phosphatase activity and phosphorus availability for phytoplankton and bacterioplankton in lake Plu?see (North German eutrophic lake). Microb. Ecol. 13: 229–248.
    [31] Chróst, R.J., Siuda, W. and Halemejko, G.Z. 1984. Longterm studies on alkaline phosphatase activity (APA) in a lake with fish-aquaculture in relation to lake
    eutrophication and phosphorus cycle. Arch. Hydrobiol., 70: 1–32.
    [32] Cooper,J.E., Early,J. and Holding,A.J., 1991. Mineralization of dissolved organic phosphorus from a shallow eutrophic lake.Hydrobiologia 209:89-94.
    [33] Cotner, J.J. and Heath, RT.,1988.Potential phosphate release from phosphomonoesters by acid phosphatase in a bog lake. Archiv fur Hydrobiologie. 111: 329-338.
    [34] Craney, A.C., Haley, S.T. and Dyhrman, S.T., 2004. Alkaline phosphatase activity in the toxic dinoflagellate Karenia brevis. Biol. Bull. 207: 174.
    [35] Cronberg, G.,1982. Changes in the Phytoplankton of Lake Trummen Induced by Restoration. Hydrobiologia 86: 185-193.
    [36] Currie, DJ, Bentzen, E. and Kalff, J., 1986. Does algal-bacterial phosphorus partitioning vary among lakes? A comparative study of orthophosphate uptake and alkaline phosphatase activity in freshwater. Can. J. Fish Aquat Sci. 43: 311-318.
    [37] Currie, D.J. and Kalff, J. 1984a. A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus. Limnol. Oceanogr., 29: 298–310.
    [38] Currie, D.J. and Kalff, J. 1984b. Can bacteria outcompete phytoplankton for phosphorus? A chemostat test. Microb. Ecol., 10: 205–216.
    [39] Degobbis, D.,et al., 1986, The Role of Alkaline Phosphatase in the Sediments of Venice Lagoon Nutrient Regeneration. Estuarine, Coastal and Shelf Science, 22: 425-437.
    [40] Dignum, M., Hoogveld, H.L., Matthijs, H. C. P., Laanbroek, H. J. and Pel, R. 2004. Detecting the phosphate status of phytoplankton by enzyme-labelled fluorescence and flow cytometry. FEMS Microbiol. Ecol., 48: 29–38.
    [41] Dixon, M., and Webb, E.C.,1979. Enzymes.3rd edn.Longman,London.
    [42] Dore, JE. and Priscu, JC., 2001.Phytoplankton phosphorus deficiency and alkaline phosphatase activity in the McMurdo Dry Valley lakes, Antarctica. Limnology and Oceanography 46:1331-1346.
    [43] Droop, MR., 1974.The nutrient status of algal cells in continuous culture. J. Mar. Biol. Ass. UK. 54:825-855.
    [44] Dyhrman, T.S. and Palenik, B., 1999. Phosphate stress in cultures and field populations of the dinoflagellate Prorocentrum minimum detected by a single-cell alkaline phosphatase assay. Appl. Environ. Microbiol. 65: 3205–3212.
    [45] Elgavish, A., Halmann, M. and Berman, T.A., 1982.Comparative Study of Phosphorus Utilization and Storage in Batch Cultures of Peridinium cinctum, Pediastrum duplex and Cosmarium sp., from Lake Kinneret (Israel). Phycologia 21:47-54.
    [46] Elser, JJ. and Hassett, RP.,1994. A stoichiometric analysis of the zooplankton-phytoplankton interaction in marine and freshwater ecosystems. Nature 370: 211-213.
    [47] Ettl, H., 1983. Chlorophyta I. Phytomonadina. In Süβwasserflora von Mitteleuropa, 9. Bd. (Ettl, H., Gerloff., J., Mollenhauer, D., editors). Gustav Fischer Verlag, Stuttgart, 807 pp.
    [48] Feder, J.,1973. The phosphatase. In E.J.Griffith, A.Beeton, J.M.Spencer and D.T.Mitchell(eds), Environmental phosphorus handbook.J.Wiley and Sons.NY:475-508
    [49] Feuillade, J., Feuillade, M. and Blanc, P., 1990. Alkaline phosphatase activity fluctuations and associated factors in a eutrophic lake dominated by Oscillatoria rubescens. Hydrobiologia 207: 233–240.
    [50] Fitzgerald, GP. and Nelson, TC.,1966. Extractive and enzymatic analyses for limiting or surplus phosphorus in algae. J. Phycol. 2: 32-37.
    [51] Francko, D.A., 1983. Size-fractionation of alkaline phosphatase activity in lake water by membrane filtration.J.Fresh.Ecol.2:32-37.
    [52] Francko, D.A., 1984. Relationship between phosphorus functional classes and alkaline phosphatase activity in reservoir lakes .J.Fresh. Ecol. 2:541-547.
    [53] Francko,D.A. and Heath, R.T., 1979. Functionally distinct classes of complex phosphorus compounds in lake water. Limnol. Oceanogr. 24:463-473.
    [54] Francko, D.A.and Wetzel, R.G., 1982. The isolation of xyxloc adenosine 3,:5,-monophosphate (cAMP) from lakes of differing trophic status: Correlation with planktonic metabolic variables. Limnol. Oceanogr.27:27-38.
    [55] Fuhrman,J.A. and Azam,F., 1980.Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Appl. Environ. Microbiol. 39:1085-1095.
    [56] Fuhs, GW., Demmerle, SD., Canelli, E. and Chen, M., 1972. Characterization of phosphorus limited plankton algae (with reflections on the limiting nutrient concept). In: Likens GE, ed.: Nutrients and eutrophication: the limiting nutrient controversy. American Soc. Limnol. Oceanogr. 1: 113-133.
    [57] Fukuda, R., Sohrin, Y., Saotome, N., Fukuda, H., Nagata, T. and Koike, I., 2000.East-west gradient in ectoenzyme activities in the subarctic Pacific: Possible regulation by zinc. Limnology and Oceanography 45: 930-939.
    [58] Gage, M.A., 1978. Alkaline phosphatase activity in several Minnesota lakes. Doctoral thesis. University of Minnesota. 52 pp.
    [59] Gage, M. A. and Gorham, E., 1985. Alkaline phosphatases activity and cellular phosphorus as an index of the phosphorus status of phytoplankton in Minnesota lakes. Freshwater Biol. 15: 227–233.
    [60] Gambin, F., Boge, G. and Jamet, D.,1999.Alkaline phosphatase in a littoral Mediterranean marine ecosystem: role of the main plankton size classes. Mar. Environ. Res. 47: 441-456.
    [61] Garcia Ruiz, R., Hernandez, I., Lucena, J. and Niell, FX., 1997. Preliminary studies on the significance of alkaline phosphatase activity in the diatom
    Phaeodactylum tricornutum Bohlin .Scientia Marina (Barcelona) 61:517-525.
    [62] Gelin, C. and Ripl, W.,1978.Nutrient decrease and response of various phytoplankton size fractions following the restoration of Lake Trummen, Sweden Arch. Hydrobiol. 81:339-367.
    [63] Gibson, MT. and Whitton, BA., 1987. Influence of phosphorus on morphology and physiology of freshwater Chaetophora, Draparnaldia and Stigeoclonium (Chaetophorales, Chlorophyta). Phycologia 26:59-69.
    [64] Glew, R.H. and Heath, E.C.,1971. Studies on the exteacellular alkaline phosphatase of Micrococcus aodonensis.I.Isolation and characterization. J.Biol. Chem.246:1556-1565.
    [65] Glibert, P.M.,1998.Enhancement of algal growth and productivity by grazing zooplankton.Hydrobiologia 363:1-12.
    [66] Gonzáles-Gil, S.B. Keafer, RVM. Jovine, A., Aquilera, S. and Anderson DM., 1998. Detection and quantification of alkaline phosphatase in single cells of phosphorus-starved marine phytoplankton. Mar.Ecol. Porg. Ser. 164: 21-35.
    [67] Goldman, J.C., 1980. Physiological processes, nutrient availability, and the concept of relative growth rate in marine phytoplankton ecology. Brook Havens symp. Biol. 31.PP. 179-194.
    [68] Goldman, J.C., and Gilbert, P.M.,1983. Kinetics of inorganic nitrogen uptake by phytoplankton.P.233-274.In Carpenter, E. J.,and Capone D.G.(eds.),Nitrogen in the marine
    environment.Academic.
    [69] Golterman, H. L., Clymo, R. S. and Ohmstad, M. A. M., 1978. Methods for physical and chemical analysis of Fresh waters. Blackwell Scientific Publications, Oxford, Handbook 8, 2nd ed., 111-117.
    [70] González-Gil, S., Keafer, B.A., Jovine, R.V.M., Aguilera, A., Lu, S. and Anderson, D.M.,1998. Detection and quantification of alkaline phosphatase in single cells of phosphorus-starved marine phytoplankton. Mar. Ecol. Prog. Ser., 164: 21–35.
    [71] Graham, L.E. and Wilcox, L.W. ,2000. Algae. Prentice hall, Inc. Upper Saddle River, USA
    [72] Graziano, LM., Geider, RJ. and La Roche, J., 1995.Physiological responses of D. tertiolecta to phosphorus limitation. Journal of Phycology Suppl.31:22.
    [73] Gunatilaka, A.,1984. Observations on phosphorus dynamics an orthophosphate turnover in a tropical lake-Parakrama Samudra, Sri Lanka. Verh. int. Ver. Limnol. 22:1567-1571.
    [74] Halemegko, G. and Chróst, R.J.,1984. The role of phosphatases in phosphorus mineralization during decmposition of lake phytoplankton blooms. Arch. Hydrobiol. 101:489-502.
    [75] Hantke, B., Fleischer, P., Domany, I., Koch, M., Pless, P., Wiendl, M. and Melzer, A., 1996. P-release from DOP by phosphatase activity in comparison to P excretion by zooplankton. Studies in hardwater lakes of different trophic level. Hydrobiologia 317:151-162.
    [76] Hantke, B. and Meltzer, A., 1993. Kinetic changes in surface phosphatase activity of Synedra acus (Bacillariophyceae) in relation to pH variation. Freshwater biol. 29: 31-36.
    [77] Healey, F.P., 1973. Characteristic of phosphorus deficiency in Anabaena. J. Phycol. 9: 383-394.
    [78] Healey F.P., 1978. Physiological indicators of nutrient deficiency in algae. Experimental use of algal cultures in Limnology 34-41.
    [79] Healey F.P., 1985. Interacting effects of light and nutrient limitation on the growth rate of Synechococcus linearis (Cyanophyceae).J.Phycol. 21:134-146.
    [80] Healey, F.P. and Hendzel, L.L., 1979a. Indicators of phosphorus and nitrogen deficiency in five algae in culture. J. Fish. Res. Board Can., 36: 1364–1369.
    [81] Healey, F.P. and Hendzel, L.L., 1979b. Fluoromeric measurement of alkaline phosphatase activity in algae. Freshwater Biol. 9:429-439.
    [82] Healey, F.P. and Hendzel, L.L., 1980. Physiological indicators of nutrient deficiency in lake phytoplankton. Can. J. Fish. Aquat. Sci., 37: 442–453.
    [83] Healey, F.P. and Hendzel, L.L., 1975. Effect of phosphorus deficiency on two algae growing in chemostats. J. Phycol. 11:303-309.
    [84] Heath,R.T., 1986. Dissolved organic phosphorus compounds: Do they satisfy planktonic phosphate demand in the summer? Can. J. Fish. Aquat. Sci. 43:343-350.
    [85] Heath R.T and Cooke, G.D.,1975.The significance of allkaline phisphatase in a eutriphic lake.Verh.int.Ver. Limnol.19:959-965.
    [86] Hecky, R.E., and Kilham,P.,1988. Nutrient initiation of phytoplankton in freshwater and marine environments:A review of recent evidence on the effects of enrichment.Limnol. Oceanogr.33:796-822.
    [87] Hernandez, I., Andria, JR., Christmas, M. and Whitton, BA., 1999. Testing the allometric scaling of alkaline phosphatase activity to surface/volume ratio in benthic marine macrophytes. Journal of Experimental Marine Biology and Ecology 241:1-14.
    [88] Hernandez, I., Christmas, M., Yelloly, JM. and Whitton, BA., 1997. Factors affecting surface alkaline phosphatase activity in the brown alga Fucus spiralis at a North Sea intertidal site (Tyne
    Sands, Scotland). Journal of Phycology 33:569-575.
    [89] Hernandez, I., Fernandez J.A. and Niell, FX., 1995. A comparative study of alkaline phosphatase activity of two species of Gelidium (Gelidiales, Rhodophyta). Eur.J.Phycol.30: 69-77.
    [90] Hernandez, I., Hwang, S-J. and Heath, RT., 1996. Measurement of phosphomonoesterase activity with a radiolabelled glucose-6-phosphate. Role in the phosphorus requirement of phytoplankton and bacterioplankton in a temperate mesotrophic lake. Archiv fuer Hydrobiologie 137: 265-280.
    [91] Hernandez, I., Niell, FX., and Fernandez, J.A.,1994. Alkaline phosphatase activity in Porphyra umbilicalis(L.)Kutzing. J.Exp.Mar.Biol.Ecol.159:1-13.
    [92] Hernandez, I., Niell, FX. and Whitton, BA., 2002. Phosphatase activity of benthic marine algae. An overview. Journal of Applied Phycology 14:475-487.
    [93] Hernandez, I., Perez-Pastor, A. and Llorens, JLP., 2000. Ecological significance of phosphomonoesters and phosphomonoesterase activity in a small Mediterranean river and its estuary. Aquatic Ecology 34:107-117.
    [94] Hino, S., 1988. Fluctuation of algal alkaline phosphatase activity and the possible mechanisms of hydrolysis of dissolved organic phosphorus in Lake Barato. Hydrobiologia 157: 77–84.
    [95] Hoppe, HG., 1983. Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl substrates. Mar. Ecol. Prog. Ser. 11: 299-308.
    [96] Huang, B. and Hong, H., 1999. Distribution and controlling factors of alkaline phosphatase activity in western Xiamen waters. Marine Pollution Bulletin 39: 205-211.
    [97] Huang, Q. and Shindo H., 2001. Comparison of the Influence of Cu, Zn, and Cd on the Activity and Kinetics of Free and Immobilized Acid Phosphatase. Soil Sci.Plant Nutr. 47:767-772.
    [98] Huang, X.and Morris, JT., 2003.Trends in Phosphatase Activity along a Successional Gradient of Tidal Freshwater Marshes on the Cooper River, South Carolina. Estuaries 26:1281-1290.
    [99] Huber,A.L. and Kidby, D.K.,1984. An examination of the factors involved in determing phosphatase activities in estuarine water.1:Analytical procedures.Hydrobiologia 111:3-11.
    [100] Huber,A.L., Gavielson,J.O., Dolin, P.J.and Kidby,D.K., 1983. Decomposition of Cladophora.III.Heterotroph populations and phosphatase activity associated with in vitro phosphorus mineralization. Bot. Mar.26:181-188.
    [101] Hulett, F.M.,1986. The secreted alkaline phosphatase of Bacillus licheniformis MC14:Indentification of a possible precursor.PP.109-127 in Ganesan,A.T.and Hoch,J.A.(editors),Bacillus Molecular Genetics and Biotechnology Applications. Academic Press,Inc.,New York.
    [102] Islam, MR. and Whitton, BA., 1992. Phosphorus content and phosphatase activity of the deepwater rice-field cyanobacterium (blue-green alga) Calothrix D764. Microbios 69:7-16.
    [103] Ihlenfeldt, MJA. and Gibson, J., 1975. Phosphate utilization and alkaline phosphatase activity in Anacystis nidulans (Synechococcus). Archives of Microbiology 102:23-28.
    [104] Istvánovics, V., Pettersson, K., Pierson, D. and Bell, R., 1993. Evaluation of phosphorus deficiency indicators for summer phytoplankton in Lake Erken. Limnol. Oceanogr. 37: 890–900.
    [105] Jackson, CR., Foreman, CM. and Sinsabaugh, RL., 1995. Microbial enzyme activities as indicators of organic matter processing rates in a Lake Erie coastal wetland. Freshwater Biology 34: 329-342.
    [106] Jamet, D., Amblard, C. and Devaux, J., 1997. Seasonal changes in alkaline phosphatase activity of bacteria and microalgae in Lake Pavin (Massif Central, France). Hydrobiologia 347:185-195.
    [107] Jamet, D., Amblard, C. and Devaux, J., 2001. Size-Fractionated Alkaline Phosphatase Activity in the Hypereutrophic Villerest Reservoir (Roanne, France). Water Environment Research 73: 132-141.
    [108] Jamet, D. and Boge, G.,1998. Characterisation of marine zooplankton alkaline phosphatase activity in relation to water quality. Hydrobiologia 373-374: 311-316.
    [109] Janna, BB. and Das, SK., 1992. Bioturbation induced changes of fertilizer value of phosphate rock in relation to alkaline phosphatase activtity. Aquaculture 103:321-330.
    [110] Jansson, M., 1981. Induction of high phosphatase activity by aluminum in acid lakes. Arch. Hydrobiol. 93:32-44.
    [111] Jansson, M., 1976. Phosphatases in Lake Water: Characterization of Enzymes from phytoplankton and Zooplankton by Gel Filtration. Science 194:320-321.
    [112] Jansson, M., Olsson, H. and Pettersson, K. 1988. Phosphatases: origin, characteristics and function in lakes. Hydrobiologia 170: 157–175.
    [113] János, O., Erzsébet, O. and Tóth, 1978. The function of alkaline phosphatase enzyme in the phosphorus cycle of fertilized fishponds. Aquacultura Hungarica(Szarvas)1:15-23.
    [114] Jean, N., Boge, G., Jamet, J-L., Richard, S.and Jamet, D., 2003. Seasonal changes in zooplanktonic alkaline phosphatase activity in Toulon Bay (France): the role of cypris larvae. Marine Pollution Bulletin 46:346-352.
    [115] Jean, N., Boge, G., Jamet, JL. and Jamet, D., 2002. Phosphatase activity of the particular material in a polluted ecosystem: Toulon sea port. Journal of Water Science 15: 63-71.
    [116] Jenkins, CC. and Suberkropp, K., 1995.The influence of water chemistry on the enzymatic degradation of leaves in streams. Freshwater biology 33: 245-253.
    [117] Jin, X.C., 1995. Lakes in China: research of their environment, Vol. 2. China Ocean Press, 482 pp.
    [118] Jones, J.G., 1972. Studies on freshwater bacteria: Association with algae and alkaline phosphatase activity. Ecol. 60:59-75.
    [119] Kalinowska, K.,1995. Eutrophication processes in a shallow, macrophyte dominated lake --alkaline phosphatase activity in Lake Luknajno (Poland). Hydrobiologia 342-343:395-399.
    [120] Karjalainen, H., Sepp?l?, S. and Walls, M., 1998. Nitrogen, phosphorus and Daphnia grazing in controlling phytoplankton biomass and composition –an experimental study. Hydrobiologia 363: 309-321.
    [121] Karner, M., Ferrier-Pages, C. and Rassoulzadegan, F., 1994. Phagotrophic nanoflagellates contribute to occurrence of alpha -glucosidase and aminopeptidase in marine environments. Marine ecology progress series 114:237-244.
    [122] Khoja, TM., Livingstone, D.and Whitton, BA., 1984. Ecology of a marine Rivularia population. Hydrobiologia 108: 65-73.
    [123] Kilham, SS. and Kilham, P., 1984.The importance of resource supply rates in determining phytoplankton community structure. In Trophic interactions within aquatic ecosystems, Am. Assoc. Adv. Sci. Selec. Symp. Ser. 85: 7-28.
    [124] Klotz, RL., 1985. Influence of light on the alkaline phosphatase activity of Selenastrum capricornutum (Chlorophyceae) in streams. Canadian Journal of Fisheries and Aquatic Sciences 42: 384-388.
    [125] Knuuttila, S., Pietil¨ainen O.-P. and Kauppi, L., 1994. Nutrient balances and phytoplankton dynamics in two agriculturally loaded shallow lakes. Hydrobiologia 275/276: 359–369.
    [126] Kobori, H. and Taga, N.,1979. Phosphatase activity and its role in the mineralization of organic phosphorus in coastal sea water. J. exp. mar. Biol. Ecol. 36:23-39.
    [127] Koike, I. and Nagata, T., 1997. High potential activity of extracellular alkaline phosphatase in deep waters of the central Pacific. Deep-Sea Research (Part II, Topical Studies in
    Oceanography) 44: 2283-2294.
    [128] Komárek, J. and Fott, B., 1983. Chlorophyceae (Grünalgen), Ordnung Chlorococcales. In Das Phytoplankton des Sü?wassers, Systematik und Biologie, 7. Teil, 1. H?lfte (Huber-Pestalozzi, G., editor), E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, 1044 pp.
    [129] Koning, N. and Roos, J. C., 1999. The continued influence of organic pollution on the water quality of the turbid Modder River. Water S.A. 25 : 285-292.
    [130] Kuenzler,E.J.,1965.Glucose-6-phosphate utilization by marine algae. J.Phycol.1:156-164.
    [131] Kuenzler,E.J. and Perras, J.P.,1965. Phosphatase of marine algae. Biol. Bull Woods Hole 128:271-284.
    [132] Kunito, T., Saeki, K. and Goto, S., 2001. Copper and zinc fractions affecting microorganisms in long-term sludge-amended soils. Bioresour. Technol. 79:135-146.
    [133] Labry, C., Herbland A. andDelmas, D., 2002. The role of phosphorus on planktonic production of the Gironde plume waters in the Bay of Biscay. Journal of Plankton Research 24: 97-117.
    [134] Lalitha, J. and Mulimani, VH., 1997. Stability and activity of potato acid phosphatase in aqueous surfactant media. Biochemistry and molecular biology international 41: 797-803.
    [135] Lapointe, B.E., Littler M.M. and Littler D.S.,1992. Nutrient availability to marine macroalgae in siliciclastic versus carbonaterich coastal waters.Estuaries 15:75-82.
    [136] Laura, S., Paul, I.B., 1991. Effect of polyphenolic compounds on alkaline phosphatase activity:Its implication for phosphorus regeneration in Australian freshwaters. Arch. Hydrobiol. 123:1-19.
    [137] Lehman, J.T.,1986. Selective herbivory and its role in the evolution of phytoplankton growth strategies. Michigan Univ.,Ann Arbor(USA).10pp
    [138] Lessmann, D., Fyson A.and Nixdorf, B., 2003. Experimental eutrophication of a shallow acidic mining lake and effects on the phytoplankton. Hydrobiologia 506-509: 753-758.
    [139] Levine, M.A. and Whalen, S.C., 2001. Nutrient limitation of phytoplankton production in Alaskan Arctic foothill lakes. Hydrobiologia 455: 189-201.
    [140] Li, H., Veldhuis, MJW. and Post, AF., 1998.Alkaline phosphatase activities among planktonic communities in the northern Red Sea. Marine Ecology Progress Series 173:107-115.
    [141] Lien, T. and Knutsen, G.G., 1973. Synchronous cultures of Chlamydomonas reinhardti: Properties and regulation of repressible phosphatases. Physiol. Pl. 28:291-298.
    [142] Lin, C.K., 1977. Accumulation of water soluble phosphorus and hydrolysis of polyphosphates by Cladophora glomerata(Chlorophyceae).J.Phycol.13:46-51.
    [143] Livingstone, D., Khoja, TM. And Whitton, BA.,1982.Laboratory Studies on Phosphorus Sources for an Upper Teesdale Calothrix . BR. PHYCOL. J. 17:235.
    [144] Livingstone, D., Khoja, TM. and Whitton, BA., 1983. Influence of phosphorus on physiology of a hair-forming blue-green alga (Calothrix parietina ) from an upland stream. Phycologia 22:345-350.
    [145] Livingstone, D. and Whitton, BA., 1984.Water chemistry and phosphatase activity of the blue-green alga Rivularia in Upper Teesdale streams. Journal of Ecology 72:405-421.
    [146] Lorenzen, C.J., 1967. Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnol. Oceanogr. 12: 2243–2246.
    [147] Mahasneh, IA., Grainger, SLJ. and Whitton, BA., 1990. Influence of salinity on hair formation and phosphatase activities of the blue-green alga (Cyanobacterium) Calothrix
    viguieri D253. BR. PHYCOL. 25:25-32.
    [148] Martinez, J., Smith, DC., Steward, GF. and Azam, F., 1996.Variability in ectohydrolytic enzyme activities of pelagic marine bacteria and its significance for substrate processing in the sea. Aquatic Microbial Ecology 10:223-230.
    [149] Matavulj, M., Gajin, S., Gantar, M., Petrovic, O., Erbeznik, M., Bokorov, M. and Stojilkovic, S. 1984.Phosphatase activity as an additional parameter of water condition estimate in some lakes of Vojvodina Province. ACTA BIOL. INGOSL. 21:53-62.
    [150] Mauraa, G. and Eville, G., 1985. Alkaline phosphatase activity and cellular phosphorus as an index of the phosphorus status of phytoplankton in Minnesota lakes. Freshwaer Biology 15: 227-233.
    [151] McComb R.B., Bowers G.N.and Posen S.,1979.Alkaline phosphatase. Plenum Press, NY, 986PP.
    [152] Moegenburg, SM. and Vanni, MJ., 1991.Nutrient regeneration by zooplankton: Effects on nutrient limitation of phytoplankton in a eutrophic lake. Journal of Plankton Research 13: 573-588.
    [153] Moller, M., Myklestad S. and Haug, A.,1975. Alkaline and acid phosphatase of the marine diatoms Chaetoceras affinis var. Willer (Gran) Hustedt and Skeletonema costatum (Grev.) Cleve.
    J. exp. mar. Biol. Ecol., 19:217-226.
    [154] Moorhead, D.L. and Sinsabaugh, R. L. , 2000. Simulated patterns of litter decay predict patterns of extracellular enzyme activities. Applied Soil Ecology 14: 71-79.
    [155] Morris, D.P.,1985. Nutrient limitation of phytoplankton in selected Colorado lakes.M.S.thesis,Univ.Cplorado.
    [156] Muenster, U., Einioe, P., Nurminen, J. and Overbeck, J.,1992.Extracellular enzymes in a polyhumic lake: Important regulators in detritus processing. Hydrobiologia 229: 225-238.
    [157] Mulholland, MR., Lee, C. and Glibert, PM.,2003. Extracellular enzyme activity and uptake of carbon and nitrogen along an estuarine salinity and nutrient gradient. Marine ecology progress series 258: 3-17.
    [158] Munster,U., 1994. Studies on phosphatase activities in humic lakes. Environmental International 20:49-59.
    [159] Muntean, V., Crisan, R., Pasca, D., Kiss, S. and Dragan-Bularda, M., 1996.Enzymological classification of salt lakes in Romania. International Journal of Salt Lake Research 5:
    [160] Murphy, J. and Riley, P., 1962. A modified single solution method for the determination of phosphate in natural waters. Analyt. Chim. Acta 27: 31–36.
    [161] Nagata, T. and Kirchman, DL., 1992. Release of macromolecular organic complexes by heterotrophic marine flagellates. Marine ecology progress series 83:233-240.
    [162] Nedoma, J., Padisák, J. and Koschel, R. 2003a. Utilisation of 32P-labelled nucleotide-and non-nucleotide dissolved organic phosphorus by freshwater plankton. Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 58: 87–99.
    [163] Nedoma, J., ?trojsová, A., Vrba, J., Komárková, J. and ?imek, K., 2003b. Extracellular phosphatase activity of natural plankton studied with ELF97 phosphate: fluorescence quantification and labelling kinetics. Environ. Microbiol. 5: 462–472.
    [164] Newman, S., 1992. Sediment resuspension effects on alkaline phosphatase activity. Hydrobiologia 245:75-86.
    [165] Newton, JA. and Horner, RA., 2003. Use of Phytoplankton Species Indicators to Track the Origin of Phytoplankton Blooms in Willapa Bay, Washington. Estuaries 26:1071-1078.
    [166] Ochs, CA. and Eddy, LP. 1998.Effects of UV-A (320 to 399 nanometers) on grazing pressure of a marine heterotrophic nanoflagellate on strains of the unicellular cyanobacteria
    Synechococcus spp. Applied and Environmental Microbiology 64:
    287-293.
    [167] Olah, J. and Toth, F.O.,1978. The function of alkaline phosphatase enzyme in the phosphorus cycle of fertilized fish ponds. Aquaculture Hungarica 1:15-23.
    [168] Oliver, R.L. and Ganf, G.G. 2000. Freshwater blooms. In The ecology of cyanobacteria (Whitton, B.A. and Potts, M., editors), 149–194. Kluwer, Dordrecht.
    [169] Olsen, Y., Jensen, A. and Reinertsen, H., 1984.ATP changes in P-starved algae as a measure of P-deficiency and the growth rate. CONGRESS IN FRANCE 1983. PROCEEDINGS 2866-2871.
    [170] Olsen, Y., Knutsen, G. and Lien, T., 1983. Characteristic of phosphorus limitation in Chlamydomonas reinhardtii (Chlorophyceae) and its palmelloids. J. Phycol. 19: 313-319.
    [171] Olsen, Y., Vadstein, O., Andersen, T. and Jensen, A., 1989.Competition between Staurastrum luetkemuellerii (Chlorophyceae) and Microcystis aeruginosa (Cyanophyceae) under varying modes of phosphate supply. Journal of Phycology 25: 499-508.
    [172] Olsson,H., 1983. Origin and production of phosphatases in the acid lake Gardsjon. Hydrobiologia 101:49-58.
    [173] Olsson, H., 1990. Phosphatase activity in relation to phytoplankton composition and pH in Swedish lakes. Freshwater Biol. 23: 353–362.
    [174] Ortega-Mayagoitia1, E., Rojo C. and Rodrigo, M. A., 2003. Controlling factors of phytoplankton assemblages in wetlands: an experimental approach. Hydrobiologia 502: 177–186.
    [175] Overbeck, J. and Babenzien, H.D.,1964.Uber den Nachweis von freien Enzyen im Gewasser.Arch.Hydrobiol.60:107-114.
    [176] Overbeck, J., 1991. Early studies on ecto-and extracellular enzymes in aquatic environments. In: Chróst RJ (ed) Microbial enzymes in aquatic environments Springer Verlag, New York, 29-59.
    [177] Oviatt, C., Doering, P., Nowicki, B., Reed, L., Cole, J. and Frithsen, J., 1995. An ecosystem level experiment on nutrient limitation in temperate coastal marine environments. Marine ecology progress series 116: 171-179.
    [178] Pan, Y. D., R. Stevenson, V. Jan, S. J. Panchabi and C. J. Richardson, 2000.Changes in algal assemblages along observed and experimental phosphorus gradients in a subtropical wetland, U.S.A. Freshwater Biology 44: 339-353.
    [179] Patni,N.J., Dawale, S.W., and Aaronson, S., 1977. Extracellular phosphatases of Chlamydonmonas reinhardi and their regulation. J Bact. 130:205-211.
    [180] Perkins, RG. and Underwood, GJC., 2000. Gradients of chlorophyll a and water chemistry along an eutrophic reservoir with determination of the limiting nutrient by in situ nutrient addition. Water Research 34:713-724.
    [181] Perry,M.J., 1972. Alkaline phosphatase activity in subtropical Central North Pacific water.Mar.Biol.15:113-119.
    [182] Pettersson, K., 1980. Alkaline phosphatase activity and algal surplus phosphorus as phosphorus-deficiency indicator in Lake Erken. Arch. Hydrobiol. 89:54-87.
    [183] Pettersson, K., 1985. The availability of phosphorus and the species composition of the spring phytoplankton in Lake Erken. Int. Rev. ges. Hydrobiol. 70: 527–546.
    [184] Pettersson, K. and Jansson, M., 1978.Determination of phosphatase activity in lake water --a study of methods. CONGRESS IN DENMARK 1977. PROCEEDINGS 1226-1230.
    [185] Pick, FR., 1987. Interpretations of alkaline phosphatase activity in Lake Ontario. Canadian Journal of Fisheries and Aquatic Sciences 44:2087-2094.
    [186] Pillsbury, RW., Lowe, RL., Pan, Y.D. and Greenwood, JL., 2002. Changes in the benthic algal community and nutrient limitation in Saginaw Bay, Lake Huron, during the invasion of the zebra mussel (Dreissena polymorpha). Journal of the North American Benthological Society 21: 238-252.
    [187] Pollingher, U.,1986. Non-siliceous algae in a five meter core from Lake Kinneret (Israel). Hydrobiologia 143: 213-216.
    [188] Porter,K. G. and Feig, Y. S., 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943-948.
    [189] Poulickova, A., Pechar L. and Kummel, M., 1998. Influence of sediment removal on fishpond phytoplankton. Arch. Hydrobiol. Suppl. 124:107-120.
    [190] Quesada, A., Nieva, M., Leganes, F., Ucha, A., Martin, M., Prosperi, C. and Fernandez-Valiente, E., 1998.Acclimation of cyanobacterial communities in rice fields and response of nitrogenase activity to light regime. Microbial Ecology 35:147-155.
    [191] Raoui, SM., Rachiq, S., Chadli, N. and Alaoui M. M., 2002. Seasonal variations of the alkaline phosphatase activity from the bacterial and algal planktonic communities in the mesotrophic reservoir lake Allal El Fassi, Morocco. Annales de limnologie 38:
    287-295.
    [192] Ravit, B., Ehrenfeld, JG. and Haggblom, MM. 2003.A Comparison of Sediment Microbial Communities Associated with Phragmites australis and Spartina alterniflora in Two Brackish Wetlands of New Jersey. Estuaries 26: 465-474.
    [193] Reichardt, W., Overbeck J. and Steubing, L., 1967.Free dissolved enzymes in lake waters.Nature 216:1345-1347.
    [194] Reichardt, W., 1971. Catalytic mobilization of phosphate in lake water and by Cyanophyta. Hydrobiologa 38: 377-394.
    [195] Rengefors, K., Pettersson, K., Blenckner, T. and Anderson, D.M., 2001. Species-specific alkaline phosphatase activity in freshwater spring phytoplankton: Application of a novel method. J. Plankton Res., 23: 435–443.
    [196] Rengefors, K., Ruttenberg K.C., Haupert C.L., Taylor C., and Howes B.L. 2003. Experimental investigation of taxon-specific response of alkaline phosphatase activity in natural freshwater phytoplankton. Limnol. Oceanogr., 48: 1167–1175.
    [197] Reynolds,C.S., 1984a. Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshwat.Biol.14:111-142.
    [198] Reynolds,C.S., 1984b.The ecology of freshwater phytoplankton.Cambridge University Press, New York.
    [199] Reynolds, C.S., 1997. Vegetation processes in the pelagic: a model for ecosystem theory. Ecology Institute, Oldendorf/Luhe, 371 pp.
    [200] Rhee,G.Y., 1978.Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake. Limnol. Oceanogr. 23:10-25.
    [201] Rigler,F.H., 1961. The uptake and release of inorganic phosphorus by Daphnia magma Straus. Limnol. Oceanogr. 6:165-174.
    [202] Roberts, E., Kroker, J., Koerner S. and Nicklisch, A., 2003. The role of periphyton during the re-colonization of a shallow lake with submerged macrophytes. Hydrobiologia 506-509:525-530.
    [203] Ryther, JH. and Dunstan, WM., 1971. Nitrogen, phosphorus and eutrophication in the coastal marine environment. Science (NY) 171:1008-1013.
    [204] Sala, MM. and H.Guede, 1995. Influence of algae and crustacean zooplankton on patterns of microbial hydrolytic enzyme activities --an experimental approach. Aquatic microbial ecology 48:143-154.
    [205] Sas, H., 1989. Lake restoration by reduction of nutrient loading: Expectations, Experiences, Extrapolations. Academia Verlag Richarz, St. Augustin, FRG.
    [206] Sayler, G., Puziss, SM. and Silver M., 1979. Alkaline phosphatase assay for freshwater sediments: application to perturbed sediment system. Appl Environ Microbiol 38:922–927.
    [207] Schmitter, R.E. and Jurkiewicz, A.J.,1981. Acid phosphatase location in peri indic-acid Schiff bodies of Gonyaulax. J. Cell Sci. 51:15-24.
    [208] Schindler, D.W., 1975. Whle lake eutrophication experiment with phosphorus, nitrogen and carbon.Verh.Int.Ver.Limnol. 19:3221-3231.
    [209] Schindler, D.W., 1977. Evolution of phosphorus limitation in lakes. Science 195:260-262.
    [210] Scholz, O. and Marxsen, J., 1996. Sediment phosphatases of the Breitenbach (Germany), a first-order central European stream. Arch. Hudrobiol. 135: 433-450.
    [211] Shiuji, H., 1989. Characterization of orthophosphate release from dissolved organic phosphorus by gel filtration and several hydrolytic enzymes. Hydrobiologia 174:47-55.
    [212] ?imek, K., Vrba, J., Lavrentyev, P.,1994. Estimates of protozoan bacterivory: From microscopy to ectoenzyme assay? Mar. Microb. Food Webs 8: 71-85.
    [213] Sin, Y., Wetzel, R. L. and Anderson, I. C., 1999. Spatial and Temporal Characteristics of Nutrient and Phytoplankton Dynamics in the York River Estuary, Virginia: Analyses of Long-term Data.Estuaries 22: 260-275.
    [214] Sinsabaugh, F., 2001.Activity profiles of bacterioplankton in a eutrophic river. Freshwater Biology 46: 1239-1249.
    [215] Siuda, W., 1984. Phosphatases and their role in organic phosphorus transformation in natural waters. A review. Pol. Arch. Hydrobiol. 31:207-233.
    [216] Smith,R.I.H. and Kalff, J., 1981. The effect of phosphorus limitation of algal growth rate: evidence from alkaline phosphatase. Can. J. Fish aquat. Sci., 38:1421-1427.
    [217] Sommer, U., 1984. The paradox of the plankton: Fluctuations of phosphorus availability maintain diversity of phytoplankton in flow-through cultures. Limnol. Oceanogr. 29: 633-636.
    [218] Spijkerman, E. and Coesel, PFM., 1998. Alkaline phosphatase activity in two planktonic desmid species and the possible role of an extracellular envelope. Freshwater Biology 39:503-513.
    [219] Sproule,J.I. and Kalff, J.K.,1978. Seasonal cycles in the phytoplankton phosphorus status of a north temperate zone lake (Lake Memphremagog. Que. Vt), plus a comparison of techniques. Verh. Int. Ver. Limnol. 20:2681-2688.
    [220] Steiner, M., 1938. Zur Kenntnis des Phosphatkreislaufes in Seen. Naturwissenschaften 26:723-724.
    [221] Stevens,R.J.and Parr, M.P.,1977. The significance of alkaline phosphatase activity in Lough Neagh. Freshwat. Biol. 7:351-355.
    [222] Stewart,A.J. andWetzel, R.G., 1982. Phytoplankton contribution to alkaline phosphatase activity. Arch. Hydrobiol. 93:265-271.
    [223] Strojsová, A., Vrba, J., Nedoma, J., KomárkováJ. and Znachor, P., 2003. Seasonal study on expression of extracellular phosphatases in the phytoplankton of an eutrophic reservoir. Eur. J. Phycol. 38: 295-306.
    [224] Suzumura, M., Ishikawa, K. and Ogawa, H., 1998.Characterization of dissolved organic phosphorus in coastal seawater using ultrafiltration and phosphohydrolytic enzymes. Limnology and Oceanography 43:1553-1564.
    [225] Tae-Seok,A., Seung-IK,C. and Ki-Seong J., 1993. Phosphatase activity in Lake Soyang, Korea. Verh. Internal. Verein. Limnol. 25:183-186.
    [226] Taga, N. and Kobori, H., 1978. Phosphatase activity in eutrophic Tokyo Bay. Mar. Biol. 49: 223-229.
    [227] Thingstad, TF., Li Zweifel, U.and Rassoulzadegan, F., 1998. P limitation of heterotrophic bacteria and phytoplankton in the northwest Mediterranean. Limnology and Oceanography 43: 88-94.
    [228] Tiwari,B.K. and Mishra, R.R.,1982. A study on biological activity measurements and heterotrophic bacteria in a small freshwater lake. Hydrobiologia 94:257-267.
    [229] Vadeboncoeur, Y., Jeppesen, E., Vander, Z.,Schierup ,H., Christoffersen, K., Lodge, DM., 2003. From Greenland to green lakes: Cultural eutrophication and the loss of benthic pathways in lakes. Limnology and Oceanography 48:1408-1418.
    [230] Vaitomaa, J., Repka, S., Saari, L., Tallberg, P., Horppila, J.and Sivonen,K., 2002. Aminopeptidase and phosphatase activities in basins of Lake Hiidenvesi dominated by cyanobacteria and in laboratory grown Anabaena. Freshwater Biology 47: 1582-1593.
    [231] Vaulot, D., LeBot, N., Marie, D. and Fukai, E., 1996. Effect of phosphorus on the Synechococcus cell cycle in surface Mediterranean waters during summer. Appl. Environ. Microbiol. 62: 2527–2533.
    [232] Vicent, W.F., Wurtsbaufg,W.,Vincent, C.L.,and Richerson, P.J.,1984.Seasonal dynamics of nutrient limitation in a tropical high-altitude lake (Lake Titicaca.Peru-Bolivia):Application of physiological bioassays. Limnology and Oceanography 29:540-552.
    [233] Vidal, M., Duarte, CM., Agusti, S., Gasol, JM. and Vaque, D., 2003. Alkaline phosphatase activities in the central Atlantic Ocean indicate large areas with phosphorus deficiency. Marine ecology progress series 262:43-53.
    [234] Vrba, J., KomárkováJ. and Vyhnálek, V., 1993. Enhanced activity of alkaline phosphatases –phytoplankton response to epilimnetic phosphorus depletion. Wat. Sci. Technol. 28: 15–24.
    [235] Vrba, J., Kopacek, J., Straskrabova, V., Hejzlar, J. and Simek, K., 1996. Limnological research of acidified lakes in Czech part of the Sumava Mountains: trophic status and dominance of microbial food webs. Silva Gabreta 1: 151-164.
    [236] Walther,K. and Fries, L.,1976. Extracellular alkaline phosphatase in multicellular marine algae and their utilization of glycerophosphate. Physiol. Pl., 36:118-122.
    [237] Weich, RG. and Graneli, E., 1989.Extracellular alkaline phosphatase activity in Ulva lactuca L. Journal of Experimental Marine Biology and Ecology 129:33-44.
    [238] Weisse, T. and Stockner, JG., 1993. Eutrophication: The role of microbial food webs. MEM. IST. ITAL. IDROBIOL. 52: 133-150.
    [239] Wetzel,R.G., 1981. Longterm dissolved and particulate alkaline phosphatase activity in a hardwater lake in relation to lake stability and phosphorus enrichments. Ver. int. Ver. Limnol. 21:369-381.
    [240] Wetzel,R.G., 1983. Limnology. 2nd Edition. Saunders College Publishing, Philadelphia, PA, 858pp.
    [241] Whitton, BA., Grainger, SLJ., Hawley, GRW. and Simon, JW.,1991.Cell-bound and extracellular phosphatase activities of cyanobacterial isolates. Microbial ecology. New York NY 21: 85-98.
    [242] Whitton, BA., Potts, M., Simon, JW.and Grainger, SLJ., 1990.Phosphatase activity of the blue-green alga (cyanobacterium) Nostoc commune UTEX 584. Phycologia 29:139-145.
    [243] Whitton, BA.,Yelloly, JM.,Christmas, M. and Hernandez, I., 1998.Surface phosphatase activity of benthic algae in a stream with highly variable ambient phosphate concentrations. Verh. Int. Verein. Limnol. 26:967-972.
    [244] Wilkins,A.S., 1972. Physiological factors in the regulation of alkaline phosphatase synthesis in Escherichla coli. J Bact. 116:616-623.
    [245] Wynne, D., 1981.The role of phosphatase in the metabolism of Peridinium cinctum. from Lake Kinneret. Hydrobiologia 83: 93-99.
    [246] Wynne, D., 1977. Alterations in activity of phosphatases during the Peridinium bloom in Lake Kinneret. Physiol. Plant. 40: 219–224.
    [247] Wynne, D. and Gophen, M., 1981. Phosphatase activity in freshwater zooplankton. Oikos 37:169-176.
    [248] Wynne, D. and Rhee, G.Y.,1988. Changes in alkelien phosphatase acivity and phosphate uptake in P-limited phytoplankton, induced by light intensity and spectral quality. Hydrobiologia 160: 173-178.
    [249] Yang, D., Wang, J., Peng, X.,2001. Kinetics of inactivation of Ulva pertusa Kjellm alkaline phosphatase by ethylenediaminetetraacetic acid disodium. Journal of Enzyme Inhibition 16:313-319.
    [250] Yelloly, JM.and Whitton, BA., 1996.Seasonal changes in ambient phosphate and phosphatase activities of the cyanobacterium Rivularia atra in intertidal pools at Tyne Sands,
    Scotland.Hydrobiologia 325:201-212.
    [251] Zevenboom, W.,Vaate,A.B.D. and Mur.L.,1982. Assessment of factors limiting growth rate of Oscillatoria agardhii in hypereutrophic Lake Worder-wijd,1978,by the use of physiological indication. Limnology and Oceanography 27:39-52.
    [252] Zhou, YY. and Dodds, WK., 1995. Kinetics of size-fractionated and dissolved alkaline phosphatase in a farm pond. Archiv fur Hydrobiologie 134: 93-102.
    [253] Zhou, Y.Y., Li, J.Q. and Fu,Y.Q., 2000. Effects of submerged macrophytes on kinetics of alkaline phosphatase in Lake Donghu –I. Unfiltered water and sediments. Water Res. 34: 3737–3742.
    [254] Zhou, Y.Y., Li, J.Q., Fu, Y.Q., 2001. Kinetics of alkaline phosphatase in lake sediment associated with cage culture of Oreochromis nilotucus. Aquaculture 203:23-32.
    [255] Zhou, Y.Y., Li, J.Q., Song, C.L. and Cao, X.Y., 2004. Discharges and sediments as sources of extracellular alkaline phosphatase in a shallow Chinese eutrophic lake. Water Air Soil Pollut. 159: 395–407.
    [256] Zhou, Y.Y., Li, J.Q. and Zhang, M., 2002. Temporal and spatial variations in kinetics of alkaline phosphatase in sediments a shallow Chinese eutrophic lake (Lake Donghu). Water Res. 36: 2084–2090.
    [257] Zhou, Y.Y. and Zhou, XY., 1997. Seasonal variation in kinetic parameters of alkaline phosphatase activity in a shallow Chinese freshwater lake (Donghu Lake). Water Res. 31: 1232–1235.
    [258] Zwolsman, J.J.G. and Vaneck, G.T.M., 1999. Geochemistry of major elements and trace metals in suspended matter of the Scheldt Estuary, southwest Netherlands. Marine Chemistry 66: 91-111.
    [259] 高光、高锡芸、秦伯强等,2000。太湖水体中碱性磷酸酶的作用阈值。湖泊科学12: 353-358。
    [260] 高光、秦伯强、朱产伟、范成新和季江,2004。太湖梅梁湾中碱性磷酸酶的活性及其与藻类生长的关系。湖泊科学16:245-251。
    [261] 洪华生等, 1992。海水中碱性磷酸酶活力的测定及其在磷循环中的作用初探. 海洋与湖沼23 :415 –419。
    [262] 胡鸿钧、李尧英、魏印心、朱蕙忠、陈嘉佑和施之新(主编),1980。中国淡水藻类。上海科学技术出版社。
    [263] 黄邦钦和黄世玉,1999。溶解态磷在海洋微藻碱性磷酸酶活力变化中的调控作用。海洋学报21:55-60。
    [264] 金相灿、刘鸿亮、屠清瑛、章宗涉和朱萱,1990。中国湖泊富营养化。北京:中国环境科学出版社。
    [265] 雷安平、施之新和魏印心,2003。武汉东湖浮游藻类物种多样性的研究。水生生物学报27: 179–184。
    [266] 李如忠、汪家权和钱家忠,2004。巢湖流域非点源营养物控制对策研究。水土保持学报18:119-121。
    [267] 宋春雷、曹秀云、刘兵钦等,2004。池塘水华与底层磷营养状态的关系。水生生物学报28:13-16。
    [268] 羊向东、吴艳宏等,2002。龙感湖钻孔揭示的末次盛冰期以来的环境演化。湖泊科学14:106-110。
    [269] 张光生、王明星、叶亚新、朱成东、宋朝霞和周青,2004。太湖富营养化现状及其生态防治对策。中国农学通报20:235-237。
    [270] 张秋劲,1992。东湖磷酸酶活力及其生态学意义。四川环境11: 53–56。
    [271] 周易勇和付永清,1999。水体磷酸酶:来源,特征及其生态学意义。湖泊科学11:274-282。
    [276] 周易勇、李建秋和付永清, 2000。浅水湖泊中碱性磷酸酶活性及其动力学参数的分层现象。湖泊科学12: 53-57。
    [277] 周易勇、李建秋、宋春雷等,2003。东湖间隙水自由碱性磷酸酶活性的季节性与组成的非均一性。水生生物学报27:100-102。
    [278] 周易勇、李建秋和张敏,2002。湿地中碱性磷酸酶的动力学特征与水生植物的关系。湖泊科学14:134-138。
    [279] 周易勇和张玉敏,1997。东湖溶解态磷酸酸酶的活性,动力学特征及其空间分布。环境科学18:37-40。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700