溶解态磷酸酶与微生物活性在湖泊富营养化过程中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文描述了长江中下游不同营养类型湖泊和池塘中溶解态磷酸酶的活性及其稳定性以及微生物活性的时空分布格局,探讨了溶解态磷酸酶与微生物在湖泊富营养化过程中的作用。长江中下游十余个湖泊溶解态磷酸酶在时间与空间方向上均具多样性,故在湖泊磷循环过程中可能具有特异的作用。武汉关桥池塘上覆水、间隙水与沉积物有机质能诱导具不同动力学特征的高活性溶解态磷酸酶,同时引发厌氧状态,这双重因素均有利于生物可利用性磷的迅速释放,从而促进水华的形成。因此,高活性的溶解态磷酸酶与水华的发生有关。溶解态磷酸酶行为的多变使其活性与稳定性的研究极具困难,胶团酶学方法的引入能有效避免微生物对溶解态磷酸酶活性与稳定性分析的干扰,且使酶活性的表现更具原始性。实验结果证实了该法用于湖泊溶解态磷酸酶研究的可行性。从酶在胶团中的动力学行为以及对温度、pH 与抑制剂的应答方式上看,东湖表层水与间隙水溶解态磷酸酶具有类似特征,而两者与上覆水中的溶解态磷酸酶明显不同,这种异质性可能因酶来源的差异所致。富营养化湖泊或湖区底层溶解态磷酸酶在胶团中的活性与稳定性明显较高。受W0、温度及pH 影响的稳定性的变化反映出酶分子大小、构象与活性基团等方面的特征,故不同营养水体溶解态磷酸酶可能互为同工酶,高且稳定的磷酸酶同工酶能通过对内源磷负荷的贡献促进湖泊富营养化过程。不同营养类型湖泊中细菌大小颗粒的磷酸酶活性均低,而藻类颗粒大小的磷酸酶活性通常占有较大比例,这种现象的可能解释是细菌附着在藻类大小的颗粒上,且表现高酶活性。另一方面,与湖水相比,太湖各采样点沉积物在细菌形态上更具多样性。湖水与沉积物中的细菌均主要以自由生活的方式存在,水中的附着细菌极少,而沉积物中的附着细菌明显较多。自由生活菌的胞外酶活性往往偏低,故其数量虽多,但相应大小的颗粒所表现的酶活性却低。相反,附着菌的数量虽少,但其酶活性甚高,与此相联系的大颗粒则随之表现出高酶活性。太湖未疏浚区表现出明显的富营养化特征。不同湖区的磷酸酶活性与富营养化程度密切相关,高且稳定的溶解态磷酸酶以及好气性细菌、无机磷与有机磷细菌等微生物种群的变
In this thesis, temporal and spatial variations in activity and stability of dissolved alkaline phosphatase (DAP) and microbial activity in the lakes and ponds with the different trophic levels were described in the middle and lower reaches of the Yangtze River Catchment, the roles of DAP and microbes in the process of eutrophication were also explored.
    The horizontal, vertical and temporal heterogeneities in DAP were observed in more than ten lakes, indicating its specific role in P cycling. Higher alkaline phosphatase activity (APA) with different kinetic characteristics and anoxic status, induced by organic matter in overlying, interstitial water and sediment, accelerated the release of bioavailable phosphorus and initiated bloom in the suburb ponds of Wuhan. Hence, high APA was closely related with the occurrence of bloom.
    The study on stability of DAP is difficult because of its lability. Introduction of micellar enzymological method can effectively avoid the microbial disturbance when studying the activity and stability of DAP. This method was experimentally proven to be feasible in studies on ecological enzymology of lakes. In term of the kinetics and responding modes to varying temperature, pH and inhibitors in micelle, DAP showed
    the similarity in surface and interstitial water of Lake Donghu, which was markedly different from that in overlying water, probably due to difference in the origin of the enzyme. In the lakes and some hypolimnion with higher trophic levels, DAP showed higher activity and stability. The variations in DAP stability in micelle, as affected by different W0, temperature and pH conditions, reflected the characteristics of molecular size, conformation and active residues of the enzyme, suggesting the existence of isozymes in different lakes. With higher activity and stability, it could accelerate the eutrophication by stimulating the release of internal phosphorus loading. The APA in bacterial sizes fraction was usually very lower in all lake studied, while the algae one accounted for the majority of total APA. On the other hand, the shape of bacteria was more diversiform in sediments than in water column. Free-living bacteria were dominant in water column and sediment, while the attached one was more abundant in sediment than in water column. Bacteria attached to larger particles, even with less abundance, may show significantly higher APA than that given by the dominant free-living bacteria in water column. In Lake Taihu, the undredged zone had the eutrophic symptoms. The activity of DAP was closely related with the degree of eutrophication. DAP with higher activity and stability, coupled with the mobility of aerobic, inorganic and organic bacteria, promoted the formation and fluxes of the internal loading, supporting the excess growth of algae (including the microcystic bloom). The changes in content of organic matter caused by dredging influenced the growth of different microbial functional groups, consequently regulating the nutrient level of water column. An observation on the microbial morphology indicated a sharp decrease of bacilliform bacteria in water column and sediments after dredging. Dredging removed a great deal of attached bacteria, resulting in decreases of the microbial decomposition and nutrient releases. This provided an explanation for the lower nutrient level in water column shortly after dredging. However, microbial community, in terms of shapes, living states and composition would recover by some time after dredging, which would determine its ultimate effectiveness.
    In short, activity and stability of DAP and microbial community and activity play a crucial role in the process of lake eutrophication.
引文
[1] Almgren M., Johannsson R., Eriksson J. C., 1993. Polydispersity of AOT droplets measured by time-resolved fluorescence quenching. J. Phys. Chem., 97: 8590-8594.
    [2] Ammerman J. W. and Azam F., 1985. Bacterial 5'-nucleotidase in aquatic ecosystems: A novel mechanism of phosphorus regeneration. Science, 227: 1338-1340.
    [3] Anesio A. M., Abreu P. C. and F. de Assis Esteves, 1997. Influence of the hydrological cycle on the bacterioplankton of an impacted clear water Amazonian lake. Microbial ecology, 34: 66-73.
    [4] Arcos J. A., Robledo L., Otero C., 1997. Stability of a pseudomonas sp.lipase: comparison between solubilized enzyme in reversed micelles and suspended lipase in dry solvents. Biotrans., 14: 251-267.
    [5] Arnosti C., 2000. Substrate specificity in polysaccharide hydrolysis: Contrasts between bottom water and sediments. Limnol. Oceanogr., 45 (5): 1112-1119.
    [6] Ayo B., Unanue M., Azua I., Gorsky G., Tueley C. and Iriberri J., 2001. Kinetics of glucose and amino acid uptake by attached and free-living marine bacteria in oligotrophic waters. Marine Biology, 138: 1071-1076.
    [7] Ayyagari M. S. and John V. T., 1995. Substrate-induced stability of the lipase from candida cylindracea in reversed micelles. Biotechnil. Lett., 17: 177-182.
    [8] Ayyakkannu K. and Chandramohan D., 1971. Occurrence and distribution of phosphate solubilizing bacteria and phosphatase in marine sediments at porto novo. Marine Biology, 11: 201-205.
    [9] Azam F., Smith D. C. and Carlucci A. F., 1992. Bacterial Transformation and Transport of Organic Matter in the Southern California Bight. Progress in
    Oceanography, 30: 151-166.
    [10] Balls P. W., Brockie N., Dobson J. and Johnston W., 1996. Dissolved oxygen and nitrification in the upper Forth estuary during summer 1982-92: Patterns and Trends. Estuarine, Coastal and Shelf Science 42: 117-134.
    [11] Barbaric S. and Luisi P. L., 1981. Micellar solubilization of biopolymers in organic solvents. 5. Activity and conformation of a-chymotrypsin in isooctane-AOT reverse micelles. J. Am. Chem. Soc., 103: 4239-4244.
    [12] Barik S. K., Purushothaman C. S., Mohanty A. N., 2001. Phosphatase activity with reference to bacteria and phosphorus in tropical freshwater aquaculture pond systems. Aquaculture Research, 32: 819-832.
    [13] Becquevort S., Rousseau V. and Lancelot C., 1998. Major and comparable roles for free-living and attached bacteria in the degradation of Phaeocystis-derived organic matter in Belgian coastal waters of the North Sea. Aquatic microbial ecology, 14(1): 39-48.
    [14] Berman T., 1970. Alkaline phosphatases and phosphorus availability in Lake Kinneret. Limnol Oceanogr, 15: 663-674.
    [15] Berman T., Parparov A. and Yacobi Y. Z., 2004. Planktonic community production and respiration and the impact of bacteria on carbon cycling in the photic zone of Lake Kinneret. Aquatic Microbial Ecology, 34(1): 43-55.
    [16] Bernhard O. and Reinhard S., 2002. Enzyme catalysis in reverse micelles. Biotechnology, 75: 185-208.
    [17] Blanco J. F., Vasquez G. L., Ramirez J. C. and Navarrete A. M., 2003. Variation of some physico-chemical parameters in Pescador River, Valle del Cauca, during El Nino 1997/1998 -La Nina 1998/1999. Actualidades biologicas 25: 59-69.
    [18] Boetius A. and Lochte K., 1994. Regulates of microbial enzymic degradation of organic matter in deep-sea sediments. Mar. Ecol. Prog. Ser., 104(3): 299-307.
    [19] Boon P. I., 1993. Organic matter degradation and nutrient regeneration in Australian fresh waters: 3. Size fractionation of phosphatase activity. Archiv fur Hydrobiologie, 126(3): 339-360.
    [20] Bouvy M., Pagano M. and Troussellier M., 2001. Effects of a cyanobacterial bloom (Cylindrospermopsis raciborskii) on bacteria and zooplankton communities in Ingazeira reservoir (northeast Brazil). Aquatic Microbial Ecology, 25(3): 215-227.
    [21] Brown S. E. and Goulder R., 1996. Extracellular-enzyme activity in trout-farm effluents and a recipient river. Aquaculture Research, 27(12): 895-901.
    [22] Byron C. C., John A. B. and Charles A. S., 1998. Dominance of particle-attached bacteria in the Columbia River estuary, USA. Aquatic microbial ecology, 14: 7-18.
    [23] Cabecadas G., Brogueira M. J., Windolf J., 1986. A phytoplankton bloom in shallow Divor reservoir (Portugal)-the importance of internal nutrient loading. Int. Rev. Gesamt. Hydrobiol., 71(6): 795-806.
    [24] Carman R., Edlund G. and Damberg C., 2000. Distribution of organic and inorganic phosphorus compounds in marine and lacustrine sediments: a 31P-NMR study. Chem. Geol., 163(1-4): 101-114.
    [25] Carvalho C. M. L., Cabral J. M. S., Aires-Barros M. R., 1999. Cutinase stability in AOT reversed micelles: system optimization using the factorial design methodology. Enzyme Microb. Technol., 24: 569-576.
    [26] Carvalho C. M. L., Serralheiro M. L. M., Cabral J. M. S., Aires-Barros M. R., 1997. Application of factorial design to the study of transesterification reactions using cutinase in AOT-reversed micelles. Enzyme Microb. Technol.,
    21: 117-123.
    [27] Christmas M. and Whitton B. A., 1998. Phosphorus and aquatic bryophytes in the Swale -Ouse river system, north-east England. 1. Relationship between ambient phosphate, internal N:P ratio and surface phosphatase activity. Science of the Total Environment, 210-211(1-6): 389-399.
    [28] Chrost R. J., Overbeck J., 1987. Kinetics of alkaline phosphatase activity and phosphorus availability for phytoplankton and bacterioplankton in Lake Plusssee (North German eutrophic lake). Microbial Ecology, 13: 229-248.
    [29] Chrost R. J., 1992. Significance of bacterial ectoenzymes in aquatic environments. Hydrobiologia, 243-244: 61-70.
    [30] Cristina M. L. C. and Joaquim M. S. C., 2000. Reversed micelles as reaction media for lipase. Biochimie, 82: 1063-1085.
    [31] Colin R. J., 1995. Microbial enzyme activities as indicators of organic matter processing rates in a Lake Erie coastal wetland. Freshwater Biology, 34: 329-342.
    [32] Connors S. D., Auer M. T., Effler S. W., 1996. Phosphorus pools, alkaline phosphatase activity, and phosphorus limitation in hypereutrophic Onondaga Lake. Lake and Reservoir Management, 12(1): 47-57.
    [33] Daft M. J. and Sterwart W.D., 1975. Ecological studies on algal2lysing bacteria in fresh waters. Freshwat. Bio., 5: 577-596.
    [34] Dakhama A., 1993. Isolation and identification of antialgae substances produced by pseudomonas aeruginosa. J. Appl. Phycol., 5: 297-306.
    [35] Degobbis D., Homme-Maslaowska E., Orio A.A., et al., 1984. The Role of Alkaline Phosphatase in the Sediment of Venice Lagoon Nutrient Regeneration. Estuarine, Coastal and Shelf Science, 22: 425-437.
    [36] DeSouza M. J. B. D., Nair S. and Chandramohan D., 2000. Phosphate solubilizing bacteria around Indian Peninsula. Indian Journal of Marine Sciences, 29(1): 48-51.
    [37] Diaz-Espejo A., Serrano L., Toja J., 1999. Changes in sediment phosphate composition of seasonal ponds during filling. Hydrobiologia, 392(1): 21-28.
    [38] Donnelly T. H., Ford P. W., McGregor D. and Allen D., 1999. Anthropogenic changes to a billabong in New South Wales. 1. Lagoon evolution and phosphorus dynamics. Marine Freshwater Research 50: 689-698.
    [39] Dore J. E. and Priscu J. C., 2001. Phytoplankton phosphorus deficiency and alkaline phosphatase activity in the McMurdo Dry Valley lakes, Antarctica. Limnology and Oceanography, 46(6): 1331-1346.
    [40] Dutka B. J. and Kwan K. K., 1983. Microbiological examination of Lake Erie and Lake Ontario sediments. Hydrobiologia 98(2): 135-145.
    [41] Espeland E. M. and Wetzel R. G., 2001. Effects of photosynthesis on bacterial phosphatase production in biofilms. Microbial Ecology, 42(3): 328-337.
    [42] Fallon R. D. and Brock T. D., 1980. Planktonic blue-green algae: production, sedimentation, and decomposition in Lake Mendota, Wisconsin. Limnol. Oceanogr., 25: 72-88.
    [43] Ferla R., Giudice A. and Maimone G., 2004. Morphology and LPS content for the estimation of marine bacterioplankton biomass in the Ionian Sea. Scientia Marina, 68(1): 23-31.
    [44] Feuillade J., Feuillade M. and Paul B., 1990. Alkaline phosphatase activity fluctuations and associated factors in a eutrophic lake dominated by Oscillatoria rubescens. Hydrobiologia, 207: 233-240.
    [45] Fitzgerald G. P. and Nelson T. C., 1966. Extractive and enzymatic analyses for limiting or surplus phosphorus in alage. J. Phycol., 2: 32-37.
    [46] Francko D. A., 1983. Size-fractionation of alkaline phosphatase activity in lake water by membrane filtration. Journal of Freshwater Ecology, 2(3): 305-309.
    [47] Francko D. A., 1984. Relationships Between phosphorus functional classes and alkaline phosphatase activity in reservoir lakes. J. Freshwat. Ecol., 2: 541-547.
    [48] Freeman K. S., Lee S. S., Kiserow D. J., McGown L. B., 1998. Increased chymotrypsin activity in AOT/bile salt reversed micelles. J. Coll. Inter. Sci., 207: 344-348.
    [49] Frutos C. M., Sonsoles P. V., Chiquinquira C. and C. Eduardo. Kinetic studies of an extremely halophilic enzyme entrapped in reversed micelles. Biocatalysis and Biotransformation, 18: 201-222.
    [50] Frutos C. M., Sonsoles P. V., Chiquinquira C., et al., 2001. Stability of an extreme halophilic alkaline phosphatase from Halobacterium salinarum in non-conventional medium. Journal of Biotechnology, 87: 255-261.
    [51] Frutos M. D., Blasco J. and Gomez Parra A., 2004. Phosphate activity in salt-ponds of the Bay of Cadiz. Ciencias marinas. 30(3): 403-416.bu
    [52] Fuhrman J. and Azam F., 1980. Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Applied Environmental Microbiology, 39: 1085-1095.
    [53] Fukami K., 1992. Isolation and properties of a bacterium inhibiting the growth of Gymnodinium Nagasakiense . Nippon Suisan Gakkaishi, 58 (6) :1073-1077.
    [54] Fukuda R., Sohrin Y., Saotome N., Fukuda H., Nagata T. and Koike I., 2000. East-west gradient in ectoenzyme activities in the subarctic Pacific: Possible regulation by zinc. Limnology and Oceanography, 45(4): 930-939.
    [55] Gambin F., Boge G. and Jamet D., 1999. Alkaline phosphatase in a littoral Mediterranean marine ecosystem: role of the main plankton size classes
    Marine environmental research, 47(5): 441-456.
    [56] Garcia C., Hernandez T., Costa F., et al., 1993. Kinetics of phosphatase activity in organic wastes. Soil Biol. Biochem, 25(5): 561-565.
    [57] Golterman H. L. and Clymo R. S., 1969. Method for chemical analysis of fresh water. IBP Handbook, Oxford, Blackwell Sci. Publ., 1-188.
    [58] Golterman H. L., 1996. Fractionation of sediment phosphate with cheating compounds: a simplification, and comparison with other methods. Hydrobiologia, 170: 157-175.
    [59] Goto A., Yoshioka H., Manade M., Goto R., 1995. NMR, spectroscopic study on the dissolution of water in sodium bis (2-ethylhexyl) sulfosuccinate/toluene solution. Langmuir, 11: 4873-4875.
    [60] Gregorio M., Jose A. and William S., 2001. Physico-chemical study of the superficial water in the lower basin and plume of the Manzanares river. Interciencia 26(8): 342-352.
    [61] Grossart H. P., Riemann L. and Azam F., 2001. Bacterial motility in the sea and its ecological implications. Aquatic Microbial Ecology, 25(3): 247-258.
    [62] Gupta S., Mukhopadhyay L. and Moulik S. P., 1994. Kinetic in microemulsion medium. 2. Hydrolysis of p-nitrophenyl phosphate with alkaline phosphatase in w/o microemulsion medium using the surfactant AOT. Colloids and surface B: Biointerfaces, 3: 191-201.
    [63] Gupte A., Nagarajan R. B., Kilara A., 1995. Enzymatic oxidation in reversed micelles. Ind. Eng. Chem. Res., 34: 2910-2922.
    [64] Hadas O. and Pinkas R., 1997. Arylsulfatase and alkaline phosphatase (APase) activity in sediments of Lake Kinneret, Israel. Water, Air, Soil Pollut., 99 (1-4): 671-679.
    [65] Halemejko G. Z. and Chrost R. J., 1984. The role of phosphatases in phosphorus mineralization during decomposition of lake phytoplankton blooms. Arch. Hydrobiol., 101: 489-502.
    [66] Han D. and Rhee J. S., 1986. Characteristics of lipase-catalyzed hydrolysis of olive oil in AOT-isooctane reversed micelles. Biotechnol. Bioeng., 28: 1250-1255.
    [67] Hantke B., Domany I., Fleischer P., Koch M., Pless P., Wiendl M. and Melzer A., 1996. Depth profiles of the kinetics of phosphatase activity in hardwater lakes of different trophic level. Arch. Hydrobiol., 135(4): 451-471.
    [68] Hantke B., Fleischer P., Domany I., et al., 1996. P-release from DOP by phosphatase activity in comparison to P excretion by zooplankton. Hydrobiologia, 317(2): 151-162.
    [69] Hayes D. G. and Gulari E., 1994. Improvement of enzyme activity and stability for reverse micellar-encapsulated lipases in the presence of stort-chain and polar alcohols. Biocatalysis, 11: 223-231.
    [70] Hayes D. G., Gulari E., 1995. Ethylene glycol and fatty acid have a profound impact on the behavior of water-in-oil microemulsions formed by the surfactant Aerosol-OT. Langmuir, 11: 4695-4702.
    [71] Hayes D. G., Marchio C., 1998. Expulsion of preteins from water-in-oil microemulsions by treatment with cosurfactant. Biotechnol. Bioeng., 59: 557-566.
    [72] Head R. M., Jones R. I., Bailey-watts A. E., 1999. Vertical movements by planktonic cyanobacteria and the translocation of phosphorus: implications for lake restoration. Aquatic conservation: marine and freshwater ecosystems, 9(1): 111-120.
    [73] Heath R. T., 1986. Dissolved organic phosphorus compounds: Do they satisfy planktonic phosphate demand in summer? Can. J. Fish. Aquat. Sci., 43:343-
    350.
    [74] Hernandez I., Niell F. X. and Fernandez J. A., 1996. Alkaline phosphatase activity of the red alga Corallina elongata Ellis et Solander. Scientia Marina, 60(2-3): 297-306.
    [75] Hernandez I, Perez-Pastor A, Llorens J. L. P., 2000. Ecological significance of phosphomonoesters and phosphomonoesterase activity in a small Mediterranean river and its estuary. Aquatic Ecology, 34(2): 107-117.
    [76] Hoppe H. G., 1983. Significance of exoenzymatic activities in the ecology of brackish water: Measurements by means of methylumbelliferyl-substrates. Mar. Ecol. Prog. Ser., 11: 299-308.
    [77] Hoppe H. G. and Ullrich S., 1999. Profiles of ectoenzymes in the Indian Ocean: phenomena of phosphatase activity in the mesopelagic zone. Aquatic Microbial Ecology, 19: 139-148.
    [78] Howe A. C., Cizmas L. and Bereman R., 1999. Eutrophication of Lake Wingra: A chemistry-based environmental science module. Journal of Chemical Education, 76(7): 924-926.
    [79] Howe M. J., Suberkropp K., 1994. Effects of isopod (Lirceus sp.) feeding on aquatic hyphomycetes colonizing leaves in a stream. Archiv fur Hydrobiologie, 130: 93-103.
    [80] Husaini Y., Rai L. C., 1991. Studies on nitrogen and phosphorus metabolism and the photosynthetic electron transport system of Nostoc linckia under cadmium stress. Journal of Plant Physiology, 138(4): 429-435.
    [81] Hygum B., Petersen J. and Sondergaard M., 1997. Dissolved organic carbon released by zooplankton grazing activity -a high-quality substrate pool for bacteria. Journal of Plankton Research, 19(1): 97-111.
    [82] Jakob W. and Morten S., 1998. Dynamics of heterotrophic bacteria attached to Microcystis spp. (Cyanobacteria). Aquatic microbial ecology, 14:19-28.
    [83] Jamet D., Aleya L. and Devaux J., 1995. Diel changes in the alkaline phosphatase activity of bacteria and phytoplankton in the hypereutrophic Villerest Reservoir (Roanne, France). Hydrobiologia, 300-301: 49-56.
    [84] Jamet D., Amblard C. and Devaux J., 2001. Size-Fractionated Alkaline Phosphatase Activity in the Hypereutrophic Villerest Reservoir (Roanne, France). Water Environment Research 73(2): 132-141.
    [85] Jana B. B., Chatterjee J., Ganguly S. and Jana T., 2001. Responses of phosphate solubilizing bacteria to qualitatively different fertilization in simulated and natural fish ponds. Aquaculture International 9(1): 17-34.
    [86] Jansson M., 1976. Phosphatase in lake water: characterization of enzymes from phytoplankton and zooplankton by gel filtration. Science, 194: 320-321.
    [87] Jenkins C. C. and Suberkropp K., 1995. The influence of water chemistry on the enzymatic degradation of leaves in streams. Freshwater Biology, 33: 245-253.
    [88] Jochem F. J., 2000. Probing the physiological state of phytoplankton at the single-cell level. Scientia Marina, 64(2): 183-195.
    [89] Jochem F. J., 2001. Morphology and DNA content of bacterioplankton in the northern Gulf of Mexico: Analysis by epifluorescence microscopy and flow cytometry. Aquatic Microbial Ecology [Aquat. Microb. Ecol.]. Vol. 25, no. 2, pp. 179-194.
    [90] Jones J. G., 1972. Studies of freshwater micro-organisms: phosphatase activity in lakes of differing degrees of eutrophication. Journal of Ecology, 60(3): 777-791.
    [91] Jun X., Xiuzheng F. and Tongbing Y., 2000. Physico-chemical factors and bacteria in fish ponds. Naga 23(4): 16-20.
    [92] Kabanov A. V., Levashov A. V., Klyachko N. L., Namyotkin Y. L., Pshezhetsky A. V., 1988. Enzymes entrapped in reversed micelles of surfactants in organic solvents: a theoretical trentment of the catalytic activity regulation. J. Theor. Boil., 133: 327-343.
    [93] Kai K., 1998. Development of microbial community during Skeletonema costatum detritus degradation. Hydrobiologia, 363: 253-260.
    [94] Kalinowska K., 1997. Eutrophication processes in a shallow, macrophyte dominated lake --alkaline phosphatase activity in Lake Luknajno (Poland). Hydrobiologia, 342-343: 395-399.
    [95] Kanoshina I., Lips U. and Leppanen J., 2003. The influence of weather conditions (temperature and wind) on cyanobacterial bloom development in the Gulf of Finland (Baltic Sea). Harmful Algae, 2(1): 29-41.
    [96] Karpe P., ruckenstein E., 1990. Effect of the hydration ratio on the degree of counterion binding and PH distribution in reverse micelles with aqueous core. J. Coll. Int. Sci., 137: 408-424.
    [97] Khmel nitskii Y. L., Levashov A. V., Klyachko N. L., Martinek K., 1984. A microheterogeneous medium for chemical (enzymic) reactions based on a colloidal solution of water in an organic solvent. Russ. Chem. Rev., 53: 319-331.
    [98] Kirschner A. K. T. and Velimirov B., 1997. A seasonal study of bacterial community succession in a temperate backwater system, indicated by variation in morphotype numbers, biomass, and secondary production. Microb. Ecol., 34(1): 27-38.
    [99] Kirchner M., Sahling G., Uhlig G., Gunkel W. and Klings K. W., 1996. Does the red tide-forming dinoflagellate Noctiluca scintillans feed on bacteria? Sarsia, 81(1): 45-55.
    [100] Kisand V. and Pettersson K., 1998. Induction of bacterial and algal exoenzymes during summer in Lake Erken. Advances in limnology, 51: 115-121.
    [101] Kobayashi K., Matsui M., Haraguchi H. and Fuwa K., 1983. Identification of alkaline phosphatase in sea water. Journal of Inorganic Biochemistry, 18(4): 41-47.
    [102] Koike I. and Nagata T., 1997. High potential activity of extracellular alkalinr phosphatase in deep waters of the central Pacific. Deep-sea Research II., 44: 2283-2294.
    [103] Krekeler D., Teske A. and Cypionka H., 1998. Strategies of sulfate-reducing bacteria to escape oxygen stress in a cyanobacterial mat. FEMS Microbiology Ecology 25(2): 89-96.
    [104] Kritzberg E. S., Cole J. J., Pace M. L., Graneli W. and Bade D. L., 2004. Autochthonous versus allochthonous carbon sources of bacteria: Results from whole-lake super(13)C addition experiments. Limnology and Oceanography, 49(2): 588-596.
    [105] Kuenzler E. J. and Perras J. P., 1965. Phosphatase of marine algae. Biol. Bull. WWodds Hole, 128: 271-284.
    [106] Labry C., Herbland A. and Delmas D., 2002. The role of phosphorus on planktonic production of the Gironde plume waters in the Bay of Biscay. Journal of Plankton Research, 24(2): 97-117.
    [107] Lalitha J., Mulimani V. H., 1997. Biochem. Stability and activity of potato acid phosphatase in aqueous surfactant media. Mol. Biol. Int., 41: 797-803.
    [108] Lanne C., Boeren S., Hilhorst R., Veeger C., 1987. Optimization of biocatalysis in organic media. Biocatalysis in organic media, Elsevier Science Publishers, B. V., Amsterdam.
    [109] Lehman P. W., Sevier J., Giulianotti J. and Johnson M., 2004. Sources of oxygen demand in the lower San Joaquin River, California. Estuaries 27(3): 405-418.
    [110] Li H., Veldhuis M. J. W., Post A. F., 1998. Alkaline phosphatase activities among planktonic communities in the northern Red Sea. Marine Ecology Progress Series, 173: 107-115.
    [111] LokaBharathi P. A., PradeepRam A. S., Nair S., Nath B. N. and Chandramohan D., 2004. Distribution of baroduric, psychrotrophic and culturable nitrifying and denitrifying bacteria in the Central Indian Basin. Proceedings of the National Seminar on New Frontiers in Marine Bioscience Research 22-23: 319-330.
    [112] Luisi P. L., Haring G., Maestro M., Rialdi G., 1990. Proteins solubilized in organic solvents via reverse micelles: thermodynamic studies. Thermochim. Acta., 162: 1-16.
    [113] Luisi P. L. and Magid L. J., 1986. Solubilization of enzymes and nucleic acids in hydrocarbon micellar solutions. Crit. Rev. Biochem., 20: 409-475.
    [114] Martinek K., Klyachko N. L., Kabanov A. V., Khmelnitsky S. N., Levashov A. V., 1989. Micellar enzymology: its relation to membranology. Biochim. Biophys. Acta, 981: 161-172.
    [115] Martinek K., Levashov A. V., Klyachko N. L., 1986. Micellar enzymology. European of Biochemistry 155: 453-468.
    [116] Martinez J., Smith D. C., Steward G. F., Azam F., 1996. Variability in ectohydrolytic enzyme activities of pelagic marine bacteria and its significance for substrate processing in the sea. Aquatic Microbial Ecology, 10(3): 223-230.
    [117] Marxsen J., Schmidt H-H., 1993. Extracellular phosphatase activity in sediments of the Breitenbach, a central European mountain stream. Hydrobiologia, 253(1-3): 207-216.
    [118] Matavulj M., Gajin S., Gantar M., et al., 1984. Phosphatase activity as an additional parameter of water condition estimate in some lakes of Vojvodina Province. Acta Biol. Ingosl., 21(1): 53-62.
    [119] Matzke S. F., Creagh A. L., Haynes C. A., Prausnitz J. M., Blanch H. W., 1992. Mechanisms of protein solubilization in reversed micelles. Biotechnol. Bioeng., 40: 91-102.
    [120] Meir W., 1996. Poly (oxyethylene) adsorption in water/oil microemulsions: a conductivity study. Langmuir, 12: 1188-1192.Mitchell A., Baldwin D. S., 1998. Effects of desiccation/oxidation on the potential for bacterially mediated P release from sediments. Limnology & Oceanography, 43(3): 481-487.
    [121] Middleboe M., Sondergard M. and Letarte Y., 1995. Attached and free-living bacteria : Production and polymer hydrolysis during a diatom bloom. Microbial Ecology , 29: 231-248.
    [122] Montigny C. and Prairie Y., 1993. The relative importance of biologicaland chemical processes in the release of phosphorus from a highly organic sediment. Hydrobiologia, 253: 141-150.
    [123] Montuelle B. and Volat B., 1993. Use of microbial exoenzymatic activities in aquatic ecosystems studies. Revue Des Sciences De L’Eau., 6: 251-268.
    [124] Montuelle B. and Volat B., 1998. Impact of wastewater treatment plant discharge on emzyme activity in freshwater sediments. Ecotoxicology and environmental safety, 40: 154-159.
    [125] Munster U., Nurminen J., Einioe P. and Overbeck J., 1992. Extracellular enzymes in a small polyhumic lake: Origin, distribution and activities. Hydrobiologia, 243-244: 47-59.
    [126] Munster, U. 1994. Studies on phosphatase activities in humic lakes. Environment International, 20(1): 49-59.
    [127] Muntean V., Crisan R., Pasca D., Kiss, S. and Dragan-Bularda, M., 1996. Enzymological classification of salt lakes in Romania. International Journal of Salt Lake Research, 5: 35-44.
    [128] Muntean V., Pasca D., Crisan R., 1997. Influence of substrate and final reaction product on synthesis and activity of phosphatase in al salt lake sediment. Studia Univ. Babes-Bolyai, Biologia, XIII(1-2): 173-185.
    [129] Murphy J. and Riley P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta, 27: 31-36.
    [130] Nakamura Y., 2003. Sediment oxygen consumption and vertical flux of organic matter in the Seto Inland Sea, Japan. Estuarine Coastal and Shelf Science, 56(2): 213-220.
    [131] Nanna B. and Mark O. G., 2002. Comparison of detachment procedures for direct counts of bacteria associated with sediment particles, plant litter and epiphytic biofilms. Aquatic microbial ecology, 27: 29-36.
    [132] Nausch M., 1998. Alkaline phosphatase activities and the relationship to inorganic phosphate in the Pomeranian Bight (southern Baltic Sea). Aquatic Microbial Ecology, 16(1): 87-94.
    [133] Newman S., Reddy K. R., 1993. Alkaline phosphatase activity in the sediment-water column of a hypereutrophic lake. Journal of environment quality, 22: 832-838.
    [134] Olah J. and Toth F. O., 1978. The function of alkaline phosphatase enzyme in the phosphorus cycle of fertilized fish ponds. Aquaculture Hungarica, 1: 15-23.
    [135] Olsson H., 1983. Origin and production of phosphatases in the acid lake Gardsjon. Hydrobiologia, 101: 49-58.
    [136] Perkins R. G. and Underwood G. J. C., 2002. Partial recovery of a eutrophic reservoir through managed phosphorus limitation and unmanaged macrophyte growth. Hydrobiologia, 481(1): 75-87.
    [137] Pettersson K., 1980. Alkaline phosphatase activity and algal surplus phosphorus as phosphorus-deficiency indicators in Lake Erken. Arch. Hydrobiol., 89: 54-87.
    [138] Petticrew E. L. and Arocena J. M., 2001. Evaluation of iron-phosphate as a source of internal lake phosphorus loadings. The Science of the Total Environment 266: 87-93.
    [139] Pick F. R., 1987. Interpretations of alkaline phosphatase activity in Lake Ontario. Can. J. Fish. Aquat. Sci., 44: 2087-2094.
    [140] Porter K. G. and Feig Y. S., 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr., 25: 943-948.
    [141] Pourriot R., 1977. Food and feeding habits of Rotifera. Arch. Hydrobiologia, 8: 243-260.
    [142] Rai H. and Jacobsen T. R., 1993. Dissolved alkaline phosphatase activity (APA) and the contribution of APA by size fractionated plankton in Lake Schoehsee. Verh. Internat. Verein. Limnol., 25: 164-169.
    [143] Rashidan K. K. and Bird D. F., 2001. Role of predatory bacteria in the termination of a cyanobacterial bloom. Microb. Ecol., 41(2): 97-105.
    [144] Reche L., Pugnetti A., Cruz-Pizarro L. and Carrillo P., 1996. Relationship between bacteria and phytoplankton in a high-mountain lake: Importance of the organic carbon released by pelagic algae for bacterioplankton. Aquatic Microbial Ecology, 48: 31-38.
    [145] Rees G. D., Robinson B. H., Stephenson G. R., 1995. Macrocyclic lactone synthesis by lipases in water-in-oil microemulsion. Biochim. Biophys. Acta,
    1257: 239-248.
    [146] Reichardt W., Overbeck J., Steubing L., 1967. Free dissolved enzymes in lake waters. Nature, 216: 1345-1347.
    [147] Reichardt W., 1971. Catalytic mobilization of phosphate in lake water and by cyanophyta. Hydrobiologia, 38: 377-394.
    [148] Reim R. L., 1974. The characterization of a Bacillus capable of blue2green bactericidal activity. Can. J. Microbiol., 20: 981-986.
    [149] Rengefors K., Ruttenberg K. C., Haupert C. L., 2003. Experimental investigation of taxon-specific response of alkaline phosphatase activity in natural freshwater phytoplankton. Limnology and Oceanography, 48(3): 1167-1175.
    [150] Riegman R., Stolte W., Noordeloos A. A. M. and Slezak D., 2000. Nutrient uptake and alkaline phosphatase (EC 3:1:3:1) activity of Emiliania huxleyi (Prymnesiophyceae) during growth under N and P limitation in continuous cultures. Journal of Phycology, 36(1): 87-96.
    [151] Riemann L., Steward G. F. and Azam F., 2000. Dynamics of bacterial community composition and activity during mesocosm diatom blooms. Appl. Environ. Microbiol., 66: 578-587.
    [152] Riquelme C. E. and Ishida Y., 1989. Interaction between microalgae and bacteria in coastal seawater. MEM. COLL. AGRIC. KYOTO UNIV., 134: 1-60.
    [153] Robinson J. S., Johnston C. T., Reddy K. R., 1998. Combined chemical and 31P-NMR spectroscopic analysis of phosphorus in wetland organic soils. Soil Sci., 163(9): 705-713.
    [154] Rojo M., Gomez M. and Estrada P., 2001. Polyphenol oxidase in reverse micelles of AOT/cyclohexane: A thermostability study. Journal of Chemical
    Technology and Biotechnology, 76: 69-77.
    [155] Romani A. M. and Sabater S., 2001. Structure and activity of rock and sand biofilms in a Mediterranean Stream. Ecology, 82(11): 3232-3245.
    [156] Ruley J. E. & Rusch K. A., 2002. An assessment of long-term post-restoration water quality trends in a shallow, subtropical, urban hypereutrophic lake. Ecological Engineering 19(4): 265-280.
    [157] Schipper L A, Cooper A. B., Harfoot C. G. and Dyck W. J., 1993. Regulators of denitrification in an organic riparian soil. Soil Biol. Biochem., 25: 925-933.
    [158] Scholz O. and Marxsen J., 1996. Sediment phosphatases of the Breitenbach, a first-order Central European stream. Arch. Hydrobiol., 135(4): 433-450.
    [159] Schubel D. and Ilgenfritz G., 1997. Influence of polyethylene glycols on the percolation behavior of anionic and nonionic water-in-oil microemulsion. Langmuir, 13: 4246-4250.
    [160] Shio M., 1970. Lysis of blue-green algae by myxobater. J. Bacteriol., 140: 453-461.
    [161] Siuda W. and Chrost R. J., 1987. The relationship between alkaline phosphatase (APA) activity and phosphate availability for phytoplankton and bacteria in eutrophic lakes. Acta Microbiologica Polonica, 36(3): 247-258.
    [162] Silva E. S., 1985. In: Marine alage in pharmaceutical science, Vol. II (Hoppe H. A. and Levering T., eds.), W. de Gruyter and Co., Berlin, New York, 269-288.
    [163] Silva C. D. and Bhosle N. B., 1990. Phosphorus availability and phosphatase activity in the sediments of Mandovi estuary, Goa. Indian Journal of Marine Sciences, 19: 143-144.
    [164] Smith R. I. H. and Kalff J., 1981. The effect of phosphorus limitation of algal growth rate: evidence from alkaline phosphatase. Can. J. Fish. Aquat. Sci., 38:
    1421-1427.
    [165] Souvermezoglou A. and Krasakopoulou E., 2002. High oxygen consumption rates in the deep layers of the North Aegean Sea (Greece, eastern Mediterranean). Mediterr. Mar. Sci. 3(1): 55-64.
    [166] Steinhart G. S., Likens G. E. and Soto D., 2002. Physiological indicators of nutrient deficiency in phytoplankton in southern Chilean lakes. Hydrobiologia, 489: 21-27.
    [167] Stewart A. J. and Wetzel R. G., 1982. Phytoplankton contribution to alkaline phosphatase activity. Arch. Hydrobiol. 93: 265-271.
    [168] Stupishina E. A., Faizullin D. A., Zakharchenko N. L., Fedotov V. D. and Zuev Y. F., 2001. Catalytic activity, structure and stability of trypsin in an AOT-stabilised water-in-decane microemulsion. Mendeleev Commu., 2001: 237-240.
    [169] Suttle C. A., Fuhrman J. A. and Capone D. G., 1990. Rapid ammonium cycling and concentration-dependent partitioning of ammonium and phosphate: Implications for carbon transfer in planktonic communities. Limnology and Oceanography, 35(2): 424-433.
    [170] Taga N. and Kobori H., 1978. Phosphatase activity in eutrophic Tokyo Bay. Marine biology, 49(3): 223-229.
    [171] Tanner C. C., Sukias J. P. S. and Upsdell M. P., 1998. Organic matter accumulation during maturation of gravel-bed constructed wetlands treating farm dairy wastewaters. Water Research, 32: 3046-3054.
    [172] Thompson P. A., Waite A. M. and McMahon X., 2003. Dynamics of a cyanobacterial bloom in a hypereutrophic, stratified weir pool. Marine and Freshwater Research 54(1): 27-37.
    [173] Thor P., Dam H. G. and Rogers D. R., 2003. Fate of organic carbon released from decomposing copepod fecal pellets in relation to bacterial production and ectoenzymatic activity. Aquatic Microbial Ecology, 33(3): 279-288.
    [174] Valiente E. F., Quesada A., Prosperi C., Nieva M., Leganes F. and Ucha A., 1997. Short-and long-term effects of ammonium on photodependent nitrogen fixation in wetland rice fields of Spain. Boil. Fertil. Soils, 24(4): 353-357.
    [175] Valis T. P., Xenakis A., Kolisis F. N., 1992. Comparative studies of lipase from rhizopus delemar in various microemulsion systems. Biocatalysis, 6: 267-279.
    [176] Van Benthum W. A. J., van Loosdrecht M. C. M. and Heijnen J. J., 1997. Control of heterotrophic layer formation on nitrifying biofilms in a biofilm airlift suspension reactor. Biotechnology and Bioengineering 53: 397-405.
    [177] Van Beusekom J. E. E. and Brockmann U. H., 1998. Transformation of phosphorus in the Elbe Estuary. Estuaries 21: 518-526.
    [178] Vollenweider R. A., 1975. Input-output models. With special reference to the phosphorus loading concept in limnology. Schweiz. Z. Hydrol., 37: 53-83.
    [179] Voytek M. A., Priscu J. C. and Ward B. B., 1999. The distribution and relative abundance of ammonia-oxidizing bacteria in lakes of the McMurdo Dry Valley, Antarctica. Hydrobiologia 401: 113-130.
    [180] Weinbauer M. G. and Peduzzi P., 1994. Frequency, size and distribution of bacteriophages in different marine bacterial morphotypes. Marine ecology progress series, 108(1-2): 11-20.
    [181] Wetzel R. G., 1977. Analysis of Five North American Lake Ecosystems. VIII. Control Mechanisms and Regulation. Proceedings: 20th Congress, Internationale Vereinigung fur Theoretische und Angewandte Limnologie, 20: 605-608.
    [182] Wetzel R. G., 1981. Longterm Dissolved and Particulate Alkaline Phosphatase Activity in a Hardwater Lake in Relation to Lake Stability and Phosphorus Enrichments. Verh. Internat. Verein. Limnol., 121: 369-381.
    [183] White J. R. and Reddy K. R., 1999. Influence of Nitrate and Phoshorus Loading on Denitrifying Enzyme Activity in Everglades Wetland Soils. Soil Sci. Soc. Am. J., 63: 1945-1954.
    [184] Wynne D., 1977. Alternations in activity of phosphatases during the Peridinium bloom in Lake Kinneret. Physiol. Pl., 40: 219-224.
    [185] Wynne D. and Gophen M., 1981. Phosphatase activity in freshwater zooplankton. Oikos, 37: 369-376.
    [186] Yamamoto Y., Satoh N. and Hawyashi H., 1991. Distribution of different forms of phosphorus and phosphate-solubilizing bacteria in lake sediment. Jap. J. Limnol., 52(3): 205-213.
    [187] Yasuaki A. and Hisao N., 2001. Mutualistic relationships between phytoplankton and bacteria caused by carbon excretion from phytoplankton. Ecological Research, 16: 289-299.
    [188] Yiv S., Zana R., Ulbritch W., Huffman H., 1981. Effect of alcohol on the properties of micellar system. J. Coll. Inter. Sci., 80: 224-236.
    [189] Zhou Y. Y., Li J. Q. and Zhang M., 2002. Temporal and spatial variations in kinetics of alkaline phosphatase in sediments of a shallow Chinese eutrophic lake (Lake Donghu). Water Research, 36(8): 2084-2090.
    [190] 高光,高锡芸,秦伯强,季江,2000。太湖水体中碱性磷酸酶的作用阈值。湖泊科学,12(4): 353-358。
    [191] 金相灿,屠清瑛,1990。湖泊富营养化调查规范。北京:中国环境科学出版社。
    [192] 李如忠,汪家权,钱家忠,2004。巢湖流域非点源营养物控制对策研究 。水土保持学报,18:119-121。
    [193] 刘东山和罗启芳,2002。东湖氮循环细菌分布及其作用。环境科学,23(3):29-35。
    [194] 欧林坚,黄邦钦,洪华生,王大志,2003。海水中胞外酶及其与赤潮发生关系研究进展。应用生态学报,14:1197-1199。
    [195] 王锐萍和陈玉翠,2001。海口东湖降解磷细菌研究初报。海南师范大学学报,14:84-88。
    [196] 许光辉,郑洪元。土壤微生物分析方法手册。农业出版社,1986。
    [197] 许建和等,1991。反胶团中脂肪酶催化性能的研究。生物工程学报,7(4):345-350。
    [198] 许巧倩,王洪铸,张世萍,2003。河蟹过度放养对湖泊底栖动物群落的影响。水生生物学报,27:41-46。
    [199] 夏学惠,东野脉兴,周健民,田升平,张灼,彭彦华,2002。滇池现代沉积物中磷的地球化学及其对环境影响。沉积学报,20(3):416-420。
    [200] 谢骏,方秀珍,郁桐炳,2002。池塘氮循环中各类细菌与理化因子的相关性研究。水生生物学报,26(2):180-187。[201] 姚传义,俞耀庭,吴金川等,1999。反胶团酶反应研究进展。化工进展,5: 22-25.
    [202] 羊向东,沈吉,夏威岚,朱育新,2001。龙感湖近代沉积硅藻组合与营养演化的动态过程。古生物学报,41:455-460。
    [203] 郑天凌,1988。小定鞭金藻的抗菌活性研究。厦门大学学报自然科学版, 27(2): 220-223。
    [204] 朱广伟,秦伯强,高光,张路,范成新,2004。长江中下游浅水湖泊沉积物中磷的形态及其与水相磷的关系。环境科学学报,24:381-388。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700