富锂Li_(1+x)(Ni_(1/3)Co_(1/3)Mn_(1/3))O_(2+x/2)和锰基正极材料Li(Li_(1/3-2x/3)Ni_xMn_(2/3-x/3))O_2的制备与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
富锂正极材料具有比容量高,结构稳定,造价低廉,污染小等特点,近年来受到广泛的关注。本论文主要研究了富锂三元正极材料Li1+x[Ni1/3Co1/3Mn1/3]O2+x/2 (x=0.2,0.4,0.6)与富锂锰基镍锰正极材料Li[Li_(1/3-2x/3)Ni_xMn_(2/3-x/3)]O_2 (x=0.125,0.2,0.35,0.5)的实验室合成以及它们的电性能。
     采用碳酸盐共沉淀法合成了三元材料前驱体,并研究了合成条件对合成的前驱体形貌及振实密度的影响,确定了最优化合成条件:pH = 8,过渡金属离子浓度2 mol·L-1 ,反应时间12 ~ 13 h。在此研究的基础上,合成了富锂三元正极材料Li1+x[Ni1/3Co1/3Mn1/3]O2+x/2(x=0.2,0.4,0.6)。通过扫描电镜(SEM),X衍射(XRD)分析研究了它们的形貌与结构,通过电性能测试仪检测了它们的充放电性能。
     采用硝酸盐法合成的富锂锰基镍锰正极材料Li[Li_(1/3-2x/3)Ni_xMn_(2/3-x/3)]O_2 (x=0.125,0.2,0.35,0.5)制成AA电池,在电性能测试仪上进行充放电测试发现:在2.0 ~ 4.6 V ,0.2 C,25℃条件下当x = 0.2时合成的正极材料Li[Li0.2Ni0.2Mn0.6]O2表现出较好的比容量与循环性能:初始放电比容量为220 mAh·g-1 ,经过50次循环后,放电比容量仍然可以保持在157 mAh·g-1。对于电化学性能表现较好的Li[Li0.2Ni0.2Mn0.6]O2材料,分别研究了不同锂配比(锂比为0.97,1.00,1.03,1.06)以及不同烧成温度(760℃,860℃,950℃)对材料性能的影响。研究表明:锂比为1.03 ,在760℃条件下合成的Li[Li0.2Ni0.2Mn0.6]O2材料表现出较为优异的电性能。
     最后,研究了通过碳酸盐共沉淀法合成富锂锰基镍锰正极材料Li[Li_(1/3-2x/3)Ni_xMn_(2/3-x/3)]O_2 (x=0.125,0.2,0.35,0.5)。并通过扫描电镜(SEM),X衍射(XRD)检测了材料的形貌及结构。测试了它们的电化学性能。研究表明当x = 0.2时合成的正极材料Li[Li0.2Ni0.2Mn0.6]O2表现出较好的充放电性能与循环性能:初始放电比容量为243 mAh·g-1 ,经过20次循环后,放电比容量仍然可以保持在182 mAh·g-1。
High lithium cathode materials had these performances with high specific capacity, structural stability, and low cost, lower pollution and so on. It was gotten an extensive attention in recent years. two cathode materials were synthesized, the high lithium cathode material Li1+x[Ni1/3Co1/3Mn1/3]O2+x/2 (x=0.2,0.4,0.6) and the high lithium manganese-base cathode materials Li[Li_(1/3-2x/3)Ni_xMn_(2/3-x/3)]O_2 (x=0.125,0.2,0.35,0.5), and they electrochemical performances were analysed in the paper.
     The precursor of Li1+x[Ni1/3Co1/3Mn1/3]O2+x/2 was prepared with co-precipitation of carbonate method. The influences of synthesis conditions for precursors on morphology, density were studied. The optimal synthesis conditions were that, pH was at 8, transition metal ion concentration was 2 mol·L-1, the reaction time was about 12 ~ 13 h. The morphology and structure for the cathode materials Li1+x[Ni1/3Co1/3Mn1/3]O2+x/2(x=0.2,0.4,0.6)were determined by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. And the charge and discharge performance were measured by electrochemical performances test.
     Nitrate of Li, Mn, Ni with different ratios were mixed and then the high lithium manganese-base cathode material Li[Li_(1/3-2x/3)Ni_xMn_(2/3-x/3)]O_2 (x=0.125,0.2,0.35,0.5)were cacined at high temperture. AA-size batteries were assembled and electrochemical performances were tested. Test results show that, Li[Li_(1/3-2x/3)Ni_xMn_(2/3-x/3)]O_2 had better charge-discharge performance and cycle performance while x = 0.2, work pressure at 2.0 ~ 4.6 V, and charging current at 0.2 C and testing temperature at 25℃, for cathode materials synthesis of Li[Li0.2Ni0.2Mn0.6]O2. The optimal cathode material was Li[Li0.2Ni0.2Mn0.6]O2. It had an initial discharge capacity of 220 mAh·g-1 and could still be maintained discharge capacity over 157 mAh·g-1 after 50 cycles. The influence of lithium ratios (1+δ) were studied for cathode materials Li1+δ[Li0.2Ni0.2Mn0.6]O2 (lithium ratio were selected at 0.97, 1.03,1.06,1.09) and the different calcining temperature (760℃, 860℃, 950℃were choiced) were tested on the properties of cathode materials. The optimal synthesis conditions were that, the lithium ratio at 1.03 and calcining temperature at 760℃could obtain more excellent electrochemical performances.
     The precursors of Li[Li_(1/3-2x/3)Ni_xMn_(2/3-x/3)]O_2 (x=0.125,0.2,0.35,0.5)were prepared by co-precipitation of carbonate. The study also showed that, cathode materials Li[Li0.2Ni0.2Mn0.6]O2 had better electrochemical performances for x=0.2. Its initial discharge capacity of 243 mAh·g-1, after 20 cycles, the discharge capacity can still be maintained at 182 mAh·g-1.
引文
[01] Wehrey M C[J].Electric and Hybrid Vehicle Technology.1999,(99):75
    [02]陈立泉.电动车锂离子电池的材料问题[J].中国工程科学, 2002,4(11):32~36
    [03]乔亦男.电动车和电动自行车的几种清洁电池[J].中国自行车, 2004,7:17~19
    [04] J.R.Dahn, U.Von Sacken, M.W.Juzkow. Rechargeable LiNiO2/Carbon Cells, J. Electrochem. Soc. 1991, 138(8): 2207~2211
    [05] D.Guyomard and J M. Tarascon. The carbon/Li1+xMn2O4 system, Solid State Ionics, 1994, 69: 22~237
    [06]黄振谦,张昭.锂离子电池(RCB)进展[J].电池,1995,25(3): 143~145
    [07]任学佑.锂离子电池及其发展前景[J].电池,1996,26(1): 38~40
    [08]汪继强.锂离子蓄电池技术进展及市场前景[J].电源技术,1996,20(4):147~151
    [09]任学佑.锂离子电池的新进展,电池,1997,27(4):188~191
    [10]肖劲,曾雷英.锰基层状固溶体系正极材料的研究现状,电池, 2005, 35(6):465~467
    [11]世界便携式和HEV用镍氢、锂离子和锂聚合物电池市场分析报告,美国第20届国际一次和二次电池大会及展览会大会报告[J].电池世界,2003,3:19~23
    [12]刘彦龙.2002年中国电池行业统计数据[J].电池世界,2003,3:24~25
    [13] 2002年中国电池行业百强企业排序[J].电池世界,2003,3:26~28
    [14] M.Broussely. Saft lithium-ion energy and power storage technology, J. Power Sources, 1999, 80:180~189
    [15] R.L.Gitzendanner and P. G. Russell. Fabrication and evaluation of 100Ah cylindrical Li-ion battery for electric vehicle application, J. Power Sources, 1999, 81-82: 842~846
    [16]毕道治.混合动力车(HEV)电池的发展[J].电池工业,2007,12(4):262~265
    [17]戴永年,杨斌,马文会,等.锂离子电池和轻型电动车的发展[J].新材料产业,2006,9:16~18
    [18]张苏娅.轻型电动车越做越大的新兴产业[N].经济日报,2006-5-30(13)
    [19]吴辉煌.电化学[M].北京,化学工业出版社,2004:253~280
    [20]李荻.电化学原理[M].北京,北京航空航天大学出版社,2003:31~60
    [21] J.R.Dahn, U.Von Sacken, M.W.Juzkow, H.Al -Janaby, Rechargeable LiNiO2/carbon cells. J.Electrochem. Soc., 1991, 138(8): 2207-2211.
    [22]赵健.锂离子电池的应用开发[J].电池工业,2000,5(1):31
    [23] J.R.Dahn, U.Von Sacken, M.W.Juzkow. Rechargeable LiNiO2/Carbon Cells, J.Electrochem. Soc.1991,138(8):2207~2211
    [24] D.Guyomard and J M. Tarascon.The carbon/Li1+xMn2O4 system, Solid State Ionics,1994,69: 222~237
    [25]钟俊辉.锂离子电池及其材料[J].电池,1996,26(2):91~95
    [26]陈彦彬,锂离子蓄电池正极材料LiMn2O4的研究进展[J].电源技术,2000,24(4): 238~241
    [27] Doron Aurbach, Yair Ein-Eli, Orit Chusid. The correlation between the surface chemistry and the performance of Li/carbon intercalation anodes for rechargeable“Rocking-chair”type batteries, J. Electrochem. Soc., 1994, 141(3): 603~611
    [28]毕道治.电动车电池的开发现状及展望[J].电池工业, 2000, 5(2):56~63
    [29]吴川.锂离子电池正极材料研究进展[J].电池,2000,30(1):36~38
    [30] Scrosati Bruno. Recent advances in lithium ion battery materials, Electrochim. Acta, 2000, 45(15-16): 2461~2466
    [31] Morales Enrique and Acosta Jose Luis. Microstructure and electrical properties of cathodes based on V2O5, Solid State Ionics, 1997, 95(3-4): 269~274
    [32] Ramasamy Ramaraja.P, Ramadass.P, Haran Bala S. Synthesis, characterization and cycling performance of novel chromium oxide cathode materials for lithium batteries, J.Power Sources,2003,124(1):155~162
    [33] Obrovac M.N., Mao.O, Dahn J.R. Structure and electrochemistry of LiMO2 (M=Ti, Mn, Fe, Co, Ni) prepared by mechanochemical synthesis, Solid State Ionics, 1998, 112(1-2): 9~19
    [34] Whittingham.M.Stanley and Zavalij Peter.Y. Manganese dioxides as cathodes for lithium rechargeable cells: the stability challenge, Solid State Ionics, 2000, 131(1-2): 109~115
    [35] Eriksson Tom.A. and Doeff Marca M. A study of layered lithium manganese oxide cathode materials, J. Power Sources, 2003, 119-121:145~149
    [36] Takahashi Masaya,Tobishima Shinichi,Takei Koji.Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries, J. Power Sources, 2001, 97-98: 508~511
    [37]陈杨,周振君,童昀,等.锂离子电池正极材料的研究进展与展望[J].稀有金属与硬质合金,2007,35(3):54~55
    [38] Evmete Antolini. Preparation and Properties of Li-Co-O Compounds[J].J.The European Ceramic Society, 1998, 18:1405~1411
    [39]吴国良,刘人敏,杨新河,等LiCoO2正极材料的制备及其应用研究[J].电池, 2000,30(3):105~107
    [40] Ermete Antolini.LiCoO2:formation,structure,lithium and oxygen nonstoichiometry, electro chemical behavior and transport properties[J].Solid State Ionics,2004,170:159~171
    [41] Seungsuk oh, Joong Kee Lee, Dongim Byun, et al. Effect of Al2O3 coating on electrochemical performance of LiCoO2 as cathode materials for secondary lithium batteries[J]. J. Power Sources, 2004, 132: 249~255
    [42]王英,唐仁衡,肖方明.锂离子电池阴极材料LiCoO2制备方法的研究进展[J].电池工业,2003,13(2):118~122
    [43]闫时建,田文怀.钴酸锂晶体结构与能量关系的研究进展[J].电源技术,2005,29 (3):187~191
    [44] Jierong Ying,Changyin Jiang,Chunrong wan. Preparation and characterization of high-density spherical LiCoO2 cathode materials for lithium-ion batteries[J].J.Power Sources, 2004, 129: 264~269
    [45]陶颖,陈振,祝宝军,等.软溶胶——凝胶法制备LiCoO2薄膜电极[J].无机材料学报,2000,18(2):500~503
    [46] Randolph,A.Leising,Marcus,J.Palazzo etal.Abuse testing of lithium-ion batteries Character ization of the overcharge reaction of LiCoO2/graphite cells,Journal of the Electrochemical Society, 2001, 148(8): A838~A844
    [47] R.Alcantara, P.lavela, J.L. Tirado, et al. SPES, LiMAS NMR, and Ni3+ EPR evidence for the formation of Co2+-containing spinel phases in LiCoO2 cycled electrode materials[J]. J. Electroanalytical chemistry, 1998, 454:178~181
    [48] Zhao xinbing, Cao Gaoshao, Zhang Lijuan, et al. Electrochemical properties of some cobalt antimonides for lithium-ion batteries[J]. Rare metals, 2003, 22(4):298~303
    [49] Yingke Zhou,Jier Huang,Chengmin Shen,et al.Synthesis of highly ordered LiNiO2 nano wire arrays in AAO templates and their structural properties [J]. Materials Science and Engineering, 2002, A335:260~267
    [50]田彦文,翟秀静,高虹,等.锂离子电池正极材料LiNiO2的制备和性能研究[J].无机材料学报,1999,14(3):483~486
    [51]袁荣忠,翟美臻,于作龙.锂离子电池镍系正极材料的热稳定性研究进展[J].无机材料学报,2003,18(5):973~978
    [52]张国昀,姜长印,万春荣,等.锂离子蓄电池锂锰氧化物正极活性材料[J].电源技术,2001,25:175~178
    [53] C.Delmas, M.Menetrier, L.Croguennec, et al. An overview of the Li(Ni, M)O2 systems: syntheses, structures and properties[J]. J. Power Sources,2003,150~155
    [54]卫敏,路艳罗,杨文胜,等.锂离子二次电池锰系正极材料[J].化学通报,2002,8:516~526
    [55] Tom.A,Eriksso,Marca.M.A study of layered lithium manganese oxide cathode materials[J]. J. Power Sources, 2003, 119-121:145~149
    [56] C.Delmas,M.Menetrier,L.Croguennel,et al.An overview of the Li(Ni,M)O2 systems: synthesis, structure and properties[J].Electrochimica Acta, 1999, 45:243~253
    [57] C.Storey,I.Kargina,Y.Grincourt,et a1.Electrochemical characterization of a new high capacity cathode[J].J.Power Sources,2001,97-98:541~544
    [58] Obrovac M.N,Mao.O,Dahn J.R.Structure and electrochemistry of LiMO2 (M=Ti, Mn, Fe, Co, Ni) prepared by mechanochemical synthesis, Solid State Ionics, 1998, 112(1-2):9~19
    [59] A.D.Landa,C.C.Chang,P.N.Kumta,et a1.Phase stability of Li(Mnl-xCox)02 oxide:an ab initio study[J].Solid State Ionics,2002,149:209~215
    [60]郭炳焜,徐徽,王先友,等.锂离子电池[M].长沙:中南大学出版社,2002
    [61] G.Vitins,K.West.Lithium intercalation into layered LiMnO2[J].J.Electrochem Soc,1997,144: 2587~2592
    [62] Young-Sik Hong,Yong Joon Park, et al.Charge/discharge behavior of Li[Ni0.20Li0.20Mn0.60]O2 and Li[Co0.20Li0.27Mn0.53]O2 cathode materials in lithium secondary batteries, Solid State Ionics, 2005, 176: 1035~1042
    [63] J.Jiang, J.R.Dahn. Insignificant impact of designed oxygen release from high capacity Li[(Ni1/2Mn1/2)xCoy(Li1/3Mn2/3)1/3]O2(x+y=2/3)positive electrodes during the cycling of Li-ion cells, Electrochimica Acta.2006,51:3413~3416
    [64] Seung-Taek Myung,Shinichi Komava, et al. Synthesis of Li[(Ni0.5Mn0.5)1-xLix]O2 by emulsion drying method and impact of excess Li on structural and electrochemical properties, Chem . Mater. 2006, 18:1658~1666
    [65] Johnson. C. S, Kim. J-S. et al. The significance of the Li2MnO3 component in‘composite’χLi2MnO3·(1-χ)LiMn0.5Ni0.5O2 electrodes. Electrochemistry Communications. 2004, 6:1085~1091
    [66] Chen Y , Wang G x , Konstantinov K , et a1 . Synthesis and characterization of LiCoxMnyNi1-x-yO2 as a cathode material for secondary lithium batteries[J].J Power Sources , 2003 , 119-121:184~188.
    [67] Kim J M , Chung H T. Role of transition metals in layered Li[Ni , Co , Mn]O2 under electrochemical operation[J].Electrochimica Acta , 2004 , 49(21):3573~3580 .
    [68] Park Y J , Hong Y S,Wu X L, et a1.Synthesis and electrochemical charateristeristics of Li[CoxLi(1/3-2x/3)Mn(2/3-x/3)]O2 compounds[J].J Power Sources,2004 , 129(2):288~295
    [69] Shin S S , Sun Y K , Amine K . Synthesis and electrochemical properties of Li[Li(1-2x ) Nix Mn(2-x)/3]O2 as cathode material for lithium secondary batteries[J] . Power Sources , 2002 , 112(2) : 634~638 .
    [70] Kim J H , Sun Y K . Electrochemical performance of Li[LixNi(1-3x)Mn(1+x)/2]O2 cathode materials synthesized by sol-gel method[J] . J Power Sources , 2003 , 119-121 :166~170
    [71]李树堂.晶体X射线衍射学基础[M].冶金工业出版社,1990 ,116~160
    [72]魏全金.材料电子显微分析[M].冶金工业出版社,1990 ,149~165
    [73] Yukinori Koyama, Isao Tanaka, Hirohiko Adachi, et al.Crystal and electronic structures of super structural Li1-x[Co1/3Mn1/3Ni1/3]O2(0≤x≤1)[J].J Power Sources,2003,119-121:644~648
    [74] Tac-hyung cho, Sang-mok Park, Masaki Yoshio. Preparation of layered LiCo1/3Mn1/3Ni1/3O2 as a cathode for lithium secondary battery by carbonate coprecipitation method[J]. Chemistry Letters, 2004, 33(6):704~705
    [75] Jung-Min Kim, Hoon-Taekchung.The first cycle characteristics of LiCo1/3Mn1/3Ni1/3O2 charged up to 4.70V[J]. Electrochimica Acta. 2004, 49:937~944
    [76] W.D.金格瑞著.《陶瓷导论》中国建筑工业出版社,1982
    [77]赵煜娟.锂离子电池正极材料LiNi1-yCoyO2的研究[D].北京科技大学博士学位论文,2003
    [78]万新华.锂离子电池的高温和安全性能研究[D].北京科技大学博士学位论文,2004
    [79]马子川,谢亚勃,Mn(OH)2空气氧化反应实验与产物表征[J].化学研究用,2001,13(4):417~418
    [80]高晋,陈青林.高比重Co(OH)2的研制[J].硬质合金,2001 ,18(2):77~80
    [81]谢朋,翟玉春,翟秀静,等.添加剂Co(OH)2的制备研究[J].电源技术,1998 ,22(4):148~151
    [82]李启厚,安然,陈松,等.Ni(OH)2晶型构造控制研究[J].中国粉体技术, 2000 ,6(3):6~9
    [83] S H Park,H S Shin.Synthesis of Nanostructured Li(Ni1/3Co1/3Mn1/3)O2 via a Modified Carbonate Process[J].Chem Mater,2005,17:6~8
    [84]冷拥军,张鉴清,成少安,等.高堆积密度球形氢氧化镍制备及其理论分析[J].化学学报,1998,56:557~563
    [85]郭建忠,李志萍,周建钟,等.高活性高密度Ni(OH)2超微粉的制备工艺[J].金属功能材科,2003,10(2):35~38
    [86] Tsutomu Ohzuku,Yoshinari Makimara.Layered lithium Insertion Material of LiCo1/3 Mn1/3Ni1/3 O2 for Lithium-Ion Batteries[J].Chemistry Letters,2001,642~643
    [87] Ohzuku T, Ueda A, Nagayama M.Electrochemisty and structural chemistry of LiNiO2(R3m) for 4 volt secondary lithium cells[J].J.Electrochem.Soc,1993,140(7):1862~1870
    [88] Tae-hyung Cho, Sang-mok Park, Masaki Yoshio. Preparation of layered Li[Ni1/3Mn1/3Co1/3]O2 as a cathode for lithium secondary battery by cabornate coprecipitation method[J]. Chemistry Letters,2004,6(33):704~705

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700