柴油均质充量压燃微粒演化历程及非常规排放研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴油均质充量压燃(HCCI)能有效降低颗粒物和NOx的排放,但由于HCCI燃烧与传统燃烧有本质区别,其微粒的生成机理及理化特性必将有所不同,同时,柴油机非常规污染物——多环芳香烃(PAHs)和羰基化合物的排放也备受关注。因此,开展对HCCI燃烧模式的微粒演化历程及其非常规污染物排放特性的研究显得尤为重要。
     本文以全气缸取样系统为基础,对HCCI燃烧中微粒的演化历程进行研究,同时运用气相色谱—质谱联用仪(GC-MS)和高效液相色谱仪(HPLC)分别对HCCI燃烧过程及尾气中的颗粒相PAHs和HCCI燃烧尾气中的气态羰基化合物进行检测分析,研究发动机工作条件对微粒的演化历程及非常规排放的影响规律。研究结果表明:
     1、在本研究的各种工况下,HCCI燃烧SOF占微粒的比例在整个燃烧过程和尾气中都很高,分别在54.6%~90.2%和42.5%~79.3%范围内变化,而传统燃烧只有15%~30%,HCCI燃烧微粒的这种排放特性为采用简单后处理技术(DOC等)进一步降低柴油机微粒提供可能。
     2、在本研究的工况范围内,HCCI燃烧过程中,除3环芳香烃以外,2、4、5环芳香烃的总质量峰值随负荷和转速的增大均降低。HCCI燃烧尾气中3环和4环芳香烃占PAHs的比例最大;总PAHs的比排放量以及各环的比排放量均随着进气压力的增大而增加;除2环芳香烃的比排放量随着负荷的增大而减少外,总PAHs的比排放量以及其余各环芳香烃的比排放量均随着负荷的增大而增加。
     3、在HCCI燃烧尾气中,14种羰基化合物中占总羰基化合物比例最大的是乙醛,其次是丙烯醛+丙酮,以及甲醛。
     4、HCCI燃烧在相同的EGR率及进气压力下,除甲醛的比排放量随负荷的增大而减少外,总羰基化合物、乙醛和丙烯醛+丙酮的比排放量均随负荷的增大而增加。在相同的EGR率及负荷下,总羰基化合物、甲醛、乙醛、丙烯醛+丙酮的比排放量都随着进气压力的增大而增加。在相同进气压力和负荷下,总羰基化合物、甲醛、乙醛和丙烯醛+丙酮的比排放量都随着EGR的增大而减小。
Homogeneous charge compression ignition (HCCI) combustion of diesel enables internal combustion engines to achieve much lower particulate matter (PM) and NOx emission than conventional diesel engine. There are significant differences in formative and oxidative properties between PM produced from HCCI engines and traditional combustion method due to the existing essential distinctions in combustion modes. Besides, the unregulated emissions of diesel HCCI engine (include polycyclic aromatic hydrocarbons (PAHs) and carbonyl compounds) are of great concern as their potential health impacts. Therefore, experiments on a diesel HCCI engine were conducted to examine the characteristics of PM and unregulated emissions in HCCI combustion.
     In-cylinder particulate processes, particle phase PAHs and gaseous carbonyl compounds in diesel HCCI engine were systematically studied using an exclusive total cylinder sampling system followed by a gas chromatography-mass spectrometer (GC-MS) and a high-performance liquid chromatography (HPLC). Effect of operating conditions on the PM evoluaiton processes and unregulated emissions in both cylinder and exhaust were also carefully sdudied. The main research conlusions of this dissertation are as follows:
     1. A high proportion of the total SOF in PM found in both cylinder and exhaust of the diesel HCCI engine was observed for all operating conditions. The proportions of SOF were measured in-cylinder in the range of 54.6%~90.2% and for exhaust SOF in the range of 42.5%~79.3%, while only 15%~30% for the range of SOF proportion in conventional diesel engine. Thus, it would be possible to further reduce diesel particulate emission using simple after-treatment techniques (e.g. DOC).
     2. The total mass of 2, 4, 5 aromatic rings in cylinder decreased with increasing engine loads and speed for each operating condition. For exhaust measurements, 3 and 4 aromatic rings were the largest proportion of total PAHs; the brake specific emissions of total PAHs and each rings increased while either intake pressure or increased, except for 2 aromatic rings.
     3. Acetaldehyde accounted for the largest proportion of the 14 species of carbonyl compounds in exhaust, followed by the acrolein + acetone, and formaldehyde;
     4. The brake specific emissions of total carbonyl compounds, acetaldehyd and acrolein + acetone were increased with the engine loads for the same EGR rate and intake pressure, while formaldehyde appeared a contrary varying tendancy with engine loads. The brake specific emissions of carbonyl compounds all increased as the intake pressure increased under the same EGR rate and load. For the same intake pressure and load, the brake specific emissions of total carbonyl compounds, formaldehyde, acetaldehyd and acrolein + acetone decreased with the increase of EGR ratio.
引文
[1]潘锁柱,醇类/柴油燃烧过程中羰基化合物生成规律的研究,[硕士学位论文],天津,天津大学,2008
    [2]K.A.Bérubé,T. P. Jones,B. J. Williamson,et al,Physicochemical Characterization of Diesel Exhaust Particles: Factors for Assessing Biological Activity,Atmospheric Environment,1999,33: 1599-1614
    [3]T.C. Bond,D.G. Streets,K.F. Yarber,S.M. Nelosn,J. Woo,Z. Klimont,A Technology-bsed Global Inventory of Black and Organic Carbon Emissions from Combustion,Journal of Geophysical Research,2004,D14203,109
    [4]K.Park,D.B.Kittelson,M.R.Zachariah,P.H.McMurry,Measurement of Inherent Material Density of Nanoparticle Agglomerates,Journal of Nanoparticle Research,2004,6,267
    [5]Kathi Epping,Salvador Aceves,Richard Bechtold,et a1,The Potential of HCCI Combustion for High Efficiency and Low Emissions[C] , SAE Paper2002—01—1923,2002
    [6]Paul M Najt,David EFoster,Compression—Ignition Homogeneous Charge Combustion[C],SAE Paper830264,1983
    [7]Andreas Vressner,Andreas Lundin,Pressure Oseillations During Rapid HCCI Combustion[C],SAEPaper 2003—01—3217,2003
    [8]E.John,Advanced compression-ignitionengines—understanding the in-cylinder processes, Proceedings of the Combustion Institute,USA,2009
    [9]H.Burtscher,Physical Characterization of Particulate Emissions From Diesel Engines: A Review, Aerosol Science,2005, 36: 896~932
    [10]陈薛,车用柴油机燃用乙醇/柴油混合燃料的排放特性及其微粒生物毒性的研究, [硕士学位论文],天津,天津大学,2000
    [11]Homdutt Sharma,V.K.Jain,H. Khan,Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in the urban environment of Delhi,Chemosphere,2007,66(2):302~310
    [12]DEH (Department of the Environment and Heritage),In: Review of Fuel Quality Requirements for Australian Transport,Coffey Geosciences Pty Ltd for Environment, Australia,2000,6~90
    [13]Hsi-Hsien Yang,Chia-Mei Chen,Emission Inventory and Sources of Polycyclic Aromatic Hydrocarbons in the Atmosphere at a Suburban Area in Taiwan,Chemosphere,2004,56: 879~887
    [14]周颖超,甲醇柴油混合燃料理化性质及羰基污染物排放特性的研究,[硕士学位论文],天津,天津大学,2007
    [15]中国环境优先监测研究课题组编,优先控制污染物,中国环境出版社,1989
    [16]张文美,现代柴油机燃烧过程中微粒及多环芳香烃变化规律的研究,[硕士学位论文],天津,天津大学,2007
    [17]江桂斌等,环境样品前处理技术,化学工业出版社,北京,2004
    [18]陈立仁,蒋生祥,刘霞,候经国,高效液相色谱基础与实践,科学出版社,北京,2001
    [19]陈体清,气相色谱及其分析应用,成都科技大学出版社,成都,1987
    [20]梁汉昌,痕量物质分析气相色谱法,中国石化出版社,北京,2000
    [21]张付利,有机化学,海洋出版社,北京,2006.9
    [22] P.Carlier,H.Hannaehi,G.Mouvier,Atmospheric Environment,1986,20(11):2079~2099
    [23] A.P.Alshuller,Atmospheric Environment,1993,27(1):21~32
    [24] C.N.Hewitt,G.LJ. Kok,Atmospheric Che mistry,1991,12:181~194
    [25] E.Grosjean,D.Grosjean,J. H Seinfels,Environ.Sci.Techno1,1996,30:1038
    [26]T .Outlook,Erwiron .Sci. Techno1,1984,l8:218A~22lA
    [27]P.Carlier , H.Hannachi , G.Mouvier , The chemistry of carbonyls in the atmosphere—a review,Atmospheric Environment ,1986,2079~2099
    [28]空气和废弃检测分析方法指南编委会,空气和废气监测分析方法指南,中国环境科学出版社,2006,9:248~255
    [29]谭庆荣,甲醛装置排放尾气成分的测定方法,云南化工2004年31卷2期:42~44
    [30]刘光明,王凯雄,藏荣春,古贺实,餐饮业中油烟气中醛类化合物的荧光法测定,环境污染与防治,1998,20( 4): 38~41
    [31]戴天有,魏复盛,谭培功,刘靖,空气和废气中醛酮污染物的气相色谱测定,环境化学,1998,17 (3):293~298
    [32]唐小玲,高效液相色谱测定车间空气中的甲醛,生态科学,1991,2 : 99~102
    [33]P.A.Bianca,B.Roberto,G.Elisa,et al,Aldehydes in the atmospheric environment: evaluation of human exposure in the north-west area of Milan , Microchemical.Journal,2000,67:11~19
    [34]J.S.Lipari,S. J.Swarin Environ,Sci. Technol,1985,19:70
    [35]K.Kuwata,M.Uebori,H.Yamasaki,Y.Kuge,Anal.Chem,1983,55: 2013
    [36]E.Grosjean,D.Grosjean,M.P.Fraser,G.R.Cass,Environ. Sci. Technol,1996,30(9): 2687
    [37]A.Levart,M.Verber,Determination of aldehydes and ketones in air samples using Cryotrapping sampling,Chemosphere,2001,44:701-703
    [38]E.C.Tuazon,A.M.Wimer,R.A.Graham,J .P.Pitts,Environ. Sci. technol,1980,(10),259
    [39]U.Plau,D.Perner,J.Geophys,Res,1980,(85):7453
    [40]G.W.Harris,G.I.Mackay,T.Iguchi,et al,Chem,1989,(8): 119
    [41] A. L .Lazrus,G .L. Kok,J .A. Lind,Anal. Chem,1988,(60): 1074
    [42]赵瑞芬,乙醇/柴油混合燃料羰基化合物的检测及排放特性的研究,[硕士学位论文],天津,天津大学,2007
    [43]付斌,多组分气体污染物被动式监测方法的研究,卫生研究2002年31卷5期:390~393
    [44]童智敏,赵进顺,孔璐等,吸入甲醛对大鼠肝、肺、肾细胞的DNA交联作用,中国公共卫生2005年21卷7期:838~839
    [45]吴志皓,李桂敏,王金中等,高锰酸钾-甲醛化学发光体系测定甲氧氯普胺,化学研究2005年16卷3期:87~89
    [46]尤铁学,古天琪,副玫瑰苯胺无汞比色法测定空气中的甲醛[J],中国环境监测,2006,22(1): 29~31
    [47]祝惠英,郭素荣,石磊,毛细管气相色谱法测定空气中低分子醛酮化合物[J],青岛大学学报,2002,17(1):90~96
    [48]唐建辉,王新明,冯艳丽等,大气中C1 ~C10羰基化合物的分析测定[J],分析化学研究简报,2003,31: 1468~1472
    [49]李东方,贾薇,张秀丽等,高效液相色谱法测定水中甲醛、乙醛、丙烯醛[J],中国公共卫生,2003,19(12): 1511
    [50]杨红,王义忠,陶黎明等,甲醛腙、乙醛腙和丙烯腙的高效液相色谱分离分析条件的研究[J],中国卫生检验杂志, 2005,15(10): 1235~1280
    [51]戴天有,魏复盛,彭清涛等,空气和废气中10种醛酮污染物的高效液相色谱测定[J],环境科学研究,1996,9(6): 29~33
    [52]周志军,刘英希,曾俊宁等,空气中13种醛酮类有机污染物的高效液相色谱同时测定法[J],环境与健康杂志,2005,22(4):297
    [53]Determination of Formaldehyde in Ambient Air Using Adsorbent Cartridge Followed by high performance liquid chromatography (HPLC) [S],Compendium of Methods for Determination of Toxic Organic compounds,EPA TO-11A Janu,1999
    [54]Shida Tang,Lisa Graham,Ling Shem,Xianliang Zhou,Thomas Lanni,Environ. J. Sci. Technol,2004,8(22): 968~976
    [55]Howran Chao,Tachang Lin,Murong Chao,Fenghsiang Chang,Chaoi Huang,Chungbang Chen,Journal of Hazardous Materials,2000,B73: 39~54
    [56]董素荣,现代柴油机全气缸取样系统开发及缸内微粒理化特性研究,[博士学位论文],天津,天津大学,2007
    [57]涂险峰,内燃机排气中多环芳烃的测量及排放特性的研究,[硕士学位论文],吉林,吉林工业大学,1999
    [58]魏象仪,内燃机燃烧学,大连理工大学出版社,大连,1992
    [59]刘巽俊,内燃机的排放与控制,机械工业出版社,北京,2002.11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700