鄂尔多斯盆地延长地区上古生界物源分析及意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鄂尔多斯盆地位于华北板块西部,介于南侧的秦岭-祁连山造山带与北侧的阴山-燕山造山带之间,通常认为其于晚古生代兴蒙海槽闭合与秦岭海槽消减时形成雏形,华北板块与秦岭微板块及西伯利亚板块对接、碰撞,强烈的造山作用及风化剥蚀等过程在鄂尔多斯盆地内留下了良好的沉积记录,成为研究盆地演化乃至盆山关系的关键。
     碎屑沉积物是记录这些地质过程的良好载体,尤其是作为砂岩主要组分的骨架矿物、稳定性较强的重矿物,以及保留有物源区母岩性质的岩屑等,包含了物源区的大量信息,可以用来综合判别物源区性质,指示物源方向等,是盆地物源分析的基础手段。而碎屑锆石具有极强的稳定性,并且广泛分布于碎屑沉积岩中,对砂岩碎屑锆石开展微区原位U-Pb同位素定年与物源示踪研究,可以准确提取沉积物年龄的信息,结合区域地质概况及周缘山系基底出露情况可以对盆地不同时期的沉积物源区进行示踪。
     论文通过对鄂尔多斯盆地延长地区上古生界岩心观察、铸体薄片鉴定、粒度分析、碎屑锆石U-Pb定年等分析测试手段,对石千峰组、盒8段、山西组砂岩储层的岩石学特征及轻、重矿物特征、组合及其在纵向、平面上的分布规律、碎屑锆石年代学等进行了系统的研究,讨论了其物源区、源区母岩性质及其对优质储层的影响。
     结果显示,鄂尔多斯盆地延长地区石千峰组、盒8段、山西组砂岩的轻、重矿物特征及组合分为四个区域:延安-延长为中心区域,砂岩的颗粒较均匀,细粒,成熟度较高,石英含量也很高,变质岩、沉积岩、岩浆岩岩屑均含有,重矿物以含铁矿物+钻石为主;安塞-子长为西北区域,砂岩颗粒为中-粗粒次棱角状,石英含量较高,以火成岩岩屑和变质岩岩屑为主,重矿物主要为含铁矿物+绿泥石+锆石,指示源岩为火成岩和变质岩;绥德-清涧为东北区域,砂岩颗粒为中粒次棱角状,以石英为主,其次是岩屑,几乎不含长石,含变质岩岩屑、火成岩岩屑及沉积岩岩屑,重矿物以绿泥石+含铁矿物+锆石为主,指示源区为沉积岩及变质岩;甘泉向南为南部区域,砂岩以石英为主,长石含量高于以上区域,岩屑以沉积岩和变质岩岩屑为主,少量岩浆岩重矿物以绿泥石+含铁矿物+锆石为主,指示源区主要为变质岩、沉积岩和岩浆岩。
     结合碎屑锆石年龄分析可知本区物源主要来自北部阴山地块基底岩系中早元古代晚期(2300Ma-1800Ma)孔兹岩带和早元古代早期(2600Ma-2300Ma) TTG片麻岩及海西期岩浆活动产物及少量南部秦岭造山带中秦岭群(1987-2267Ma)和宽坪群(1142-986Ma)深变质岩系及古生代变质岩系和岩浆活动的产物(1000-400Ma),极少量是来自(2500Ma-1900)陇山TTG片麻岩、阴山地块太古代古老变质岩系。
     陆源碎屑源于物源区的母岩,并构成沉积盆地内砂岩的骨架,砂岩的储集性能与陆源碎屑成分相关,并取决于源区的岩性和风化程度。本区的陆源碎屑物质主要来自于孔兹岩、片麻岩及花岗岩,由于温湿的古气候条件,源区风化作用特别是化学风化作用强烈,不稳定的长石和岩屑物质被改造贻尽,中部区域砂岩石英含量最高,平均孔隙度、渗透率较高,物性较好,是该地区的主要富气区域;而南、北部的长石及岩屑含量稍高,其储集性能相对较弱。
Ordos Basin locate in western North China Block, betweem Qinling-Qilian orogen and Yinshan-Yanshan orogen in the north and south respectively. It is considered formed along with the closure of Xinmeng ocean and subduction of Qinling ocean in late paleozoic. Voluminous sedimentary materials were transited into the ambient basins and deposited there during the process of continent-continent collision, extrud orogeny and erosion between North China Plate and Qinling block, siberia plate in Ordos Basin, it can provide powerful evidence for exploring orogenic process.
     Clastic sediments is the excellent carrier for these orogenic process, transporting rocks can lose or change minerals, but a lot of information from sources can be brong to destination. Heavy minerals of sandstones can judge source area lithology because of higher stability; matrix minerals can indicate provenance direction because they are the major mineral components; debris can be used to sure characteristics of parent rocks because it keep characteristics of parent rocks. Detrital zircons is of extremely stability, and it distribute of detrital sedimentary widely. It construct age spectrum of detrital zircons in the Shiqianfeng, He 8 and Shanxi Formation of the Low Permian, Upper Paleozoic in Ordos basin, and research on chronology and characteristics of parent rocks in provenance tracing, using techniques of LA-ICPMS in situ U-Pb isotopic dating and trace element analysis of detrital zircons, accompanied with comparative study on petrology of skeleton and heavy minerals and their assemblages in the sandstones.
     Through observing the drilled rocks, elevating the casted rock slice, analyzing grain size, and by detrital zircon U-Pb dating and other analysis and measurement methods on Upper Paleozoic Yanchang zone in the Ordos Basin, this paper has done the folowing systematic researchs on the lithology characteristics, characteristics and composition of the light and heavy minerals and these minerals distribution in the vertical and horizontal dereciton, detrital zircon geochronology and other researches for Shi qianfeng Group, He 8 section, Shanxi Group sandstone reservoir,discussing of its provenance, source rock properties and the impact of the reservoir.
     The result of the research showing that, the characteristics and composite of the light and heavy minerals in the Shi qianfeng Group, He 8 section, Shanxi Group of upper Paleozoic Yanchang zone in the Ordos Basin were divided into three source directional zones. The first is the Middle zone of Yan'an-Yanchang, the grains of the sandstone is steady and fine, with high maturity and high content of quartzes, the debris concludes metamorphic, sedimentary,igneous debris, and the heavy minerals contain zircon and ion minerals mainly. The second zone is the Northwest zone of Ansai-Zichang, the Sandstone particles is middle-coarse and sub-angular, the quartz content is high, almost no feldspar existed, and the mainly heavy minerals are iron minerals, chlorite and zircons, indicating that it originated from igneous and metamorphic lithic debris. The third zone is the Northeast zone of Suide-Qingjian, the sandstone particles is middle and sub-angular, the sandstone grain contains mostly quartz and with little feldspar, and metamorphic, sedimentary, igneous debris and no more feldspar, the heavy minerals are mainly iron minerals, chlorite and zircons, indicating its source is sedimental and metamorphic rocks. From the Ganquan to its south is the southern zone, the sandstone grain is mainly quartz,and the content of the feldspar is higher than the other zones, and the debris is manly sediment and metamorphic rocks. The little igneous rocks contains mainly heavy minerals of iron minerals, chlorite and zircons, indicating that its source is metamorphic, sedimentary, igneous rocks..
     It's can be concluded that the provenance is mainly from the early or meso proterozoic khondalite belt and early proterozoic TTG gneiss in the substrate rocks of north Yinshan mountain land mass early or meso proterozoic, hercynian rocks, metamorphic in the southern Qinlin orogenic belt, paleozoic metamorphic rocks and magmatic results by the chronology of detrital zircons. The rest is from archaeozoic metamorphic rocks in Yinshan land mass and Longshan TTG gneiss.
     The terrigenous clasolite is from the provenance bed rock. It forms the sand matrix of sedimentary basin. The reservoir properties of sand are related with the composition of the terrigenous clasolite, and depend on the lithology and rate of decay. The terrigenous clasolite is from the khondalite, gneiss and granite. Because of the warm and moist paleoclimate the unstable feldspar and clasolite.Because the warm and wet peoclimate, the weathering especially the chemical weathering is very strong,and the unstable feldspar and debris were completely chaged.The grains of sandstone of middle zone is almost quartz, the average porosity and permeability is high, and the prosperity is good, which is main gas area, and in the north and south region,the feldspar and debris is higher than the middle region, the prosperity of the reservoir is weak. This is significant to the theory and practices to prospect the favorable exploring region and promote the exploration of the gas in the Ordos basin.
引文
[1]Morton, A.C., Whitham, A.G. Fanning, C.M.. Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea:Integration of heavy mineral,mineral chemical and zircon age data [J]. Sedimentary Geology.2005,182:3-28.
    [2]Gerdes A, Zeh A. Combined U-Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons:Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany[J]. Earth and Planetary Science Letters. 2006,249:47-61.
    [3]Weltje, G. J., Hilmar, von E. Quantitative provenance analysis of sediments:review and outlook[J]. Sedimentary Geology,2004,1-11.
    [4]Rollison, Hugh R..-杨学明,杨晓勇,陈双喜译.岩石地球化学[M].中国科学技术大学出版社,1992.
    [5]Veevers, J.J., Saeed, A., O'Brien, P.E. Provenance of the Gamburtsev Subglacial Mountains from U-Pb and Hf analysis of detrital zircons in Cretaceous to Quaternary sediments in Prydz Bay and beneath the Amery Ice Shelf[J]. Sedimentary Geology. 2008,211:12-32.
    [6]Yang, Jin-Hui Wu, Fu-Yuan Shao, Ji-An, et al. Constraints on the timing of uplift of the Yanshan Fold andThrust Belt, North China[J]. Earth and Planetary Science Letters,2006, 246:336-352
    [7]Kutterolf, S., Diener, R., Schacht, U.,et al. Provenance of the Carboniferous Hochwipfel Formation (Karawanken Mountains, Austria. Slovenia)-Geochemistry versus petrography[J]. Sedimentary Geology.2008,203:246-266.
    [8]Luo, Jinglan, Li, Jian, Yang, Binghu, et al. Provenance for the Chang 6 and Chang 8 Member of the Yanchang Formation in Xifeng area and in the periphery Ordos basin-Evidence from petrologic geochemistry[J]. Sciences in China (Series D), (November) 2007,50 (Supp. Ⅱ):75-90.
    [9]M. Paine. Sedimentology of the Bondi Main heavy mineral beach placer deposit,Murray Basin,southeastern Australia[J]. Sedimentary Geology.2005,174:177-195.
    [10]Mahiques, M. M., Tassinari, C.C.G., Marcolini, S., et al. Nd and Pb isotope signatures on
    the Southeastern South American upper margin:Implications for sediment transport and source rocks [J].Marine Geology.2008,250:51-63.
    [11]Mattauer, M, Matte, P, Malavieille, J., et al. Tectonics of the Qinlingbelt:build up and evolution of eastern Asia[J]. Nature,1985,317:496-500
    [12]Meng, Q. R., Zhang, G. W. Geologic framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics,2000,323:183-196
    [13],Bruguier, J.R., Lancelot, J., Malavieille. U-Pb dating on single detrital zircon grains from the Triassic Songpan-Ganze flysch_Central China,: provenance and tectonic correlations [J]. Earth and Planetary Science Letters.1997,152:217-231.
    [14]Rieser, A.B., Neubauer, F, Liu, Y. J,. et al. Sandstone provenance of north-western sectors of the intracontinental Cenozoic Qaidam basin,western China:Tectonic vs.climatic control [J]. Sedimentary Geology,2005,177:1-18.
    [15]Nascimento, M. Goes, A M, Macambira, M J B., et al.Provenance of Albian sandstones in the Sio Luis-GrajauBasin (northern Brazil)from evidence of Pb-Pb zircon ages,mineral chemistry of tourmaline and palaeocurrent data[J]. Sedimentary Geology, 2007,201:21-42.
    [16]Yang, S.Y., Jeung-Su Geochemical compositions and provenance discrimination of the central south Yellow Sea sediments[J]. Marine Geology,2007,243:229-241.
    [17]Xia, Xiaoping Sun, Min Zhao, Guochun Luo, Yan LA-ICP-MS U-Pb geochronology of detrital zircons from the Jining Complex, North China Craton and its tectonic significance[J]. Precambrian Research,2006,144:199-212
    [18]Lee, Y.L..Provenance derived from the geochemistry of late Paleozoic-early Mesozoic mudrocks of the Pyeongan Supergroup,Korea[J]. Sedimentary Geology 2002,149:219-235.
    [19]曹宣铎,张瑞林,张汉文.秦巴地区泥盆纪地层及重要含矿层位形成环境的研究[J].西北地质科学,1990,27(01):1-124
    [20]常宏,安芷生,吴枫.青海南山隆起的盆地沉积物常量元素记录[J].第四纪研究,2008,28(05):822-830.
    [21]陈道公,Etienne DELOULE,夏群科等.大别山双河超高压榴辉岩中变质锆石:离子探针和微区结构研究[J].岩石学报,2002,18(03):69-77
    [22]陈弘,刘坚,王宏斌.琼东南海域表层沉积物常量元素地球化学及其地质意义[J].海洋地质与第四纪地质,2007,27(6):39-45.
    [23]陈洪德,侯中健,田景春,等.鄂尔多斯地区晚古生代沉积层序地层学与盆地构造演化研究[J].矿物岩石.2001,21(3):16-22
    [24]陈全红.鄂尔多斯盆地上古生界沉积体系及油气富集规律研究[D].西北大学.2007,1-175
    [25]陈衍景,杨忠芳,赵太平等.沉积物微量元素示踪物源区和地壳成分的方法和现状[J].地质地球科学,1996,(3),7-11
    [26]崔智林,华洪,宋庆原.晚奥陶世北秦岭弧后盆地放射虫组合[J].地质学报,2000,74(3):254-258.
    [27]党犇.鄂尔多斯盆地构造沉积演化与下古生界天然气聚集关系研究[D].西北大学,2003:1-142
    [28]丁仨平,裴先治,刘会彬,等.西秦岭天水地区新阳新元古代花岗质片麻岩的锆石LA2ICP2MS定年及其地质意义[J].中国地质,2006.33(6):1217~1225.
    [29]冯乔,耿安松,徐小蓉,等.鄂尔多斯盆地上古生界低压气藏成因[J].石油学报,2007,28(1):33-37
    [30]冯益民,朱宝清,杨军录,等.东天山大地构造及演化—1:50万东天山大地构造图简要说明[J].新疆地质,2002,20(4):309-316.
    [31]付金华.鄂尔多斯盆地上古生界天然气成藏条件及富集规律[D].西北大学,2004:1-152
    [32]付锁堂,田景春,陈洪德等.鄂尔多斯盆地晚古生代三角洲沉积体系平面展布特征[J].成都理工大学学报(自然科学版).2003,30(3):236-241
    [33]高福红.沉积物源区研究的新进展[J].世界地质,1994,13(3):98-103.
    [34]高志友.南海表层沉积物地球化学特征及物源指示[M].成都理工大学,2005.
    [35]郭英海,刘焕杰,权彪等.鄂尔多斯地区晚古生代沉积体系及古地理演化[J].沉积学报,1998,16(3):44-51
    [36]何世平,王洪亮,陈隽璐等.北秦岭西段宽坪岩群斜长角闪岩锆石LA-ICP-MS测年及其地质意义[J].地质学报,2007,81(1):79-87.
    [37]何卫军.鄂尔多斯盆地南部侏罗系直罗组-安定组沉积体系[D].西北大学,2007.
    [38]何自新.鄂尔多斯盆地演化与油气[M].北京:石油工业出版社.2003
    [39]和钟铧,刘招君,张峰.重矿物在盆地分析中的应用研究进展[J].地质科技情报.2001,20(4):29-32.
    [40]侯中健,陈洪德,田景春,等.鄂尔多斯地区晚古生代陆相沉积层序地层学研究[J].矿物岩石.2001,21(3):114-123
    [41]胡波,裴先治,丁仨平等.甘肃天水地区红土堡变基性岩的地球化学特征及其构造意义[J].地质通报.2005,24(3):258-265.
    [42]霍爱军,邓塞文,王洪亮.鄂尔多斯盆地上古生界煤层在层序中的位置及对比特征[J].中国海上油气(地质).2000,14(3):178-181
    [43]金秉福,林振宏,季福武.海洋沉积环境和物源的元素地球化学记录释读[J].海洋科学进展,2003,21(1):99-106
    [44]兰中伍,陈岳龙,苏本勋,等.四川松潘—甘孜盆地砂岩的物质来源:来自锆石U-Pb(SHRIMP)年龄证据[J].沉积学报.2006,24(3):321-332
    [45]蓝先洪,王红霞,李日辉,等.南黄海沉积物常量元素组成及物源分析[J].地学前缘(中国地质大学(北京);北京大学),2007,14(4):197-203.
    [46]李剑,罗霞,单秀琴,等.鄂尔多斯盆地上古生界天然气成藏特征闭[J].石油勘探与开发,2005,32(4):54-59
    [47]李靠社.陕西宽坪岩群变基性熔岩锆石U-Pb年龄[J].陕西地质.2002,20(1):72-80.
    [48]李勇,黎兵,Steffen D,等.青藏高原东缘晚新生代成都盆地物源分析与水系演化[J].沉积学报.2006,24(3):309-320
    [49]李增学,余继峰,李江涛等.鄂尔多斯盆地多种能源共存富集的组合形式及上古生界沉积控制机制分析[J].地球学报,2007,28(1):32-38
    [50]李珍,焦养泉等.黄骅坳陷高柳地区重矿物物源分析[J].石油勘探与开发,1998,25(6):5-7.
    [51]李振铎,胡义军,谈芳.鄂尔多斯盆地上古生界深盆气研究[J].天然气工业.1998,18(3):10-15
    [52]梁文天.秦岭造山带东西秦岭交接转换区陆内构造特征与演化过程[D].西北大学,2009.
    [53]林雄,徐小蓉,侯中健等.鄂尔多斯盆地北部山西期-下石盒子期盆地演化与天然气富集规律[J].成都理工大学学报(自然科学版).2005,32(2):138-141
    [54]吝文.鄂尔多斯盆地二叠系山西组-石盒子组沉积特征研究[D].中国地质大学(北 京),2005:1-56
    [55]刘锐娥,黄月明,卫孝锋等.鄂尔多斯盆地北部晚古生代物源区分析及其地质意义[J].矿物岩石.2003,23(3):82-86.
    [56]刘锐娥.鄂尔多斯盆地北部上古生界碎屑岩储层形成机理及主控因素研究[D].西安,西北大学,2004
    [57]刘少峰,柯爱蓉,吴丽云,等.鄂尔多斯西南缘前陆盆地沉积物物源分析及其构造意义[J],沉积学报,1997,15(1):156-160
    [58]刘小洪.鄂尔多斯盆地上古生界砂岩储层的成岩作用研究与孔隙成岩演化分析[D].西北大学,2008:1-134
    [59]路凤香,桑隆康.岩石学[M].地质出版社,2004.
    [60]罗静兰,李忠兴,史成恩,等.鄂尔多斯盆地周缘与西峰—合水地区延长组长8与长6段沉积体系与古流向和物源方向[J].地质通报,2008,27(1):19-29.
    [61]罗静兰,史成恩,李博,等.鄂尔多斯盆地周缘及西峰地区延长组长8、长6沉积物源—来自岩石地球化学的证据[J].中国科学,2007,37(增刊):62-72
    [62]罗静兰,刘小洪,张成立,等.鄂尔多斯盆地东胜地区和吐哈盆地十红滩地区含铀砂岩岩石学及成岩作用[J].石油学报,2005,26(4):39-49.
    [63]罗静兰,魏新善,姚泾利,等.物源与沉积相对鄂尔多斯盆地北部上古生界天然气优质储层的控制[J].地质通报,2010.
    [64]罗静兰,张成立.乌审召地区盒8、山1段优质储层控制因素研究(内部报告).西北大学,2007.
    [65]马强.鄂尔多斯盆地延长油区上古生界物源及沉积相研究[D].西北大学,2009.
    [66]闵琪,付金华,席胜利等.鄂尔多斯盆地上古生界天然气运移聚集特征[J].石油勘探与开发.2000,27(4):26-29
    [67]潘爱芳,黎荣剑,赫英.鄂尔多斯盆地东胜铀矿元素地球化学特征[J].西北大学学报(自然科学版),2007,37(2):291-296.
    [68]潘爱芳.鄂尔多斯盆地与能源矿产有关的一些地球化学研究[D].西北大学学报,2005.
    [69]裴放.北秦岭晚古生代海槽与华北陆块石炭—二叠纪含煤岩系[J].中国区域地质,1998,17(4):385-389.
    [70]裴放.河南南召发现泥盆纪-石炭纪抱子化石[J].中国区域地质,1992,1.
    [71]裴先治,丁仨平,张国伟,等.西秦岭天水地区百花基性岩浆杂岩的LA-ICP-MS锆石 U-Pb年龄及地球化学特征[J].中国科学D辑:地球科学,2007,37(增刊):224_-234
    [72]裴先治,丁仨平,李佐臣,等.西秦岭北缘早古生代天水—武山构造带及其构造演化[J].地质学报,2009.83(11):1547-1564.
    [73]任纪舜.论中国大陆岩石圈构造的基本特征[J].中国区域地质,1991,4:289-293.
    [74]邵磊,刘志伟,朱伟林.陆源碎屑岩地球化学在盆地分析中的应用[J].地学前缘(中国地质大学,北京).2000,7(3):297-304
    [75]汪正江,陈洪德,张锦泉.鄂尔多斯盆地晚古生代沉积体系演化与煤成气藏[J].沉积与特提斯地质.2002,22(2):18-23
    [76]汪正江,陈洪德,张锦泉.物源分析的研究与展望[J].沉积与特提斯地质.2000,20(4):104-110.
    [77]汪正江,张锦泉,陈洪德.鄂尔多斯盆地晚古生代陆源碎屑沉积物源区分析[J].成都理工学院学报.2001,28(1)7-13
    [78]汪正江.鄂尔多斯盆地二叠系沉积体系与煤成气藏关系的研究[D].成都,成都理工大学,2001
    [79]王峰,田景春,张锦泉,等.鄂尔多斯盆地中西部延长组长6油层组物源分析[J].沉积与特提斯地质,2006,26(3):26-29.
    [80]王桂成,王秀林,莫小国,等.鄂尔多斯盆地富县探区上古生界天然气运移模式闭[J].石油勘探与开发,2004,31(3):30-33
    [81]王洪亮,陈亮,孙勇,等.北秦岭西段奥陶纪火山岩中发现近4.1Ga的捕虏锆石[J].科学通报,2007,52(14):1685-1693.
    [82]王洪亮,何世平,陈隽璐,等.北秦岭西段红花铺俯冲型侵入体LA-ICPMS定年及其地质意义[J].现代地质,2006,20(4):536-544
    [83]王洪亮,何世平,陈隽璐,等.太白岩基巩坚沟变形侵入体LAICPMS锆石U-Pb测年及大地构造意义-吕梁运动在北秦岭造山带的表现初探[J].地质学报,2006,80(11):1660-1667.
    [84]王洪亮,肖绍文,徐学义等.北秦岭西段吕梁期构造岩浆事件的年代学及其构造意义[J].地质通报,2008,27(10):1728-1740.
    [85]王节涛.江汉平原周老孔中碎屑锆石LA-ICP-MS定年及物源示踪[D].北京,中国地质大学.2009
    [86]王涛,王晓霞,李伍平.秦岭杂岩中牛角山花岗质古深成岩体变形作用的初步研究及
    其构造意义[J].西安工程学院学报.1998,20(3):5-10
    [87]王涛,王晓霞,田伟等.北秦岭古生代花岗岩组合、岩浆时空演变及其对造山作用的启示[J].中国科学D辑:地球科学,2009,39(7):949-971.
    [88]王涛,张国伟,裴先治,等.北秦岭新元古代北北西向碰撞造山带存在的可能性及两侧陆块的汇聚与裂解[J].地质通报,2002,21(8/9):516-522.
    [89]魏红红.鄂尔多斯地区石炭-二叠系沉积体系及层序地层学研究[D].西北大学,2002:1-132
    [90]魏永佩,王毅.鄂尔多斯盆地多种能源矿产富集规律的比较[J].石油与天然气地质.2004,25(4):385-392
    [91]吴昌华,钟长汀.华北陆台中段吕梁期的SW-NE向碰撞—晋蒙高级区孔兹岩系进入下地壳的构造机制[J].前寒武纪研究进展.1998,21(3):28-50
    [92]吴昌华,孙敏,李惠民,等.乌拉山—集宁孔兹岩锆石激光探针等离子质谱(LA-ICP-MS)年龄[J].岩石学报,2006,22(11):2639-2654
    [93]吴琳娜.内蒙古克什克腾旗地区二叠纪沉积砂岩物源分析[M].吉林大学,2008.
    [94]吴世敏,陈汉宗.沉积物物源分析的现状[J].1999,(2):35-37.
    [95]吴旭东,李红春等.三峡水库对大宁河沉积环境的影响—碳酸盐和常量元素含量的变化[J].地质论评,2008,54(3)):419-426.
    [96]吴元保,陈道公,夏群科等.北大别黄土岭麻粒岩锆石U-Pb离子探针定年[J].岩石学报,2002,18(03):78-82
    [97]吴元保,陈道公,夏群科等.大别山黄镇榴辉岩锆石的微区微量元素分析:榴辉岩相变质锆石的微量元素特征[J].科学通报,2002,47(11):859-863
    [98]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报.2004,49(16):1589-1604.
    [99]徐亚军,杜远生,杨江海.沉积物物源分析研究进展[J].地质科技情报,2007,26(3):26-32.
    [100]闫全人,王宗起,陈隽璐等.北秦岭斜峪关群和草滩沟群火山岩成因的地球化学和同位素约束SHRIMP年代及其意义[J]地质学报,2007,81(4):488-500
    [101]闫全人,王宗起,闫臻等.秦岭造山带宽坪群中的变铁镁质岩的成因、时代及其构造意义[J].地质通报,2008,27(9):1475-1492.
    [102]闫义,林舸,王岳军等.盆地陆源碎屑沉积物对源区构造背景的指示意义[J].地球科学进展,2002,17(1):85~90.
    [103]杨斌虎.鄂尔多斯盆地上古生界盒8、山1段物源与沉积相及其对优质天然气储层的影响[D].西北大学.2009,1-100
    [104]杨华,付金华,魏新善.鄂尔多斯盆地天然气成藏特征明[J].天然气工业,2005,25(4):5-8
    [105]杨俊杰.鄂尔多斯盆地构造演化与油气分布规律[M].石油工业出版社,2002:1-226
    [106]杨仁超.鄂尔多斯盆地东部古生界沉积相与层序地层学研究[D].西北大学,2002:1-88
    [107]杨守业,李从先等.黄河沉积物中REE制约与示踪意义再认识[J].自然科学进展,2003,13(4):365-371.
    [108]杨奕华,包洪平,贾亚妮等.鄂尔多斯盆地上古生界砂岩储集层控制因素分析[J].古地理学报.2008,10(01):25-32
    [109]杨子超,刘剑,金勤海.1984.陕西省凤县红花铺、杨家岭火山岩系中腕足类等动物化石的发现及其意义[J].陕西地质,2(增刊):12-16.
    [110]张本仁,张宏飞,赵志丹,等.秦岭造山带地球化学[M].北京:科学出版社,2002:1-187.
    [111]张成立,王涛,王晓霞.秦岭造山带早中生代花岗岩成因及其构造环境[J].高校地质学报,2008,14(3):304-16
    [112]张成立,刘良,张国伟等.北秦岭新元古代后碰撞花岗岩的确定及其构造意义[J].地学前缘(中国地质大学,北京),2004.11(3):33-44.
    [113]张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学[M].北京:科学出版社,2001,1-855.
    [114]张国伟,董云鹏,姚安平.造山带与造山作用及其研究的新起点[J].西北地质,2001,34(1):1-10.
    [115]张国伟,郭安林,刘福田等.秦岭造山带三维结构及其动力学分析[J].中国科学(D辑),1996,26(增刊):1-6.
    [116]张国伟,孟庆任,赖绍聪.秦岭造山带的结构构造[J].中国科学(D辑),1995,(25)9:994-1003.
    [117]张国伟,孟庆任,于在平等.秦岭造山带的造山过程及其动力学特征[J].中国科学(D辑),1996,26(6).
    [118]张进江,郑亚东.变质核杂岩与岩浆作用成因关系综述[J].地质科技情报,1998,17(1):19-25.
    [119]张克银,刘树根,罗宇.鄂尔多斯盆地北部上古生界深盆气成藏剖析闭[J].成都理工大 学学报(自然科学版),2004,27(2):64-69
    [120]张晓宝,何海清,陈国俊.吐哈盆地草南1井中侏罗统物源方向综合判识及其研究意义[J].沉积学报.1997,15(4):109-114
    [121]张宗清,刘敦一,付国民.北秦岭变质地层同位素年代研究[M].北京:地质出版社,1994,1-191.
    [122]张宗清,张国伟,付国民等.秦岭变质地层年龄及其构造意义[J].中国科学D辑,1996,26(3):216-222.
    [123]赵红格,刘池洋.物源分析方法及研究进展[J].沉积学报.2003,21(3):409-415
    [124]赵俊兴,吕强,李凤杰,等.鄂尔多斯盆地南部延长组长6时期物源状况分析[J].沉积学报.2008,26(4):610-616
    [125]赵林,夏新宇,戴金星,等.鄂尔多斯盆地上古生界天然气富集的主要控制因素[J].石油实验地质,2000,22(2):136-139
    [126]赵伦山,张本仁.地球化学[M].地质出版社.1998.
    [127]赵培坤,纪友亮.鄂尔多斯西缘前陆盆地上古生界沉积相特征研究[J].新疆地质.2005,23(2):152-157
    [128]周鼎武,张成立.论北秦岭加里东期造山作用[J].西北大学学报(自然科学版),1994,24(3):245-250.
    [129]周建.青海共和-花石峡碎屑沉积岩地球化学与锆石年代学及其地质意义[D].北京,中国地质大学.2009
    [130]周建文,宋丽红,孙峥嵘,等.博湖坳陷侏罗系重矿物特征及物源探讨[J].河南石油.2002,16(1):20-22
    [131]朱宏权,徐宏节.鄂尔多斯盆地北部上古生界储层物性影响因素[J].成都理工大学学报(自然科学版).2005,32(2):133-137
    [132]朱扬明,苏爱国,梁狄刚等.柴达木盆地原油地球化学特征及其源岩时代判识[J].地质学报,2003,77(2):294-279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700