金属及合金中层错能量势垒的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
最新研究表明引入纳米尺度共格界面是实现金属强韧化的有效途径。金属中共格界面的形成与位错滑移、层错、孪生等微观变形机制密切相关。而对广义层错能(GSFE)的研究将有助于揭示微观机制的产生机理,并为控制特定界面结构的形成提供理论基础。因此,本文对金属及合金中层错及孪生机制所对应的GSFE开展了深入研究。
     本文采用密度泛函理论结合微动弹性带方法精确计算hcp体系(Mg、Mg-Li和Mg-Al)的基面滑移GSFE以及fcc体系(Al、Al-Li、Al-Mg、Al-Cu、Cu和Cu-Al)的孪生能量势垒。然后基于能量特征建立理论判据,以衡量合金元素对微观变形机制的影响。最后从电子结构角度阐述合金化效应的原因。
     结果表明:(1)合金元素Li有利于Mg中位错滑移机制的开动;而合金元素Al有利于在Mg引入层错界面。造成合金化效应差异的原因在于Li和Al倾向于在Mg中诱发不同类型的键合方式。(2)合金元素Mg对Al的变形行为几乎没有影响;合金元素Li能有效改善Al的孪生能力,从而引入孪晶界面;合金元素Cu使Al的滑移方式偏离fcc金属特征。造成合金化效应差异的原因在于Li能辅助电子密度的重新分布从而有利于键角以简单方式改变;Mg对电子结构的影响不足以改变Al的切变模式;Cu掺杂会在滑移面间引入高浓度电子,不利于层错结构稳定。
The recent research revealed that coherent internal boundaries at nanoscale could improve both the strength and ductility of metals. The formation of coherent boundaries in metals closely relates to the microscale deformation mechanisms, such as slipping, faulting and twinning. The study of generalized stacking-fault energy (GSFE) could facilitate the understanding of these microscale mechanisms, and theoretically support the strategy to introduce the specific boundary structures. For this purpose, this thesis work will deeply explore the GSFE associated with the faulting and twinning pathways in metals and alloys.
     The basal-plane GSFE in several selected hcp systems, including Mg, Mg-Li and Mg-Al, and the energy barriers of twinning in several selected fcc systems, including Al, Al-Li, Al-Mg, Al-Cu, Cu and Cu-Al, were precisely obtained via density functional theory calculations in combination with nudged elastic band method. Then, based on the energy profiles, theoretical criteria were established to evaluate the influence of the alloy elements to the tendency of microscale deformation. Additionally, the electronic origin of alloying effects was unveiled through the analysis of the electronic structure.
     One of the results is that Li-alloying will make dislocation slipping tend to be favorable in Mg, while Al-alloying will help to introduce fault boundaries in Mg, which is fundamentally caused by the fact that Li and Al could induce different ways of bonding in Mg. The second result is that Mg-alloying will contribute little change to the mechanical behaviors of Al; Li-alloying may effectively improve the twinnability of Al, resulting in the spread of twin boundaries; and Cu-alloying will force the slipping of Al to deviate from the fcc-type deformation pathway. The electronic origin of the alloying effects is that Li may help the re-adaptation of charge to accommodate the change of bond angle simply; Mg may disturb the electronic structure too slightly to influence the shear mode of Al; and Cu could lead to high density of charge within the slip planes and expose the fault structures to be unstable.
引文
[1] Lu K. The future of metals[J]. Science, 2010, 328 (5976): 319-320.
    [2] Gleiter H. Nanocrystalline materials[J]. Progress in Materials Science, 1989, 33 (4): 223-315.
    [3] Gleiter H. Nanostructured materials: Basic concepts and microstructure[J]. Acta Materialia, 2000, 48 (1): 1-29.
    [4] Birringer R, Gleiter H, Klein H P, et al. Nanocrystalline materials: An approach to a novel solid structure with gas-like disorder[J]? Physics Letters A, 1984, 102 (8): 365-369.
    [5] Lu K, Wang J T, Wei W D. A new method for synthesizing nanocrystalline alloys[J]. Journal of Applied Physics, 1991, 69 (1): 522-524.
    [6] Czirákiá, Tonkovics Z, Ger?cs I, et al. Thermal stability of nanocrystalline nickel electrodeposits: Differential scanning calorimetry, transmission electron microscopy and magnetic studies[J]. Materials Science and Engineering A, 1994, 179-180: 531-535.
    [7] Saito T, Furuta T, Hwang J H, et al. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism[J]. Science, 2003, 300 (5618): 464-467.
    [8] Fecht H J, Hellstern E, Fu Z, et al. Nanocrystalline metals prepared by high-energy ball milling[J]. Metallurgical Transactions A, 1990, 21 (9): 2333-2337.
    [9] Basset D, Matteazzi P, Miani F. Designing a high energy ball-mill for synthesis of nanophase materials in large quantities[J]. Materials Science and Engineering A, 1993, 168 (2): 149-152.
    [10] Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation[J]. Progress in Materials Science, 2000, 45 (2): 103-189.
    [11] Valiev R Z. Nanostructuring of metals by severe plastic deformation for advanced properties[J]. Nature Materials, 2004, 3: 511-516.
    [12] Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal[J]. Nature, 2002, 419: 912-915.
    [13] Uchic M D, Dimiduk D M, Florando J N, et al. Sample dimensions influence strength and crystal plasticity[J]. Science, 2004, 305 (5686): 986-989.
    [14] Chokshi A H, Rosen A, Karch J, et al. On the validity of the Hall-Petch relationship in nanocrystalline materials[J]. Scripta Metallurgica et Materialia, 1989, 23 (10): 1679-1683.
    [15] Jang J S C, Koch C C. The Hall-Petch relationship in nanocrystalline iron produced by ball milling[J]. Scripta Metallurgica et Materialia, 1990, 24 (8): 1599-1604.
    [16] Lu K, Wei W D, Wang J T. Microhardness and fracture properties of nanocrystalline Ni-P alloy[J]. Scripta Metallurgica et Materialia, 1990, 24 (12): 2319-2323.
    [17] Chang H, Altstetter C J, Averback R S. Characteristics of nanophase TiAl produced by inert gas condensation[J]. Journal of Materials Research, 1992, 7 (11): 2962-2970.
    [18] Sanders P G, Eastman J A, Weertman J R. Elastic and tensile behavior of nanocrystalline copper and palladium[J]. Acta Materialia, 1997, 45 (10): 4019-4025.
    [19] Conrad H, Narayan J. Mechanisms for grain size hardening and softening in Zn[J]. Acta Materialia, 2002, 50 (20): 5067-5078.
    [20] Schuh C A, Nieh T G, Iwasaki H. The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni[J]. Acta Materialia, 2003, 51 (2): 431-443.
    [21] Wu X L, Zhu Y T. Inverse grain-size effect on twinning in nanocrystalline Ni[J]. Physical Review Letters, 2008, 101 (2): 025503.
    [22] Yu Q, Shan Z W, Li J, et al. Strong crystal size effect on deformation twinning[J]. Nature, 2010, 463: 335-338.
    [23] Zhang J Y, Liu G, Wang R H, et al. Double-inverse grain size dependence of deformation twinning in nanocrystalline Cu[J]. Physical Review B, 2010, 81 (17): 172104.
    [24] Sun L, Krasheninnikov A V, Ahlgren T, et al. Plastic deformation of single nanometer-sized crystals[J]. Physical Review Letters, 2008, 101 (15): 156101.
    [25] Suresh S, Li J. Deformation of the ultra-strong[J]. Nature, 2008, 456: 716-717.
    [26] Zhu T, Li J. Ultra-strength materials[J]. Progress in Materials Science, 2010, 55 (7): 710-757.
    [27] Cahn R W. The Coming of Materials Science[M]. 3rd ed. Oxford: Elsevier Science, 2003: 465-502.
    [28] Newbury D E, Williams D B. The electron microscope: The materials characterization tool of the millennium[J]. Acta Materialia, 2000, 48 (1): 323-346.
    [29] Ludwig W, Buffière J Y, Savelli S, et al. Study of the interaction of a short fatigue crack with grain boundaries in a cast Al alloy using X-ray microtomography[J]. Acta Materialia, 2003, 51 (3): 585-598.
    [30] Shan Z W, Mishra R K, Syed Asif S A, et al. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals[J]. Nature Materials, 2008, 7: 115-119.
    [31] Sokolowski-Tinten K, Blome C, Blums J, et al. Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit[J]. Nature, 2003, 422: 287-289
    [32] Nellist P D, Chisholm M F, Dellby N. Direct sub-Angstrom imaging of a crystal lattice[J]. Science, 2004, 305 (5691): 1741.
    [33] Eberhart M. Computational metallurgy[J]. Science, 1994, 265 (5170): 332-333.
    [34] Van Swygenhoven H. Grain boundaries and dislocations[J]. Science, 2002, 296 (5565): 66-67.
    [35] Carter E A. Challenges in modeling materials properties without experimental input[J]. Science, 2008, 321 (5890): 800-803.
    [36] Hall E O. The deformation and aging of mild steel: III Discussion of results[J]. Proceedings of the Physical Society B, 1951, 64 (9): 747-753.
    [37] Petch N J. The cleavage strength of polycrystals[J]. Journal of the Iron and Steel Institute, 1953, 74: 25-28.
    [38] Kumar K S, Van Swygenhoven H, Suresh S. Mechanical behavior of nanocrystalline metals and alloys[J]. Acta Materialia, 2003, 51 (19): 5743-5774.
    [39] Nieh T G, Wadsworth J. Hall-Petch relation in nanocrystalline solids[J]. Scripta Metallurgica et Materialia, 1991, 25 (4): 955-958.
    [40] Padmanabhan K A, Dinda G P, Hahn H, et al. Inverse Hall-Petch effect and grain boundary sliding controlled flow in nanocrystalline materials[J]. Materials Science and Engineering A, 2007, 452-453: 462-468.
    [41] Wang Y B, Li B Q, Sui M L, et al. Deformation-induced grain rotation and growth in nanocrystalline Ni[J]. Applied Physics Letters, 2008, 92 (1): 011903.
    [42] Schi?tz J, Di Tolla F D, Jacobsen K W. Softening of nanocrystalline metals at very small grain sizes[J]. Nature, 1998, 39: 561-563.
    [43] Van Swygenhoven H, Derlet P M. Grain-boundary sliding in nanocrystalline fcc metals[J]. Physical Review B, 2001, 64 (22): 224105.
    [44] Vo N Q, Averback R S, Bellon P, et al. Quantitative description of plastic deformation in nanocrystalline Cu: Dislocation glide versus grain boundary sliding[J]. Physical Review B, 2008, 77 (13): 134108.
    [45] Gutkin M Yu, Ovid’ko I A, Skiba N V. Crossover from grain boundary sliding to rotational deformation in nanocrystalline materials[J]. Acta Materialia, 2003, 51 (14): 4059-4071.
    [46] Shi J, Zikry M A. Grain size, grain boundary sliding, and grain boundary interaction effects on nanocrystalline behavior[J]. Materials Science and Engineering A, 2009, 520 (1-2): 121-133.
    [47] Bobylev S V, Morozov N F, Ovid’ko I A. Cooperative grain boundary sliding and migration process in nanocrystalline solids[J]. Physical Review Letters, 2010, 105 (5): 055504.
    [48] Yip S. The strongest size[J]. Nature, 1998, 391: 532-533.
    [49] Yip S. Nanocrystalline metals: Mapping plasticity[J]. Nature Materials, 2004, 3: 11-12.
    [50] Argon A S, Yip S. The strongest size[J]. Philosophical Magazine Letters, 2006, 86 (11): 713-720.
    [51] Koch C C, Morris D G, Lu K, et al. Ductility of nanostructured materials[J]. MRS Bulletin, 1999, 24 (2): 54-58.
    [52] Wang Y M, Wang K, Pan D, et al. Microsample tensile testing of nanocrystalline copper[J]. Scripta Materialia, 2003, 48 (12): 1581-1586.
    [53] Hart E W. Theory of the tensile test[J]. Acta Metallurgica, 1967, 15 (2): 351-355.
    [54] Zhu T, Li J, Samanta A, et al. Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals[J]. Proceedings of the National Academy of Sciences, 2007, 104 (9): 3031-3036.
    [55] Wang N, Wang Z R, Aust K T, et al. Room temperature creep behavior of nanocrystalline nickel produced by an electrodeposition technique[J]. Materials Science and Engineering A, 1997, 237 (2): 150-158.
    [56] Malow T R, Koch C C, Miraglia P Q, et al. Compressive mechanical behavior of nanocrystalline Fe investigated with an automated ball indentation technique[J]. Materials Science and Engineering A, 1998, 252 (1): 36-43.
    [57] Tanimoto H, Sakai S, Mizubayashi H. Mechanical property of high density nanocrystalline gold prepared by gas deposition method[J]. Nanostructured Materials, 1999, 12 (5-8): 751-756.
    [58] Cai B, Kong Q P, Lu L, et al. Interface controlled diffusional creep of nanocrystalline pure copper[J]. Scripta Materialia, 1999, 41 (7): 755-759.
    [59] Jia D, Ramesh K T, Ma E. Failure mode and dynamic behavior of nanophase iron under compression[J]. Scripta Materialia, 1999, 42 (1): 73-78.
    [60] Jia D, Wang Y M, Ramesh K T, et al. Deformation behavior and plastic instabilities of ultrafine-grained titanium[J]. Applied Physics Letters, 2001, 79 (5): 611-613.
    [61] Jang D, Atzmon M. Grain-size dependence of plastic deformation in nanocrystalline Fe[J]. Journal of Applied Physics, 2003, 93 (11): 9282-9286.
    [62] Wei Q, Jiao T, Mathaudhu S N, et al. Microstructure and mechanical properties of tantalum after equal channel angular extrusion (ECAE)[J]. Materials Science and Engineering A, 2003, 358 (1-2): 266-272.
    [63] Wei Q, Jiao T, Ramesh K T, et al. Nano-structured_vanadium: Processing and mechanical properties under quasi-static and dynamic compression[J]. Scripta Materialia, 2004, 50 (3): 359-364.
    [64] Chen J, Lu L, Lu K. Hardness and strain rate sensitivity of nanocrystalline Cu[J]. Scripta Materialia, 2006, 54 (11): 1913-1918.
    [65] Wang Y M, Ma E. Strain hardening, strain rate sensitivity, and ductility of nanostructured metals[J]. Materials Science and Engineering A, 2004, 375-377: 46-52.
    [66] Wang Y M, Li J, Hamza A V, et al. Ductile crystalline-amorphous nanolaminates[J]. Proceedings of the National Academy of Sciences, 2007, 104 (27): 11155-11160.
    [67] Lu L, Shen Y F, Chen X H, et al. Ultrahigh strength and high electrical conductivity in copper[J]. Science, 2004, 304 (5669): 422-426.
    [68] Lu L, Schwaiger R, Shan Z W, et al. Nano-sized twins induce high rate sensitivity of flow stress in pure copper[J]. Acta Materialia, 2005, 53 (7): 2169-2179.
    [69] Lu L, Chen X, Huang X, et al. Revealing the maximum strength in nanotwinned copper[J]. Science, 2009, 323 (5914): 607-610.
    [70] Abe, E., Kawamura, Y., Hayashi, K., et al., Long-period ordered structure in a high-strength nanocrystalline Mg-1 at% Zn-2 at% Y alloy studied by atomic-resolution Z-contrast STEM, Acta Materialia, 2002, 50: 3845-3857.
    [71] Yamasaki M, Sasaki M, Nishijima M, et al. Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg-Zn-Gd alloys during isothermal aging at high temperature[J]. Acta Materialia, 2007, 55 (20): 6798-6805.
    [72] Shao X H, Yang Z Q, Ma X L. Strengthening and toughening mechanisms in Mg-Zn-Y alloy with a long period stacking ordered structure[J]. Acta Materialia, 2010, 58 (14): 4760-4771.
    [73] Zhu Y M, Morton A J, Nie J F. The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys[J]. Acta Materialia, 2010, 58 (8): 2936-2947.
    [74] Zhu Y M, Morton A J, Weyland M, et al. Characterization of planar features in Mg-Y-Zn alloys[J]. Acta Materialia, 2010, 58 (2): 464-475.
    [75] Bhadeshia H K D H. Nanostructured bainite[J]. Proceedings of the Royal Society A, 2010, 466 (2113): 3-18.
    [76] Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale[J]. Science, 2009, 324 (5925): 349-352.
    [77] Jin Z H, Gumbsch P, Ma E, et al. The interaction mechanism of screw dislocations with coherent twin boundaries in different face-centred cubic metals[J]. Scripta Materialia, 2006, 54 (6): 1163-1168.
    [78] Chen Z M, Jin Z H, Gao H J. Repulsive force between screw dislocation and coherent twin boundary in aluminum and copper, Physical Review B, 2007, 75 (21): 212104.
    [79] Jin Z H, Gumbsch P, Albe K, et al. Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals[J]. Acta Materialia, 2008, 56 (5): 1126-1135.
    [80] Wang Y B, Sui M L. Atomic-scale in situ observation of lattice dislocations passing through twin boundaries[J]. Applied Physics Letters, 2009, 94 (2): 021909.
    [81] Zhu Y T, Wu X L, Liao X Z, et al. Dislocation-twin interactions in nanocrystalline fcc metals[J]. Acta Materialia, 2011, 59 (2): 812-821.
    [82] Li X Y, Wei Y J, Lu L, et al. Dislocation nucleation governed softening and maximum strength in nano-twinned metals[J]. Nature, 2010, 464: 877-880.
    [83] Zhao W S, Tao N R, Guo J Y, et al. High density nano-scale twins in Cu induced by dynamic plastic deformation[J]. Scripta Materialia, 2005, 53 (6): 745-749.
    [84] Tao N R, Lu K. Dynamic plastic deformation (DPD): A novel technique for synthesizing bulk nanostructured metals, Journal of Materials Sciences and Technology, 2007, 23 (6): 771-774.
    [85] Li Y S, Zhang Y, Tao N R, et al. Effect of thermal annealing on mechanical properties of a nanostructured copper prepared by means of dynamic plastic deformation[J]. Scripta Materialia, 2008, 59 (4): 475-478.
    [86] Zhang Y, Tao N R, Lu K. Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles[J]. Acta Materialia, 2008, 56 (11): 2429-2440.
    [87] Li Y S, Tao N R, Lu K. Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures[J]. Acta Materialia, 2008, 56 (2): 230-241.
    [88] Venables J A. Deformation twinning[A]. In: Proceedings of the Metallurgy Society Conference[C]. New York: Gordon & Breach, 1963: 77-116.
    [89] Gray III G T, Huang J C. Influence of repeated shock loading on the substructure evolution of 99.99 wt.% aluminum[J]. Materials Science and Engineering A, 1991, 145 (1): 21-35.
    [90] Yamakov V, Wolf D, Phillpot S R, et al. Dislocation processes in the deformation of nanocrystalline aluminum by molecular-dynamics simulation[J]. Nature Materials, 2002, 1: 45-49.
    [91] Yamakov V, Wolf D, Phillpot S R, et al. Deformation twinning in nanocrystalline Al by molecular-dynamics simulation[J]. Acta Materialia, 2002, 50 (20): 5005-5020.
    [92] Chen M W, Ma E, Hemker K J, et al. Deformation twinning in nanocrystalline aluminum[J]. Science, 2003, 300 (5623): 1275-1277.
    [93] Zhu Y T, Narayan J, Hirth J P, et al. Formation of single and multiple deformation twins in nanocrystalline fcc metals[J]. Acta Materialia, 2009, 57 (13): 3763-3770.
    [94] Li B, Cao B Y, Ramesh K T, et al. A nucleation mechanism of deformation twins in pure aluminum[J]. Acta Materialia, 2009, 57 (15): 4500-4507.
    [95] R?sner H, Markmann J, Weissmüller J. Deformation twinning in nanocrystalline Pd[J]. Philosophical Magazine Letters, 2004, 84 (5): 321-334.
    [96] Hwang S, Nishimura C, McCormick P G. Deformation mechanism of nanocrystalline magnesium in compression[J]. Scripta Materialia, 2001, 44 (8-9): 1507-1511.
    [97] Popov A A, Pyshmintsev I Yu, Demakov S L, et al. Structural and mechanical properties of nanocrystalline titanium processed by severe plastic deformation[J]. Scripta Materialia, 1997, 37 (7): 1089-1094.
    [98] Recknagle K, Xia Q, Chung J N. Properties of nanocrystalline zinc produced by gas condensation[J]. Nanostructured Materials, 1994, 4 (1): 103-111.
    [99] Zhang X, Wang H, Scattergood R O, et al. Studies of deformation mechanisms in ultra-fine-grained and nanostructured Zn[J]. Acta Materialia, 2002, 50 (19): 4823-4830.
    [100] Zhang X, Wang H, Scattergood R O, et al. Tensile elongation (110%) observed in ultrafine-grained Zn at room temperature[J]. Applied Physics Letters, 2002, 81 (5): 823-825.
    [101] Rawers J, Krabbe R, Duttlinger N. Nanostructure characterization of mechanical alloyed and consolidated iron alloys[J]. Materials Science and Engineering A, 1997, 230 (1-2): 139-145.
    [102] Jia D, Ramesh K T, Ma E. Effects of nanocrystalline and ultrafine grain sizes on constitute behavior and shear bands in iron[J]. Acta Materialia, 2003, 51 (12): 3495-3509.
    [103] Barnett M R, Keshavarz Z, Beer A G, et al. Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn[J]. Acta Materialia, 2004, 52 (17): 5093-5103.
    [104] Sun H Q, Shi Y N, Zhang M X, et al. Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy[J]. Acta Materialia, 2007, 55 (3): 975-982.
    [105] Choi H J, Kim Y, Shin J H, Bae D H. Deformation behavior of magnesium in the grain size spectrum from nano- to micrometer[J]. Materials Science and Engineering A, 2010, 527 (6): 1565-1570.
    [106] Wu X, Tao N, Hong Y, et al. Strain-induced grain refinement of cobalt during surface mechanical attrition treatment[J]. Acta Materialia, 2005, 53 (3): 681-691.
    [107] Zhang X Y, Zhu Y T, Liu Q, et al. Deformation twinning in polycrystalline Co during room temperature dynamic plastic deformation[J]. Scripta Materialia, 2010, 63 (4): 387-390.
    [108] Chichili D R, Ramesh K T, Hemker K J. The high-strain-rate response of alpha-titanium: Experiments, deformation mechanisms and modeling[J]. Acta Materialia, 1998, 46 (3): 1025-1043.
    [109] Nemat-Nasser S, Guo W G, Cheng J Y. Mechanical properties and deformation mechanisms of a commercially pure titanium[J]. Acta Materialia, 1999, 47 (13): 3705-3720.
    [110] Kim I, Kim J, Shin D H, et al. Deformation twins in pure titanium processed by equal channel angular pressing[J]. Scripta Materialia, 2003, 48 (6): 813-817.
    [111] Wang Y B, Louie M, Cao Y, et al. High-pressure torsion induced microstructural evolution in a hexagonal close-packed Zr alloy[J]. Scripta Materialia, 2010, 62 (4): 214-217.
    [112] Zheng G P, Wang Y M, Li M. Atomistic simulation studies on deformation mechanism of nanocrystalline cobalt[J]. Acta Materialia, 2005, 53 (14): 3893-3901.
    [113] Zheng G P. Grain-size effect on plastic flow in nanocrystalline cobalt by atomistic simulation[J]. Acta Materialia, 2007, 55 (1): 149-159.
    [114] Zhang L, Han Y. Twins formation and their role in nanostructuring of zirconium[J]. Materials Science and Engineering A, 2009, 523 (1-2): 130-133.
    [115] Hsiung L M, Lassila D H. Shock-induced deformation twinning and omega transformation in tantalum and tantalum-tungsten alloys[J]. Acta Materialia, 2000, 48 (20): 4851-4865.
    [116] Wang Y M, Hodge A M, Biener J, et al. Deformation twinning during nanoindentation of nanocrystalline Ta[J]. Applied Physics Letters, 2005, 86 (10): 101915.
    [117] Frederiksen S L, Jacobsen K W, Schi?tz J. Simulations of intergranular fracture in nanocrystalline molybdenum[J]. Acta Materialia, 2004, 52 (17): 5019-1029.
    [118] Kalidindi S R, Salem A A, Doherty R D. Role of deformation twinning on strain hardening in cubic and hexagonal polycrystalline metals[J]. Advanced Engineering Materials, 2003, 5 (4): 229-232.
    [119] Barnett M R. Twinning and the ductility of magnesium alloys: Part I.“Tension”twins[J]. Materials Science and Engineering A, 2007, 464 (1-2): 1-7.
    [120] Barnett M R. Twinning and the ductility of magnesium alloys: Part II.“Contraction”twins[J]. Materials Science and Engineering A, 2007, 464 (1-2): 8-6.
    [121] Ando D, Koike J, Sutou Y. Relationship between deformation twinning and surface step formation in AZ31 magnesium alloys[J]. Acta Materialia, 2010, 58 (13): 4316-4324.
    [122] Zhang X, Wang H, Koch C C. Mechanical behavior of bulk ultrafine-grained and nanocrystalline Zn[J]. Reviews on Advanced Materials Science, 2004, 6 (2): 53-93.
    [123] Karimpoor A A, Erb U, Aust K T. High strength nanocrystalline cobalt with high tensile ductility[J]. Scripta Materialia, 2003, 49 (7): 651-656.
    [124] Li B, Yan P F, Sui M L, et al. Transmission electron microscopy study of stacking faults and their interaction with pyramidal dislocations in deformed Mg[J]. Acta Materialia, 2010, 58 (1): 173-179.
    [125] Meyers M A, V?hringer O, Lubarda V A. The onset of twinning in metals: A constitutive description[J]. Acta Materialia, 2001, 49 (19): 4025-4039.
    [126] Venables J A. The nucleation and propagation of deformation twins[J]. Journal of Physics and Chemistry of Solids, 1964, 25 (7): 693-700.
    [127] Smallman R E, Green D. The dependence of rolling texture on stacking fault energy[J]. Acta Metallurgica, 1964, 12 (2): 145-154.
    [128] Randle V. Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials[J]. Acta Materialia, 1999, 47 (15-16): 4187-4196.
    [129] El-Danaf E, Kalidindi S R, Doherty R D. Influence of grain size and stacking-fault energy on deformation twinning in fcc metals[J]. Metallurgical and Materials Transactions A, 1999, 30 (5): 1223-1233.
    [130] Rohatgi A, Vecchio K S. The variation of dislocation density as a function of the stacking fault energy in shock-deformed FCC materials[J]. Materials Science and Engineering A, 2002, 328 (1-2): 256-266.
    [131] Zhao Y H, Zhu Y T, Liao X Z, et al. Influence of stacking fault energy on the minimum grain size achieved in severe plastic deformation[J]. Materials Science and Engineering A, 2007, 463 (1-2): 22-26.
    [132] Guo Z, Miodownik A P, Saunders N, et al. Influence of stacking-fault energy on high temperature creep of alpha titanium alloys[J]. Scripta Materialia, 2006, 54 (12): 2175-2178.
    [133] Lee T H, Shin E, Oh C S, et al. Correlation between stacking fault energy and deformation microstructure in high-interstitial-alloyed austenitic steels[J]. Acta Materialia, 2010, 58 (8): 3173-3186.
    [134] Frenkel J. Zur Theorie der Elastizit?tsgrenze und der Festigkeit kristallinischer K?rper[J]. Zeitschrift für Physik A Hardrons and Nuclei, 1926, 37 (7-8): 572-609.
    [135] Vitek V. Intrinsic stacking faults in body-centred cubic crystals[J]. Philosophical Magazine, 1968, 18 (154): 773-786.
    [136] Vitek V. Multilayer stacking faults and twins on {211} planes in B.C.C. metals[J]. Scripta Metallurgica, 1970, 4 (9): 725-732.
    [137] Van Swygenhoven H, Derlet P M, Fr?seth A G. Stacking fault energies and slip in nanocrystalline metals[J]. Nature Materials, 2004, 3: 399-403.
    [138] Ruff A W Jr. Measurement of stacking fault energy from dislocation interactions[J]. Metallurgical and Materials Transactions B, 1970, 1 (9) : 2391-2413.
    [139] Smallman R E, Dobson P S. Stacking fault energy measurement from diffusion[J]. Metallurgical and Materials Transactions B, 1970, 1 (9): 2383-2389.
    [140] Dillamore I L. The stacking fault energy dependence of the mechanisms of deformation in fcc metals[J]. Metallurgical and Materials Transactions B, 1970, 1 (9): 2463-2470.
    [141] Heino P, Perondi L, Kaski K, et al. Stacking-fault energy of copper from molecular-dynamics simulations[J]. Physical Review B, 1999, 60 (21): 14625-14631.
    [142] Wei X W, Zhang J M, Xu K W. Generalized stacking fault energy in FCC metals with MEAM[J]. Applied Surface Science, 2007, 254 (5): 1489-1492.
    [143] Mishin Y, Lozovoi A Y. Angular-dependent interatomic potential for tantalum[J]. Acta Materialia, 2006, 54 (19): 5013-5026.
    [144] Watanabe R. Generalized stacking fault energy in body centered cubic iron[J]. Strength, Fracture and Complexity, 2007, 5 (1): 13-25.
    [145] Qi Y, Mishra R K. Ab initio study of the effect of solute atoms on the stacking fault energy in aluminum[J]. Physical Review B, 2007, 75 (22): 224105.
    [146] Chetty N, Weinert M. Stacking faults in magnesium[J]. Physical Review B, 1997, 56 (17): 10844-10851.
    [147] Jelinek B, Houze J, Kim S, et al. Modified embedded-atom method interatomic potentials for the Mg-Al alloy system[J]. Physical Review B, 2007, 75 (5): 054106.
    [148] Wang Y, Chen L Q, Liu Z K, et al. First-principles calculations of twin-boundary and stacking-fault energies in magnesium[J]. Scripta Materialia, 2010, 62 (9): 646-649.
    [149] Vitos L, Nilsson J O, Johansson B, et al. Alloying effects on the stacking fault energy in austenitic stainless steels from first-principles theory[J]. Acta Materialia, 2006, 54 (14): 3821-3826.
    [150] Uesugi T, Kohyama M, Kohzu M, et al. Generalized stacking fault energy and dislocation properties for various slip systems in magnesium: A first-principles study[J]. In:Kojima Y, Aizawa T, Higashi K, et al. eds. Materials Science Forum: Vols. 419-422[C]. Switzerland: Trans Tech Publications, 2003: 225-230.
    [151] Yasi J A, Nogaret T, Trinkle D R, et al. Basal and prism dislocation cores in magnesium: Comparison of first-principles and embedded-atom-potential methods predictions[J]. Modelling and Simulation in Materials Science and Engineering, 2009, 17 (5): 055012.
    [152] Smith A E. Surface, interface and stacking fault energies of magnesium from first principles calculations[J]. Surface Science, 2007, 601 (24): 5762-5765.
    [153] Datta A, Waghmare U V, Ramamurty U. Structure and stacking faults in layered Mg-Zn-Y alloys: A first-principles study[J]. Acta Materialia, 2008, 56 (11): 2531-2539.
    [154] Wu X Z, Wang R, Wang S F. Generalized-stacking-fault energy and surface properties for HCP metals: A first-principles study[J]. Applied Surface Science, 2010, 256 (11): 3409-3412.
    [155] Wu X Z, Wang R, Wang S F, et al. Generalized-stacking-fault energy surfaces for B2-MgRE (RE=Y, Dy, Pr, Tb) intermetallic compounds: Ab initio calculations[J]. Physica B, 2011, 406 (4): 967-971.
    [156] Cai J, Wang F, Lu C, et al. Structure and stacking-fault energy in metals Al, Pd, Pt, Ir, and Rh[J]. Physical Review B, 2004, 69 (22): 224104.
    [157] Lu G, Kioussis N, Bulatov V V, et al. Generalized-stacking-fault energy surface and dislocation properties of aluminum[J]. Physical Review B, 2000, 62 (5): 3099-3108.
    [158] Lu G, Orlikowski D, Park I, et al. Energetics of hydrogen impurities in aluminum and their effect on mechanical properties[J]. Physical Review B, 2002, 65 (6): 064102.
    [159] Brandl C, Derlet P M, Van Swygenhoven H. Generalized-stacking-fault energies in highly strained metallic environments: Ab initio calculations[J]. Physical Review B, 2007, 76 (5): 054124.
    [160] Ogata S, Li J, Yip S. Ideal pure shear strength of aluminum and copper[J]. Science, 2002, 298 (5594): 807-811.
    [161] Ogata S, Li J, Yip S. Energy landscape of deformation twinning in bcc and fcc metals[J]. Physical Review B, 2005, 71 (22): 224102.
    [162] Jahnátek M, Hafner J, Kraj?íM. Shear deformation, ideal strength, and stacking fault formation of fcc metals: A density-functional study of Al and Cu[J]. Physical Review B, 2009, 79 (22): 224103.
    [163] Jin Z H, Dunham S T, Gleiter H, et al. A universal scaling of planar fault energy barriers in face-centered cubic metals[J]. Scripta Materialia, 2011, 64 (7): 605-608.
    [164] Siegel D J. Generalized stacking fault energies, ductilities, and twinnabilities of Ni and selected Ni alloys[J]. Applied Physics Letters, 2005, 87 (12): 121901.
    [165] Kibey S, Liu J B, Johnson D D, et al. Generalized planar fault energies and twinning in Cu-Al alloys[J]. Applied Physics Letters, 2006, 89 (19): 191911.
    [166] Kibey S, Liu J B, Johnson D D, et al. Energy pathways and directionality in deformation twinning[J]. Applied Physics Letters, 2007, 91 (18): 181916.
    [167] Kibey S, Liu J B, Johnson D D, et al. Predicting twinning stress in fcc metals: Linking twin-energy pathways to twin nucleation[J]. Acta Materialia, 2007, 55 (20): 6843-6851.
    [168] Kibey S, Wang L L, Liu J B, et al. Quantitative prediction of twinning stress in fcc alloys: Application to Cu-Al[J]. Physical Review B, 2009, 79 (21): 214202.
    [169] Kibey S, Liu J B, Curtis M J, et al. Effect of nitrogen on generalized stacking fault energy and stacking fault widths in high nitrogen steels[J]. Acta Materialia, 2006, 54 (11): 2991-3001.
    [170] Yan J A, Wang C Y, Wang S Y, et al. Generalized-stacking-fault energy and dislocation properties in bcc Fe: A first-principles study[J]. Physical Review B, 2004, 70 (17): 174105.
    [171] Han J, Su X M., Jin Z H, et al. Basal-plane stacking-fault energies of Mg: A first-principles study of Li- and Al-alloying effects[J]. Scripta Materialia, 2011, 64 (8): 693-696.
    [172] Peierls R. The size of a dislocation[J]. Proceedings of the Physical Society, 1940, 52: 34-37.
    [173] Nabarro F R N. Dislocations in a simple cubic lattice[J]. Proceedings of the Physical Society, 1947, 59 (2): 256-272.
    [174] Joós B, Ren Q, Duesbery M S. Peierls-Nabarro model of dislocations in silicon with generalized stacking-fault restoring forces[J]. Physical Review B, 1994, 50 (9): 5890-5898.
    [175] Bulatov V V, Kaxiras E. Semidiscrete variational Peierls framework for dislocation core properties[J]. Physical Review Letters, 1997, 78 (22): 4221-4224.
    [176] Rice J R. Dislocation nucleation from a crack tip: An analysis based on the Peierls concept[J]. Journal of the Mechanics and Physics of Solids, 1992, 40 (2): 239-271.
    [177] Tadmor E B, Hai S. A Peierls criterion for the onset of deformation twinning at a crack tip[J]. Journal of the Mechanics and Physics of Solids, 2003, 51 (5): 765-793.
    [178] Tadmor E B, Bernstein N. A first-principles measure for the twinnability of FCC metals[J]. Journal of the Mechanics and Physics of Solids, 2004, 52 (11): 2507-2519.
    [179] Asaro R J, Suresh S. Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins[J]. Acta Materialia, 2005, 53 (12): 3369-3382.
    [180] Warner D H, Curtin W A, Qu S. Rate dependence of crack-tip processes predicts twinning trends in f.c.c. metals[J]. Nature Materials, 2007, 6: 876-881.
    [181] Wang Y Z, Li J. Phase field modeling of defects and deformation[J]. Acta Materialia, 2010, 58 (4): 1212-1235.
    [182] Duesbery M S, Vitek V. Plastic anisotropy in b.c.c. transition metals[J]. Acta Materialia, 1998, 46 (5): 1481-1492.
    [183] Hohenberg P, Kohn W. Inhomogeneous electron gas, Physical Review, 1964, 136 (3B): B864-B871.
    [184] Levy M. Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem[J]. Proceedings of the National Academy of Sciences, 1979, 76 (12): 6062-6065.
    [185] VASP group website[EB/OL]: http://cms.mpi.univie.ac.at/vasp/
    [186] Hafner J. Materials simulations using VASP– A quantum perspective to materials science[J]. Computer Physics Communications, 2007, 177 (1-2): 6-13.
    [187] Henkelman G, Jónsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points[J]. Journal of Chemical Physics, 2000, 113 (22): 9978-9985.
    [188] Henkelman G, Uberuaga B P, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. Journal of Chemical Physics, 2000, 113 (22): 9901-9904.
    [189] Sheppard D, Terrell R, Henkelman G. Optimization methods for finding minimum energy paths[J]. Journal of Chemical Physics, 2008, 128 (13): 134106.
    [190] Hirth J P, Lothe J. Theory of dislocations[M]. 2nd ed. New York: John Wiley & Sons, 1982.
    [191] Wu X L, Liao X Z, Srinivasan S G, et al. New deformation twinning mechanism generates zero macroscopic strain in nanocrystalline metals[J]. Physical Review Letters, 2008, 100 (9): 095701.
    [192] Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals[J]. Physical Review B, 1993, 47 (1): 558-561.
    [193] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54 (16): 11169-11186.
    [194] Bl?chl P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50 (24): 17953-17979.
    [195] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59 (3): 1758-1775.
    [196] Methfessel M, Paxton A T. High-precision sampling for Brillouin-zone integration in metals[J]. Physical Review B, 1989, 40 (6): 3616-3621.
    [197] Kittel C. Introduction to Solid State Physics[M]. 8th ed. New York: John Wiley & Sons, 2005: 20.
    [198] Kim Y M, Kim N J, Lee B J. Atomistic Modeling of pure Mg and Mg-Al systems, Computer Coupling of Phase Diagrams and Thermochemistry, 2009, 33 (4): 650-657.
    [199] Kainer K U. Magnesium– Alloys and technologies[M]. Weinheim: Wiley-VCH, 2003: 1-22.
    [200] Kulekci M K. Magnesium and its alloys applications in automotive industry[J]. the International Journal of Advanced Manufacture Technology, 2008, 39 (9-10): 851-865.
    [201] Ono N, Nowak R, Miura S. Effect of deformation temperature on Hall-Petch relationship registered for polycrystalline magnesium[J]. Materials Letters, 2004, 58 (1-2): 39-43.
    [202] Shin D, Wolverton C. First-principles density functional calculations for Mg alloys: A tool to aid in alloy development[J]. Scripta Materialia, 2010, 63 (7): 680-685.
    [203] Agnew S R, Yoo M H, ToméC N. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y[J]. Acta Materialia, 2001, 49 (20): 4277-4289.
    [204] Al-Samman T. Comparative study of the deformation behavior of hexagonal magnesium- lithium alloys and a conventional magnesium AZ31 alloy[J]. Acta Materialia, 2009, 57 (7): 2229-2242.
    [205] Liu X Y, Adams J B, Ercolessi F, et al. EAM potential for magnesium from quantum mechanical forces[J]. Modelling and Simulation in Materials Science and Engineering, 1996, 4 (3): 293-303.
    [206] Sun D Y, Mendelev M I, Becker C A, et al. Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of Mg[J]. Physical Review B, 2006, 73 (2): 024116.
    [207] Suzuki H. Segregation of solute atoms to stacking faults[J]. Journal of the Physical Society of Japan, 1962, 17: 322-325.
    [208] Bader R F W, Preston H J T. The kinetic energy of molecular charge distributions and molecular stability[J]. International Journal of Quantum Chemistry, 1969, 3 (3): 327-347.
    [209] Bader R F W, Beddall P M, Peslak J. Theoretical development of a virial relationship for spatially defined fragments of molecular systems[J]. Journal of Chemical Physics, 1973, 58 (2): 557-566.
    [210] Runtz G R, Bader R F W, Messer R R. Definition of bond paths and bond directions in terms of the molecular charge distribution[J]. Canadian Journal of Chemistry, 1977, 55 (16): 3040-3045.
    [211] Bader R F W, Nguyen-Dang T T, Tai Y. A topological theory of molecular structure[J]. Reports on Progress in Physics, 1981, 44 (8): 893-948.
    [212] Bader R F W, MacDougall P J. Toward a theory of chemical reactivity based on the charge density[J]. Journal of the American Chemical Society, 1985, 107 (24): 6788-6795.
    [213] Eberhart M E. The metallic bond: Elastic properties, Acta Materialia, 1996, 44 (6): 2495-2504.
    [214] Kioussis N, Herbranson M, Collins E, et al. Topology of electronic charge density and energetics of planar faults in fcc metals[J]. Physical Review Letters, 2002, 88 (12): 125501.
    [215] Jones T E, Eberhart M E, Clougherty D P. Topology of the spin-polarized charge density in bcc and fcc iron[J]. Physical Review Letters, 2008, 100 (1): 017208.
    [216] Eberhart M E, Jones T E, Sauer M A. Visualizing the metallic bond[J]. Journal of the Minerals, Metals and Materials Society, 2008, 60 (3): 67-72.
    [217] Jones T E, Eberhart M E, Clougherty D P. Topological catastrophe and isostructural phase transition in calcium[J]. Physical Review Letters, 2010, 105 (26): 265702.
    [218] Dasgupta T, Waghmare U V, Umarji A M. Electronic signatures of ductility and brittleness[J]. Physical Review B, 2007, 76 (17): 174110.
    [219] Eberhart M E, Clougherty D P, Maclaren J M. Bonding-property relationships in intermetallic alloys[J]. Journal of Materials Research, 1993, 8 (3): 438-448.
    [220] Myers H P. Introductory Solid State Physics[M]. 2rd ed. Taylor & Francis, 1997: 271-283.
    [221] Zhao Y H, Liao X Z, Zhu Y T, et al. Influence of stacking fault energy on nanostructure formation under high pressure torsion[J]. Materials Science and Engineering A, 2005, 410-411: 188-193.
    [222] Zhao Y H, Zhu Y T, Liao X Z, et al. Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy[J]. Applied Physics Letters, 2006, 89 (12): 121906.
    [223] Zhao Y H, Liao X Z, Horita Z, et al. Determining the optimal stacking fault energy for achieving high ductility in ultrafine-grained Cu-Zn alloys[J]. Materials Science and Engineering A, 2008, 493 (1-2): 123-129.
    [224] Wang Z W, Wang Y B, Liao X Z, et al. Influence of stacking fault energy on deformation mechanism and dislocation storage capacity in ultrafine-grained materials, Scripta Materialia, 2009, 60 (1): 52-55.
    [225] Rohatgi A, Vecchio K S, Gray III G T. The influence of stacking fault energy on the mechanical behavior of Cu and Cu-Al alloys: Deformation twinning, work hardening, and dynamic recovery[J]. Metallurgical and Materials Transactions A, 2001, 32 (1): 135-145.
    [226] Sun P L, Zhao Y H, Cooley J C, et al. Effect of stacking fault energy on strength and ductility of nanostructured alloys: An evaluation with minimum solution hardening[J]. Materials Science and Engineering A, 2009, 525 (1-2): 83-86.
    [227] Liu M P, Roven H J, Murashkin M, et al. Structural characterization by high-resolution electron microscopy of an Al-Mg alloy processed by high-pressure torsion[J]. Materials Science and Engineering A, 2009, 503 (1-2): 122-125.
    [228] Christian J W, Mahajan S. Deformation twinning[J]. Progress in Materials Science, 1995, 39 (1-2): 1-157.
    [229] VASP TST Tool website[EB/OL]: http://theory.cm.utexas.edu/vtsttools/neb/.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700