含铌元素的固体酸催化剂在F-C反应中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Friedel-Crafts反应是一类重要的酸催化反应,传统催化工艺通常是以液体酸为催化剂的均相反应体系。虽然传统液体酸的催化效果很好,但是却不符合绿色化学的要求。因此,人们致力于研究无污染、可反复使用的催化剂来代替它。固体酸是一类环境友好型催化剂,研究其在Friedel-Crafts反应中的应用具有重要的理论意义和应用前景。
     近年来,含铌催化材料逐渐受到研究者们的重视。含铌固体酸具有高活性、高选择性和高稳定性,并能有效提高催化剂的疏水作用从而可以应用于含水的反应体系,是固体酸材料开发的一个新的研究方向。尽管人们对含铌催化剂表现了极大的兴趣,并作了大量的研究,但到目前为止,人们对铌的理解和认识还不多。
     本论文主要研究含铌负载型分子筛及含铌杂多酸催化剂分别在对甲氧基苯酚与甲基叔丁基醚间的反应、对苯二酚与叔丁醇间的反应中的应用,对催化剂的性质作了系统的表征,并探讨了酸催化作用下的反应规律。
     主要的研究内容和结果如下:
     1.制备得到两个系列含铌元素的固体酸催化剂。一个系列是用浸渍法将不同含量的Nb205负载到H-DAY分子筛上;另一个系列是通过焙烧和酸处理方法合成了H1-xNb1-xM1+xO6 (M=Mo、W)固体酸催化剂。利用BET, XRD, Raman, NH3-TPD, SEM, TG等分析手段,对催化剂进行了表征。结果表明:
     ①利用浸渍法将Nb205负载到H-DAY分子筛上,经高温焙烧后Nb205以正交型存在。负载型Nb205/DAY的比表面积、孔容和总酸量均随着负载量的增加而下降。
     ②催化剂HNbWO6表现出明显的层状结构,而H1-xNb1-xMo1+xO6呈不规则的层状结构。层状结构有利于反应物和催化剂之间的插层效应。焙烧和酸处理过程对催化剂结构和性质具有重要影响,H1-xNb1-xMo1+xO6系列催化剂的总酸量随着元素Nb的含量增加而增加,但是当元素Nb的量增加到一定程度时酸量反而下降。
     2.H-DAY分子筛在对甲氧基苯酚(MOP)和甲基叔丁基醚(MTBE)反应中具有明显的催化作用,文中详细讨论了反应条件对转化率、得率或选择性的影响,并研究了铌负载型分子筛催化本反应的情况。对这一反应主要的研究结果如下:
     ①分子筛的孔大小和酸量是影响反应的关键因素。若分子筛的孔径大于反应物分子和产物分子直径,催化剂的酸量越大,反应活性越高;而当分子筛的孔径小于反应物分子和产物分子直径时,催化剂的活性取决于外表面的酸中心。
     ②H-DAY催化作用下,过量的催化剂会增大再烷基化的程度,不利于3-叔丁基羟基茴香醚(3-TBHA)的生成;3-TBHA的选择性与原料MTBE/MOP摩尔比成反比。通常较低的反应温度和较短的反应时间对于生成3-TBHA的选择性较高,但是此时反应的转化率不高,因此为了得到较高得率的3-TBHA,可以适当提高温度并缩短反应时间。
     ③Nb205的负载量对主产物3-TBHA的选择性有很大影响,当负载量为59%时,主产物3-TBHA的选择性和得率最高。
     3.分别以对甲氧基苯酚及对苯二酚(HQ)的烷基化为模型反应,系统地研究了H1-xNb1-xM1+xO6 (M=Mo、W)催化剂催化上述两种反应的变化规律。主要的结果为:
     ①在H1-xNb1-xM1-xO6 (M=Mo、W)催化作用下,对苯二酚的叔丁化反应比对甲氧基苯酚的更容易进行,叔丁醇(TBA)作为烷基化试剂的反应效果比MTBE更好。对苯二酚和叔丁醇反应主要生成2-叔丁基-1,4-对苯二酚和2,5-二叔丁基-1,4-对苯二酚,以及4-叔丁氧基苯酚。
     ②H1-xNb1-xMo1+xO6 (x=-0.1~0.3)系列催化剂催化上述两个反应的活性规律相同,其中当x=-0.05时,即H1.05Nb1.05Mo0.95O6,其催化活性最高。
     ③在HNbWO6催化作用下,对苯二酚和叔丁醇反应主要生成醚类产物4-叔丁氧基苯酚,在某些条件下会生成较少量的2-叔丁基-1,4-对苯二酚和2,5-二叔丁基-1,4-对苯二酚。
     ④进一步考察了在HNbWO6催化作用下,反应温度、反应物摩尔比和酸处理对对苯二酚叔丁基化反应的影响规律,发现低温有利于O-烷基化产物生成,高温有利于C-烷基化产物生成;HQ/TBA摩尔比为5时,HQ的转化率最高;酸处理中的酸种类对催化剂影响不大。
Friedel-Crafts reactions are a kind of important acid catalyzed reactions, which usually take place in the presence of homogeneous catalysts. Although these catalysts are effective in catalysis, they do not accord with the principles of green chemistry. Therefore, it is significant to endeavor to investigate new solid acid catalysts which are environment-friendly in Friedel-Crafts reactions.
     Recently, niobium-containing materials have attracted more and more attention. They are becoming a new research field of solid acid materials due to their strong hydrophobic characteristic which is in favor of those aqueous systems and high acidity, high selectivity, acceptable stability. During the past decades, an increasing interest and large amounts of researches have been brought in niobium-containing materials, but so far, the understanding of the nature of niobium-containing materials is limited.
     In the present paper, the reaction of p-methoxyphenol with methyl t-butyl ether, hydroquinone with tert-butanol over supported niobium zeolites and niobium-containing metal oxides were investigated, and the catalysts were characterized by various spectral and physicochemical techniques. The effects of reaction conditions and reaction mechanisms catalyzed by solid acid were further discussed.
     The main contents and results were as follows:
     1. Nb2O5 supported on H-DAY zeolites and H1-xNb1-xMo1+xO6 (M=Mo, W) catalysts were prepared separately by impregnation and calcination method with subsequent acid treatments respectively. Their physicochemical properties such as dispersion, specific surface area, and so on were characterized by X-ray diffraction (XRD), N2 adsorption BET, Scanning electron microscopy (SEM) and Raman spectrum. The results showed that:
     ①Nb2O5 was successfully supported on H-DAY zeolites by impregnation method, which exhibited orthorhombic crystals. The surface area, pore volume and acid amount of the synthesized Nb2O5/DAY decreased with the niobium content.
     ②HNbWO6 showed obvious layered structures, but there were irregular layered structures observed in H1-xNb1-xMo1+xO6 samples. Layered structure was beneficial to the intercalation effect in the substrates.
     Calcination and acid treatment influenced the structures and characters of the catalysts. The acid amount increased with increasing Nb concentration in H1-xNb1-xMo1+xO6 samples.
     2. H-DAY zeolite was effective catalysts for the reaction of p-methoxyphenol with methyl t-butyl ether, this paper focused on discussing of the effect of reaction conditions on the Conversion, Yield or Selectivity. In addition, the alkylation of p-methoxyphenol under supported niobium zeolites was studied. The main results were as follows:
     ①Both the pore size and acid amount were critical to the reaction activity. The more the acid amount, the higher the reactant activity as the pore size of zeolite is bigger than the diameter of products. When the pore size is smaller than the diameter of products, the surface acid site is crucial.
     ②The reaction conditions of p-methoxyphenol over H-DAY zeolite are optimized. It showed that too large amounts of catalysts were not favorable to the forming of 3-TBHA; the selectivity of 3-TBHA decreased with the increasing of the molar ratio of MTBE/MOP; higher selectivity to 3-TBHA was usually obtained at lower temperature and shorter time, whereas a lower conversation was following. Therefore it was better to increase reaction temperature and shorten reaction time in order to obtain a higher yield of 3-TBHA.
     ③The catalytic activity was significantly influenced by the loading of niobium oxide.59% was considered as the appropriate loading when the main product (3-TBHA) had the best selectivity and yield.
     3. Reaction of p-methoxyphenol and hydroquinone was studied systematically over H1-xNb1-xMo1+xO6 (M=Mo, W). The main results were as follows:
     ①Metal oxide H1-xNb1-xMo1+xO6 samples were recognized as the suitable catalysts for butylation of hydroquinone, and TBA served as a more excellent alkylating agent than MTBE in this condition.
     ②The regulation in butylation of p-methoxyphenol catalyzed by H1-xNb1-xMo1+xO6 (x=-0.1-0.3) was corresponded with that in butylation of hydroquinone. H1.05Nb1.05Mo0.95O6.was found to function as the most active solid acid catalyst among H1-xNb1-xMo1+xO6 compounds.2-tert-butyl-1,4-hydroquinone and 2,5-di-tert-butyl-1,4-hydroquinone with little 4-tert-butoxy-phenol were synthesized via hydroquinone and tert-butyl alcohol.
     ③O-alkylation product 4-tert-butyloxy-phenol was synthesized as the main product via hydroquinone with tert-butyl alcohol over layered HNbWO6. A little 2-tert-butyl-1,4-hydroquinone and 2,5-di-tert-butyl-l,4-hydroquinone were found in some conditions.
     ④lkylation of hydroquinone with TBA was carried out by varying different parameters such as temperature, molar ratio of TBA to HQ, and acid treatment under layered and protonated HNbWO6. It showed that a relatively low reaction temperature was helpful to the formation of O-alkylation product, and a high temperature benifited the C-alkylation products. The maximum conversion of HQ was obtained when the molar ratio of TBA to HQ was 5. The kinds of acids in treatment played an inconsequential role in catalytic activity of catalysts.
引文
1. Clark, J. H., Solid Acids for Green Chemistry. Accounts of Chemical Research, 2002.35:p.791-797.
    2. Corma, A. and Garcia H., Lewis Acids:From Conventional Homogeneous to Green Homogeneous and Heterogeneous Catalysis. Chem. Rev.2003.103:p. 4307-4365.
    3. Tanabe, K. and Holderich W.F., Appl. Catal. A,1999.181:p.399.
    4. Clark, J. H., Solid Acids for Green Chemistry. Acc. Chem. Res.,2002.35:p. 791-797.
    5. Corma, A., Solid acid catalysts Current Opinion in Solid State & Materiels Science 1997.2:p.63-75.
    6. Harmer M. A., Handbook of Green Chemistry & Technology,2002:p.86.
    7. Coma, A., Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions Chem. Rev.,1995.95:p.559-614
    8. Breck D. W., Zeolite Molecular Sieves:Structure Chemistry and Use,1974.
    9. Higgins, J. B., in:P. J. Heaney, C. T.Prewitt, G. V. Gibbs (Eds.), Silica:Physical Behavior, Geochemistry and Materials Applications, Book Crafters Inc., Washington DC,1994.
    10. Harmer, M. and Sun Q., Solid acid catalysis using ion-exchange resins. Applied Catalysis A:General 2001.221:p.45-62.
    11. Kiss, A.A., Dimian A.C., and Rothenberg G, Solid Acid Catalysts for Biodiesel Production---Towards Sustainable Energy. Adv. Synth. Catal.,2006.348:p.75-81.
    12. Busca, G., Acid Catalysts in Industrial Hydrocarbon Chemistry. Chemical Review, 2007:p.5366-5410.
    13. J. Climent, Corma M., A., and S. Iborra, Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals Chemical Reviews,2010.
    14. Nowak, I. and Ziolek M., Niobium Compounds:Preparation, Characterization, and Application in Heterogeneous Catalysis. Chem. Rev.,1999.99:p.3603-3624.
    15. Tanabe K., Catalytic application of niobium compounds. Catalysis Today,2003.78: p.65-77.
    16. Ziolek M, Niobium-containing catalysts-the state of the art. Catalysis Today 2003.78:p.47-64.
    17. Balachandran U. and Eror N. G, Raman spectrum of the high temperature form of Nb2O5 Journal of Materials science letters 1982:p.374-376.
    18. Jehng, J. M. and Wachs I. E., Structural Chemistry and Raman Spectra of Niobium Oxides Chem. Mater.,1991.3:p.100-107
    19. Orel, B., In situ UV-Vis and ex situ IR spectroelectrochemical investigations of amorphous and crystalline electrochromic Nb2O5 films in charged/discharged states. J Solid State Electrochem 1998.2:p.221-236.
    20. Brayner, R. and Bozon-Verduraz F., Niobium pentoxide prepared by soft chemical routes:morphology,structure, defects and quantum size effect. Phys. Chem. Chem. Phys.,2003.5:p.1457-1466
    21. Futterer, K., Acta Cryst. B,1995.51:p.688-697.
    22. Shishido, T., Br(?)nsted Acid Generation over Alumina-Supported Niobia by Calcination at 1173 K. Catal. Lett.,2009.129:p.383-386.
    23. Aranda, D.A.G, The use of acids, niobium oxide, and zeolite catalysts for esterification reactions. J. Phys. Org. Chem.,2009(22):p.709-716
    24. Tagusagawa, C., Highly Active Mesoporous Nb-W Oxide Solid-Acid Catalyst. Angew. Chem. Int. Ed.,2010.49:p.1128-1132.
    25. Sasaki K. and Adzic R.R., Development of Platinum on Niobium Oxide Nanoparticle Electrocatalysts for Oxygen Reduction.21th Electrochemical Society Meeting,2007.
    26. Tanabe, K., Niobic acid as an unusual acidic solid material Materials Chemistry and Physics,1987.17(1-2):p.217-225.
    27. Maurer S.M. and E.I.Ko, Structural and acidic characterization of niobia aerogels Journal of Catalysis,1992.135(1):p.125-134
    28. M.Moraes, Appl. Catal. A 1996.138:p.7-12.
    29.Yamaguchi T. and Nishimichi C., Catal. Today,1993.16:p.555-562.
    30. Hanaoka T., Catal. Lett.,1990(5):p.13-16.
    31. Kiyotaka Nakajima, Structure and Acid Catalysis of Mesoporous Nb2O5nH2O. Chem. Mater.,2010.22:p.3332-3339.
    32. Tanabe, K., Niobic acid as an unusual acidic solid material Materials Chemistry and Physics,1987.17(1-2):p.217-225
    33. Ohuchi, T., Liquid phase photooxidation of alcohol over niobium oxide without solvents. Catalysis Today 2007.120:p.233-239.
    34. Rehim M.A.A., Appl. Catal. A,2006.305:p.211-218.
    35. Asakura K. and Iwasa Y., Chem. Lett.,1986:p.859-862.
    36. Tanaka T., Catal.Today 1993.16:p.297-307.
    37. Mendes F.M.T.,2003.78:p.449-458.
    38. V.S.Braga, Catal. Today,2008:p.106-112.
    39. Sumiya, S., Facile preparation of SBA-15-supported niobic acid (Nb2O5nH2O) catalyst and its catalytic activity. Applied Catalysis A:General 2009.365:p.261-267.
    40. Brandao, R.F., R.L. Quirino, and P.A.Z. Suarez, Synthesis, Characterization and use of Nb2O5 based Catalysts in Producing Biofuels by Transesterification, Esterification and Pyrolysis. J. Braz. Chem. Soc.,2009.20(5):p.954-966.
    41. Gervasini, A., Influence of the Chemical Nature of the Support (Niobic Acid and Niobium Phosphate) on the Surface and Catalytic Properties of Supported CuO. Chem. Mater.,2007.19:p.1319-1328.
    42. T, A., Acid Sites Characterization of Niobium Phosphate Catalysts and Their Activity in Fructose Dehydration to 5-Hydroxymethyl-2-Furaldehyde. J Mol Catal A: Chem,2000.151:p.233-243.
    43. Carniti, P., Intrinsic and Effective Acidity Study of Niobic Acid and Niobium Phosphate by a Multitechnique Approach. Chem. Mater.,2005.17:p.6128-6136.
    44. S., O., Bull. Chem. Soc. Jpn.,1987.60:p.37.
    45. S., O. and W. N., Catal. Today,1993.16:p.349.
    46. A., F., et al., Appl.Catal. A 1992.89:p.143.
    47. Carniti, P., Niobic acid and niobium phosphate as highly acidic viable catalysts in aqueous medium:Fructose dehydration reaction. Catalysis Today 2006.118:p. 373-378.
    48. Rocha, A.S., Comparative performance of niobium phosphates in liquid phase anisole benzylation with benzyl alcohol. Catalysis Communications,2008.9:p. 1959-1965.
    49. Kozhevnikov, I.V., Catalysis by Heteropoly Acids and Multicomponent Polyoxometalates in Liquid-Phase Reactions. Chem. Rev.,1998.98:p.171-198.
    50.汪颖军,李长海,孙博,杂多酸及其负载型催化剂的研究进展。工业催化,2007,15(10).
    51. Okumura, K., The active and reusable catalysts in the benzylation of anisole derived from a heteropoly acid. Journal of Catalysis.2005 (234) 300-307.
    52. Okumura, K., Studies on the identification of the heteropoly acid generated in theH3PO4-WO3-Nb2O5 catalyst and its thermal transformation process. Journal of Catalysis 2007, (245) 75-83.
    53. Okumura, K., Active Catalyst Derived from Nb-containing Heteropoly Acids: Their Acid Properties and Catalysis in Friedel-Crafts Reactions. Journal of the Japan Petroleum Institute,2009.52(5):p.219-230.
    54. Takagaki, A., et al., Exfoliated Nanosheets as a New Strong Solid Acid Catalyst. J. Am. Chem. Soc.,2003.125:p.5479-5485
    55.Takagaki, A., Tagusagawa, C., Domen, K., Glucose production from saccharides using layered transition metal oxide and exfoliated nanosheets as a water-tolerant solid acid catalystw. Chem. Commun.,2008:p.5363-5365.
    56. Tagusagawa, C., Mariko S., Domen, K., Evaluation of strong acid properties of layered HNbMoO6 and catalytic activity for Friedel-Crafts alkylation. Catalysis Today, 2009.142:p.267-271.
    57. Takagaki, A., Tagusagawa C., Domen K., Intercalation-induced Esterification over a Layered Transition Metal Oxide. Top Catal 2009.52:p.592-596.
    58. Tagusagawa, C, Takagaki, A, Hayashi, S, Domen, K., J. Am.Chem. Soc.,2008. p:130.
    59. Wierzchowski, P.T. and Zatorski, L.W., Catal. Lett.,1991.9:p.411.
    60. Rocha, J., Phillippou, A., Anderson, M.W., J. Chem. Soc. Chem. Commun.,1998: p.2687.
    61. Beck, J.S., Higgins, J.B., Schlenkert, J.L., A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. J. Am. Chem. Soc.,1992. 114:p.10834-10843.
    62. Kresge, C.T., Vartuli, J.C. and Beck, J.S., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature,1992.359:p.710-712.
    63. Ziolek, M., Nowak,I., Synthesis and characterization of niobium-containing MCM-41 Zeolites,1997.18:p.356-360
    64. Zhang, L. and Ying, J.Y. Synthesis and Characterization of Mesoporous Niobium-Doped Silica Molecular Sieves Ceramics Processing 1997.43(11):p. 2793-2801.
    65. Nowak, I., Epoxidation of cyclohexene on Nb-containing meso-and macroporous materials. Catalysis Today 2003.78:p.487-498.
    66. Gallo, J.M.R., H.O. Pastore, and U. Schuchardt, Study of the effect of the base, the silica and the niobium sources on the [Nb]-MCM-41 synthesized at room temperature. Journal of Non-Crystalline Solids 2008.354:p.1648-1653.
    67. Kokotailo, G. T., Lawton, S. L., Olson D. H., Nature,1978.272:p.438.
    68.沈晓洁,沸石分子筛的发展及在石油化工中的应用.辽宁化工,1997.26(3):p.139-143.
    69. Cejka, J. and Wichterlova, B., Catal Rev.,2002.44:p.375.
    70. A., V.S.R. and K.G. J., Reactivity Theory of Zeolite Broensted Acidc Sites. Chem. Rev.,1995.95:p.637-660.
    71. Corma, A., Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reaction. Chem. Rev.,1995.95:p.559-614.
    72. K., T., M. M., and O. Y., New Solid Acids and Bases. Stud. Surf. Sci. Catal.,1989. 51:p.1.
    73. Wierzchowski, P.T. and L.W. Zatorski, Aldol Condensatiob In Gaseous Phase by zeolite catalysts Catalysis Letters,1991.9:p.411-414
    74. Chang, Y. F., Heinemann, H., An 18O2 Temperature-Programmed Isotope Exchange Study of Transition-Metal-Containing ZSM-5 Zeolites Used for Oxydehydrogenation of Ethane. Journal of catalysis,1995.154:p.24.
    75. Kucherov, A. V., Hubbard, C. P., Kucherova, T. N., Shelef, M., In Progress in zeolite and microporous materials. Stud. Surf. Sci. Catal.,1997(105):p.1469.
    76. Romotowski, T., Komorek, J., Terskikh,V. V., J. Chem. Soc. Chem. Commun., 1998(72):p.2564.
    77. Barros, I.C.L., Effects of niobium addition on ZSM-5 studied by thermal and spectroscopy methods. Microporous and Mesoporous Materials 2008.109:p.485-493.
    78. Ali, M. A., Brisdon, B. and Thomas, W. J., Appl. Catal. A,2003.252:p.149.
    79. Rueping, M. and B.J. Nachtsheim, A review of new developments in the Friedel-Crafts alkylation-From green chemistry to asymmetric catalysis. Beilstein Journal of Organic Chemistry 2010.6:p. doi:10.3762/bjoc.6.6.
    80. Gore, P.H., The Friedel-Crafts Acylation Reaction and its Application to Polycyclic Aromatic Hydrocarbons. Chem. Rev.,1955.55(2):p.229-281.
    81. Sartori, G. and R. Maggi, Use of Solid Catalysts in Friedel-Crafts Acylation Reactions Chem. Rev.2006,106,,2006.106:p.1077-1104.
    82. Sun, Q., M.A. Harmer, and W.E. Farneth, An Extremely Active Solid Acid Catalyst, Nafion Resin/Silica Composite, for the Friedel-Crafts Benzylation of Benzene and p-Xylene with Benzyl Alcohol. Ind. Eng. Chem. Res.,1997.36:p. 5541-5544.
    83. Yadav, G.D. and J.J. Nair, Sulfated zirconia and its modified versions as promising catalysts for industrial processes. Microporous and Mesoporous Materials 1999.33:p. 1-48.
    84. Arai, S., Y. Sudo, and A. Nishida, Niobium pentachloride-silver perchlorate as an efficient catalyst in the Friedel-Crafts acylation and Sakurai-Hosomi reaction of acetals. Tetrahedron 2005.61:p.4639-4642.
    85. Okumura, K., Active Catalyst Deriverd from Nb-containing Heteropoly Acids: Their Acid Properities and Catalysis in Friedel-Crafts Reactions. Journal of the Japan Petroleum Institute,2009.52(5):p.219-230.
    86. Smith, K., Pollaud, G. M. and Matthews, I., Green Chem.,1999.1(2):p.75.
    87. Pereira, C. C. M. and Lachter, E.R., Alkylation of toluene and anisole with 1-octen-3-ol over niobium catalysts. Applied Catalysis A:General 2004.266:p.67-72.
    88. Cruz, M. H. C. and Lachter, E.R.,Catalytic activity of niobium phosphate in the Friedel-Crafts reaction of anisole with alcohols. Catalysis Today 2006.118:p. 379-384.
    1. Tanabe, K., Catalytic application of niobium compounds. Catalysis Today,2003. 78:p.65-77.
    2. Ziolek, M., Niobium-containing catalysts-the state of the art. Catalysis Today 2003.78:p.47-64.
    3. Tanabe, K., Niobic acid as an unusual acidic solid material Materials Chemistry and Physics,1987.17(1-2):p.217-225.
    4. Tanabe, K. and S. Okazaki, Various reactions catalyzed by niobium compounds and materials Applied Catalysis A:General,1995.133:p.191-218
    5. Nowak, I. and M. Ziolek, Niobium Compounds:Preparation, Characterization, and Application in Heterogeneous Catalysis. Chem. Rev..1999.99:p. 3603-3624.
    6. 徐晓姝,苏婷婷,姜恒,草酸铌热分解过程研究分析仪器。2009.5:p.75-77.
    7. Treacy, M. M. J. and Higgins, J.B., Collection of Simulated XRD Powder Patterns for Zeolites.2001:p.155.
    8. Braga, V. S. and Dias, J.A., Catalyst Materials Based on Nb2O5 Supported on SiO2-Al2O3Preparation and Structural Characterization. Chem. Mater.,2005. 17:p.690-695.
    9. Jehng, J. M. and Wachs, I.E., Structural Chemistry and Raman Spectra of Niobium Oxides. Chem. Mater.,1991.3:p.100-107
    10. Brayner, R. and Bozon-Verduraz, F.o., Niobium pentoxide prepared by soft chemical routes:morphology,structure, defects and quantum size effect. Phys. Chem. Chem. Phys.,2003.5:p.1457-1466
    11. Li, H., Devaux, A, Calzaferri, G., Carboxyester functionalised dye-zeolite L host-guest materials. Microporous and Mesoporous Materials,2006.95:p. 112-117.
    12. Pittman, R.M. and Bell, A.T., Raman Studies of the Structure of Nb2O5/TiO2. J. Phys. Chem.,1993.97:p.12178-12185
    13. Orel, B., In situ UV-Vis and ex situ IR spectroelectrochemical investigations of amorphous and crystalline electrochromic Nb2O5 films in charged/discharged states. J Solid State Electrochem 1998.2:p.221-236.
    14. Triantafillidis, C. S., Vlessidis, A. G, Evmiridis, N.P., Dealuminated H-Y Zeolites:Influence of the Degree and the Type of Dealumination Method on the Structural and Acidic Characteristics of H-Y Zeolites. Ind. Eng. Chem. Res., 2000.39:p.307-319.
    15. 徐如人,庞文琴,分子筛与多孔材料化学。2004,北京:科学出版社。
    16. Sumiya, S., Facile preparation of SB A-15-supported niobic acid (Nb2O5nH2O) catalyst and its catalytic activity. Applied Catalysis a-General,2009.365(2):p. 261-267.
    17. Tagusagawa, C., Effects of Transition-Metal Composition of Protonated, Layered Nonstoichiometric Oxides H1-xNb1-xMo1+xO6 on Heterogeneous Acid Catalysis. J. Phys. Chem. C,2009.113:p.17421-17427.
    18. Huang, B.X., Characterization of oxides on niobium by raman and infrared spectroscopy Electrochimica Acta,1999.44:p.2571-2577
    19. Martin, C, Nb2O5-supported WO3:a comparative study with WO3/Al2O3. Catalysis Today,2003.78:p.365-376.
    20. Yamashita, K., Activity and acidity of Nb2O5-MoO3 and Nb2O5-WO3 in the Friedel-Crafts alkylation. Catalysis Today,2006.118:p.385-391.
    1. 李书国,赵文华,陈辉,食用油脂抗氧化剂及其安全性研究进展[J].粮食与油脂,2006.5:p.34-37.
    2. Williams, G. M., Whysner, J., Safety Assessment of Butylated Hydroxyanisole and Butylated Hydroxytoluene as Antioxidant Food Additives. Food and Chemical Toxicology 1999.37:p.1027-1038.
    3. http://www.mhlw.go.jp/topics/bukyoku/iyaku/syokuten/index.html.
    4. Preparation of tertiary butyl hydroquinone. US 2,722,556 (C07C37/16), publ. 01.11.55.
    5. Alkylation of phenols. US 2,470,902 (C07C37/11), publ.24.05.49.
    6. Rosenwald, R.H.,U.P.,470,902 (1949) [CA:43 (1949)6235].
    7. Yadav, G.D. and Rahuman, M.S.M.M., Efficacy of solid acids in the synthesis of butylated hydroxy anisoles by alkylation of 4-methoxyphenol with MTBE. Applied Catalysis A:General 2003.253:p.113-123.
    8. Cai, H., et al., Alkylation of 4-methoxyphenol with MTBE catalyzed by 12-tungstophoric acid supported on neutral alumina. React Kinet Catal Lett, 2009.97:p.43-50.
    9. Olson, D.H., GT. Kokotailo, and S.L. Lawton, Crystal Structure and Structure-Related Properties of ZSM-5 The Journal of Physical Chemistry, 1981.85:p.2238-2243.
    10. Kirumakki, S.R., et al., A facile O-alkylation of 2-naphthol over zeolites Hβ, HY, and HZSM5 using dimethyl carbonate and methanol. Journal of Catalysis, 2004.221:p.549-559.
    11. Brihi, T.E., J.N. Jaubert, and D. Barth, Determining Volatile Organic Compounds'Adsorption Isotherms on Dealuminated Y Zeolite and Correlation with Different Models. J. Chem. Eng. Data,2002.47:p.1553-1557.
    12. 王存进,固体酸催化作用下苯和γ-丁内酯气固相合成α-四氢萘酮反应的研究.2010.
    13. Yadav, G.D. and J.J. Nair, Micropor&Mesopor. Mater.,1999.33:p.1.
    14. Selvaraj, M. and S. Kawi, Selective synthesis of 2-t-butylated hydroxyl anisole by t-butylation of 4-methoxyphenol with t-butyl alcohol over mesoporous solid acid catalyst. Journal of Molecular Catalysis A,2007.265:p.250-257.
    15. S.Subramanian, et al., Para-selective butylation of phenol over silicoaluminophosphate molecular sieve SAPO-11 catalyst Applied Catalysis A:General 1997.159:p.229-240
    16. Yadav, G.D. and G.S. Pathre, Novelties of a superacidic mesoporous catalyst UDCaT-5 in alkylation of phenol with tert-amyl alcohol. Applied Catalysis A: General,2006.297:p.237-246.
    17. Reddy, B.M., et al., Selective tert-butylation of phenol over molybdate-and tungstate-promoted zirconia catalysts. Applied Catalysis A-General,2007. 332(2):p.183-191.
    1. Tagusagawa, C., Evaluation of strong acid properties of layered HNbMoO6 and catalytic activity for Friedel-Crafts alkylation. Catalysis Today,2009.142:p. 267-271.
    2. Tagusagawa, C., Effects of Transition-Metal Composition of Protonated, Layered Nonstoichiometric Oxides H1-xNb1-xMo1+xO6 on Heterogeneous Acid Catalysis. J. Phys. Chem. C,2009.113:p.17421-17427.
    3. Tagusagawa, C., et al., Efficient Utilization of Nanospace of Layered Transition Metal Oxide HNbMoO 6 as a Strong, Water-Tolerant Solid Acid Catalyst. J. Am. Chem. Soc.,2008.130:p.7230-7231.
    4. Takagaki, A., Tagusagawa, C. and Domen, K., Glucose production from saccharides using layered transition metal oxide and exfoliated nanosheets as a water-tolerant solid acid catalysts. Chem. Commun.,2008:p.5363-5365.
    5. Takagaki, A., et al., Intercalation-induced Esterification over a Layered Transition Metal Oxide. Top Catal 2009.52:p.592-596.
    6. Tanabea, K. and Holderich, W.F., Industrial application of solid acid-base catalysts Applied Catalysis A:General 1999.181(2):p.399-434
    7. Williams, G.M., Iatropoulos, M.J. and Whysner, J., Safety Assessment of Butylated Hydroxyanisole and Butylated Hydroxytoluene as Antioxidant Food Additives. Food and Chemical Toxicology,1999.37:p.1027-1038.
    8. 李书国,赵文华,陈辉,食用油脂抗氧化剂及其安全性研究进展,粮食与油脂。2006,5。
    9. 王文新,李继,李非非,油脂抗氧剂叔丁基对苯二酚的合成。中国油脂,1999.24(5):p.59-60。
    10. 姜守霞,姜颖,食品抗氧剂TBHQ的研究[J].吉林师范大学学报:自然科学版,2004.8:p.65-67
    11. Nakamura, H., Jap. Patent 6,281,342 [Chem. Abstract 107 (1987) 200898].
    12. 李惠云,Al-MSU-S(Y)催化剂上对苯二酚与叔丁醇的烷基化反应。石油化 工,2008.37(5).
    13. Kamitori, Y, et al., Silica Gel as an Effective Catalyst for the Alkylation of Phenols and Some Heterocyclic Aromatic Compounds J. Org. Chem.,1984.49: p.4161-4165
    14. 刘秀梅,三甲胺基S03H-功能化离子液体催化对苯二酚叔丁基化反应。石油学报,2008.24(5):533-539。
    15. 强根荣,微波法合成2-叔丁基对苯二酚。浙江工业大学学报,2006.34(6)。
    16. Selvaraj M., Jean S. H., Han J., Lee T. G., Appl. Catal. A,2005.286:p.44.
    17. Yu-Bin, Y, et al., Alkylation of Hydroquinone with tert-Butyl Alcohol over Bis[(perfluoroalkyl)sulfonyl]imides Supported on MCM-41 Chinese Journal of Chemistry,2006.24:p.1692-1699.
    18. Yadav, G. D., and Doshi, N.S., Alkylation of hydroquinone with methyl-tert-butyl-ether and tert-butanol. Catalysis Today,2000.60:p.263-273.
    19. Yadav, G.D. and Doshi, N.S., Alkylation of phenol with methyl-tert-butyl ether and tert-butanol over solid acids:efficacies of clay-based catalysts. Applied Catalysis A:General 2002.236:p.129-147.
    20. Yadav, G.D. and N.S. Doshi, Alkylation of aniline with methyl-tert-butyl ether (MTBE) and tert-butanol over solid acids:product distribution and kinetics. Journal of Molecular Catalysis A:Chemical 2003.194:p.195-209.
    21. Badamali, S.K., A. Sakthivel, and P. Selvam, Tertiary butylation of phenol over mesoporous H-FeMCM-41. Catalysis Letters 2000.65:p.153-157.
    22. Yadav, G.D. and P. Kumar, Alkylation of phenol with cyclohexene over solid acids:Insight in selectivity of O-versus C-alkylation Applied Catalysis A: General, 2005.286(1):p.61-70
    23. 郭书好,罗新祥,阮秀兰,有机化学实验指导[M],1995:p.120-123.
    24. Pai, S., U. Gupta, and S. Chilukuri, Butylation of toluene:Influence of zeolite structure and acidity on 4-tert-butyltoluene selectivity. Journal of Molecular Catalysis A:Chemical 2007.265:p.109-116.
    25. Dong, H.-j. and L. Shi, Alkylation of Toluene with t-Butyl Alcohol over Zeolite Catalysts. Ind. Eng. Chem. Res.,2010.49:p.2091-2095.
    26. Yadav, G.D. and G.S. Pathre, Novelties of a superacidic mesoporous catalyst UDCaT-5 in alkylation of phenol with tert-amyl alcohol. Applied Catalysis A: General,2006.297:p.237-246.
    27. Selvaraj, M. and S. Kawi, Selective synthesis of 2-t-butylated hydroxyl anisole by t-butylation of 4-methoxyphenol with t-butyl alcohol over mesoporous solid acid catalyst. Journal of Molecular Catalysis A,2007.265:p.250-257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700