新型离心柱色谱系统的构建和相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
色谱峰拖尾会降低色谱柱效和分辨率,导致色谱分析的不准确性,是色谱研究中十分棘手的问题之一。本论文围绕“径向加压”的概念,设计了一套行星式离心柱色谱系统。具体内容如下:
     1.构建了离线式离心柱色谱系统,应用该系统获得了一对顺反异构体在离心色谱柱内的谱带展宽情况。通过比较分析离心色谱柱和传统色谱柱中的分离度的变化发现该系统可以有效地抑制色谱谱带展宽,提高分离效率。线性非理想色谱模型分析说明离心力抑制了色谱柱内的分子扩散。该系统的相关研究证实了“径向加压”对色谱过程的积极影响,为在线离心柱色谱系统的研究奠定了基础。
     2.构建了在线行星式离心柱色谱系统,应用该系统记录了三个保留时间不同的有机小分子化合物的色谱洗脱曲线,并比较分析了行星式离心柱色谱系统和传统的柱色谱系统的洗脱曲线的两个特征参数——不对称因子和拖尾因子。两个参数的减小说明该系统可以有效地改善色谱峰形拖尾。
     3.构建了行星式离心柱色谱系统的理论模型,通过该模型分析了行星式离心色谱柱中的任意一点处的总加速度的大小和方向。总加速度的方向变化说明行星式离心色谱柱内的流动相存在多方向的径向循环流动,降低了色谱柱内的径向异质性,最终改善了色谱峰形拖尾。
Peak asymmetry, which is one of the knotty problems in chromatography study, brings about undesirable effects in both physicochemical studies and application of chromatography. This study aimed to establish an effective method to reduce peak asymmetry by introducing a radial force on the column. The detail is as follows.
     1. An off-line centrifugal column chromatography system was installed. With this system, the band broadening of two cis-trans-isomers was obtained. Comparing with the classic chromatography, the separating degree in the centrifugal chromatography system was improved. An analysis with the theoretical model showed that the diffusion coefficient was reduced by the centrifugal force in the radial direction.
     2. An on-line planetary centrifugal column chromatography system was first brought forward and implemented. With this system, the elution profiles of three compounds with low molecular weight were recorded under different rotation speed. The asymmetry parameter and tailing factor were compared and the results implied that the planetary centrifugal column chromatography system could improve peak tailing of elution profiles more compared with the classic column chromatography.
     3. A physical and mathematical model for the planetary centrifugal column chromatography system was deduced. The theoretical model suggests that total acceleration (α) acting on an arbitrary point in the planetary centrifugal column may cause a radial flow with multi-directions, which could lead to a radial circulation of the mobile phase and the analytes. The circulation could relax the column radial heterogeneity and result in an improvement of peak asymmetry ultimately.
引文
[1]T. Fornstedt, G. Zhong, G. Guiochon, Peak tailing and mass transfer kinetics in linear chromatography, J. Chromatogr. A,1996,741:1-12.
    [2]T. Fornstedt, G. Zhong, G. Guiochon, Peak tailing and slow mass transfer kinetics in nonlinear chromatography, J. Chromatogr. A,1996,742:55-68.
    [3]D.S. Home, J.H. Knox, L. McLaren, Sep. Sci.,1966,1:531.
    [4]J.H. Knox, G.L. Laird, P.A. Raven, J. Chromatogr.,1976,122:129.
    [5]K. Miyabe, G. Guiochon, Estimation of the column radial heterogeneity from an analysis of the characteristics of tailing peaks in linear chromatography, J. Chromatogr. A,1999,830:29-39.
    [6]K. Miyabe, G. Guiochon, Peak tailing and column radial heterogeneity in linear chromatography, J. Chromatogr. A,1999,830:263-274.
    [7]林炳昌, 《色谱模型理论导引》,1-7.
    [8]T. Fornstedt, G. Zhong, Z. Bensetiti, G. Guiochon, Experimental and Theoretical Study of the Adsorption Behavior and Mass Transfer Kinetics of Propranolol Enantiomers on Cellulase Protein as the Selector, Anal. Chem.,1996,68: 2370-2378.
    [9]G. Guiochon, Preparative liquid chromatography, J. Chromatogr. A,2002,965: 129-161.
    [10]A. Felinger, Molecular dynamic theories in chromatography, J. Chromatogr. A, 2008,1184:20-41.
    [11]K. Miyabe, G. Guiochon, Critical contribution of nonlinear chromatography to the understanding of retention mechanism in reversed-phase liquid chromatography, J. Chromatogr. A,2005,1099:1-42.
    [12]B. Lin, S. Golshan-Shirazi, G. Guiochon, Effect of Mass Transfer Coefficient on the Elution Profile in Nonlinear Chromatography, J. Phys. Chem.,1989,93: 3363-3368.
    [13]N. Marchetti, G. Guiochon, Separation of Peptides from Myoglobin Enzymatic Digests by RPLC. Influence of the Mobile-Phase Composition and the Pressure on the Retention and Separation, Anal. Chem.,2005,77:3425-3430.
    [14]F. Gritti, G. Guiochon, Physical origin of peak tailing on C18-bonded silica in reversed-phase liquid chromatography, J. Chromatogr. A,2004,1028:75-88.
    [15]王正烈,周亚平,李松林,刘俊吉, 《物理化学》,168-174.
    [16]F. Gritti, G. Guiochon, Adsorption-desorption isotherm hysteresis of phenol on a C18-bonded surface, J. Chromatogr. A,2003,1010:153-176.
    [17]F. Gritti, G. Guiochon, Adsorption Mechanism in RPLC. Effect of the Nature of the Organic Modifier, Anal. Chem.,2005,77:4257-4272.
    [18]N. Marchetti, A. Cavazzini, L. Pasti, F. Dondi, Determination of adsorption isotherms by means of HPLC:Adsorption mechanism elucidation and separation optimization, J. Sep. Sci.,2009,32:727-741.
    [19]A. Seidel-Morgenstern, Experimental determination of single solute and competitive adsorption isotherms, J. Chromatogr. A,2004,1037:255-272.
    [20]A. Puerta, C. Vidal-Madjar, A. Jaulmes, J. Diez-Masa, M. Frutos, Frontal analysis for characterizing the adsorption-desorption behavior of β-lactoglobulin on immune adsorbents, J. Chromatogr. A,2006,1119:34-42.
    [21]F. Gritti, G. Guiochon, Effect of the Surface Heterogeneity of the Stationary Phase on the Range of Concentrations for Linear Chromatography, Anal. Chem., 2005,77:1020-1030.
    [22]F. Gritti, G. Guiochon, Heterogeneity of the Adsorption Mechanism of Low Molecular Weight Compounds in Reversed-Phase Liquid Chromatography, Anal. Chem.,2006,78:5823-5834.
    [23]F. Gritti, C. Perdu, G. Guiochon, Comparison of the performance of a few packing materials designed to minimize the thermodynamic band tailing of basic compounds in reversed-phase liquid chromatography, J. Chromatogr. A,2008, 1180:73-89.
    [24]F. Gritti, A. S. Pereira, P. Sandra, G. Guiochon, Comparison of the adsorption mechanisms of pyridine in hydrophilic interaction chromatography and in reversed-phase aqueous liquid chromatography, J. Chromatogr. A,2009,1216: 8496-8504.
    [25]F. Gritti, G. Guiochon, Heterogeneity of the surface energy on unused C18-Chromolith adsorbents in reversed-phase liquid chromatography, J. Chromatogr. A,2004,1028:105-119.
    [26]F. Gritti, G. Guiochon, Adsorption Mechanisms and Effect of Temperature in Reversed-Phase Liquid Chromatography. Meaning of the Classical Van't Hoff Plot in Chromatography, Anal. Chem.,2006,78:4642-4653.
    [27]G. Gotmar, D. Zhou, B.J. Stanley, G. Guiochon, Heterogeneous Adsorption of 1-Indanol on Cellulose Tribenzoate and Adsorption Energy Distribution of the Two Enantiomers, Anal. Chem.,2004,76:197-202.
    [28]L. Asnin, F. Gritti, K. Kaczmarski, G. Guiochon, Features of the adsorption of Naproxen on the chiral stationary phase (S,S)-Whelk-Ol under reversed-phase conditions, J. Chromatogr. A,2010,1217:264-275.
    [29]H. Kim, G. Guiochon, Adsorption on Molecularly Imprinted Polymers of Structural Analogues of a Template. Single-Component Adsorption Isotherm Data, Anal. Chem.,2005,77:6415-6425.
    [30]K. Miyabe, G. Guiochon, Characterization of monolithic columns for HPLC, J. Sep. Sci., 2004,27:853-873.
    [31]K. Miyabea, G. Guiochon, Measurement of the parameters of the mass transfer kinetics in high performance liquid chromatography, J. Sep. Sci.,2003,26: 155-173.
    [32]K. Miyabe, Y. Kawaguchi, G. Guiochon, Kinetic study on external mass transfer in high performance liquid chromatography system, J. Chromatogr. A,2010, 1217:3053-3062.
    [33]K. Kaczmarski, F. Gritti, G. Guiochon, Thermodynamics and mass transfer kinetics of phenol in reversed phase liquid chromatography, Chem. Eng. Sci., 2006,61:5895-5906.
    [34]G. Guiochon, S. Golshan-Shirazi, A.M. Katti, Fundamentals of Preparative and Nonlinear Chromatography, Academic Press, Boston,1994.
    [35]D.M. Ruthven, Principles of Adsorption & Adsorption Processes, John Wiley and Sons, New York,1984.
    [36]M. Suzuki, Adsorption Engineering, Kodansha/Elsevier, Tokyo/Amsterdam, 1990.
    [37]H. Guan, G. Guichon, Study of physico-chemical properties of some packing materials. Ⅰ. Measurements of the external porosity of packed columns by inverse size-exclusion chromatography, J. Chromatogr. A,1996,731:27-40.
    [38]H. Guan, G. Guiochon, D. Coffey, E. Davis, K. Gulakowski, D. W. Smith, Study of the physico-chemical properties of some packing materials Ⅱ. General properties of the particles, J. Chromatogr. A,1996,736:21-30.
    [39]K. Miyabe, M. Ando, N. Ando, G. Guiochon, External mass transfer in high performance liquid chromatography systems, J. Chromatogr. A,2008,1210: 60-67.
    [40]K. Miyabe, N. Ando, G. Guiochon, Peak parking method for measurement of molecular diffusivity in liquid phase systems, J. Chromatogr. A,2009,1216: 4377-4382.
    [41]I. Kiss, I. Bacskay, F. Kilar, A. Felinger, Comparison of the mass transfer in totally porous and superficially porous stationary phases in liquid chromatography, Anal. Bioanal. Chem.,2010,397:1307-1314.
    [42]K. Miyabe, H. Kobayashi, D. Tokuda, N. Tanaka, A kinetic parameter concerning mass transfer in silica monolithic and particulate stationary phases measured by the peak-parking and slow-elution methods, J. Sep. Sci.,2006,29:2452-2462.
    [43]A. Felinger, Determination of rate constants for heterogeneous mass transfer kinetics in liquid chromatography, J. Chromatogr. A,2006,1126:120-128.
    [44]L. Asnin, K. Horvath, G. Guiochon, On the enantioselectivity of the mass transfer kinetics and the adsorption equilibrium of Naproxen on the chiral stationary phase (R, R)-Whelk-Ol under reversed-phase conditions, J. Chromatogr. A,2010, 1217:1320-1331.
    [45]K. Miyabe, G. Guiochon, Thermodynamic Characteristics of Surface Diffusion in Reversed-Phase Liquid Chromatography, J. Phys. Chem. B,1999,103: 11086-11097.
    [46]K. Miyabe, G. Guiochon, Analysis of the Surface Diffusion of Alkylbenzenes and p-Alkylphenols in Reversed-Phase Liquid Chromatography Using the Surface-Restricted Molecular Diffusion Model, Anal. Chem.,2001,73: 3096-3106.
    [47]K. Miyabe, G. Guiochon, Analysis of Surface Diffusion Phenomena in Reversed-Phase Liquid Chromatography,Anal. Chem.,1999,71:889-896.
    [48]K. Miyabe, G. Guiochon, Restricted Diffusion Model for Surface Diffusion in Reversed-Phase Liquid Chromatography, Anal. Chem.,2000,72:1475-1489.
    [49]F. Gritti, G. Guiochon, General HETP Equation for the Study of Mass-Transfer Mechanisms in RPLC, Anal. Chem.,2006,78:5329-5347.
    [50]F. Gritti, G. Guiochon, Influence of the degree of coverage of C18-bonded stationary phases on the mass transfer mechanism and its kinetics, J. Chromatogr. A,2006,1128:45-60.
    [51]K. Kaczmarski, G. Guiochon, Modeling of the Mass-Transfer Kinetics in Chromatographic Columns Packed with Shell and Pellicular Particles, Anal. Chem.,2007,79:4648-4656.
    [52]A. Cavazzini, F. Gritti, K. Kaczmarski, N. Marchetti, G. Guiochon, Mass-Transfer Kinetics in a Shell Packing Material for Chromatography, Anal. Chem.,2007,79:5972-5979.
    [53]F. Gritti, G. Guiochon, Mass transfer kinetic mechanism in monolithic columns and application to the characterization of new research monolithic samples with different average pore sizes, J. Chromatogr. A,2009,1216:4752-4767.
    [54]G. Guiochon, E. Drumm, D. Cherrak, Evidence of a wall friction effect in the consolidation of beds of packing materials in chromatographic columns, J. Chromatogr. A,1999,835:41-58.
    [55]T. Yun, G. Guiochon, Visualization of the heterogeneity of column beds, J. Chromatogr. A,1997,760:17-24.
    [56]B. G. Yew, E. C. Drumm, G. Guiochon, Mechanics of Column Beds:I. Acquisition of the Relevant Parameters, AIChE J.,2003,49 (3):626-641.
    [57]B. G. Yew, J. Ureta, R. A. Shalliker, E. C. Drumm, G. Guiochon, Mechanics of Column Beds:Ⅱ. Modeling of Coupled Stress-Strain-Flow Behavior, AIChE J., 2003,49 (3):642-664.
    [58]F. Gritti, G. Guiochon, Ultra high pressure liquid chromatography Column permeability and changes of the eluent properties, J. Chromatogr. A,2008,1187: 165-179.
    [59]J. Billen, P. Gzil, N. Vervoort, G.V. Baron, G. Desmet, Influence of the packing heterogeneity on the performance of liquid chromatography supports, J. Chromatogr. A,2005,1073:53-61.
    [60]J. A. Abia, K. S. Mriziq, G. A. Guiochon, Radial heterogeneity of some analytical columns used in high-performance liquid chromatography, J. Chromatogr. A, 2009,1216:3185-3191.
    [61]K. S. Mriziq, J. A. Abia, Y. Lee, G. Guiochon, Structural radial heterogeneity of a silica-based wide-bore monolithic column, J. Chromatogr. A,2008,1193: 97-103.
    [62]J. A. Abia, K. S. Mriziq, G. A. Guiochon, Radial distribution of the contributions to band broadening of a silica-based semi-preparative monolithic column, J. Sep. Sci.,2009,32:923-930.
    [63]R. A. Shalliker, B. S. Broyles, G. Guiochon, Axial and radial diffusion coefficients in a liquid chromatography column and bed heterogeneity, J. Chromatogr. A,2003,994:1-12.
    [64]K. Kaczmarski, J. Kostka, W. Zapala, G. Guiochon, Modeling of thermal processes in high pressure liquid chromatography Ⅰ. Low pressure onset of thermal heterogeneity, J. Chromatogr. A,2009,1216:6560-6574.
    [65]F. Gritti, M. Martin, G. Guiochon, Influence of Viscous Friction Heating on the Efficiency of Columns Operated under Very High Pressures, Anal. Chem.,2009, 81:3365-3384.
    [66]K. Broeckhoven, G. Desmet, Numerical and analytical solutions for the column length-dependent band broadening originating from axisymmetrical trans-column velocity gradients, J. Chromatogr. A,2009,1216:1325-1337.
    [67]T. Farkas, M. J. Sepanlak, G. Guiochon, Column radial homogeneity in high-performance liquid chromatography, J. Chromatogr. A,1996,740:169-181.
    [68]T. Farkas, M. J. Sepaniak, G. Guiochon, Radial Distribution of the Flow Velocity, Efficiency and Concentration in a Wide HPLC Column, AIChE J.,1997,43 (8): 1964-1974.
    [69]T. Farkas, G. Guiochon, Contribution of the Radial Distribution of the Flow Velocity to Band Broadening in HPLC Columns, Anal. Chem.,1997,69: 4592-4600.
    [70]K. Miyabe, Y. Matsumoto, Y. Niwa, N. Ando, G. Guiochon, An estimation of the column efficiency made by analyzing tailing peak profiles, J. Chromatogr. A, 2009,1216:8319-8330.
    [71]F. Gritti, G. Guiochon, Consequences of the radial heterogeneity of the column temperature at high mobile phase velocity, J. Chromatogr. A,2007,1166:47-60.
    [72]R. Muca, W. Piatkowski, D. Antos, Effects of thermal heterogeneity in hydrophobic interaction chromatography, J. Chromatogr. A,2009,1216: 6716-6727.
    [73]F. Lottes, W. Arlt, M. Minceva, E. H. Stenby, Hydrodynamic impact of particle shape in slurry packed liquid chromatography columns, J. Chromatogr. A,2009, 1216:5687-5695.
    [74]R. Roux, M. A. Jaoude, C. Demesmay, Improvement of chromatographic performances of in-situ synthesized hybrid C8 silica monoliths by reduction of structural radial heterogeneities, J. Chromatogr. A,2009,1216:3857-3863.
    [1]T. Cecchia, Ion Pairing Chromatography, Crit. Rev. Anal. Chem.,2008,38 (3): 161-213.
    [2]M. J. Ruiz-Angel, S. Carda-Broch, J. R. Torres-Lapasio, M. C. Garcia-Alvarez-Coque, Retention mechanisms in micellar liquid chromatography, J. Chromatogr. A,2009,1216:1798-1814.
    [3]Y. Zhang, S. Yao, H. Zeng, H. Song, Chiral Separation of Pharmaceuticals by High Performance Liquid Chromatography, Curr. Pharm. Anal.,2010,6: 114-130.
    [4]D. Wistuba, Chiral silica-based monoliths in chromatography and capillary electrochromatography, J. Chromatogr. A,2010,1217:941-952.
    [5]R.P.W. Scott, P. Kucera, Mode of operation and performance characteristics of microbore columns for use in liquid chromatography, J. Chromatogr. A,1979, 169:51-72.
    [6]H. Garraud, A. Woller, P. Fodor, O. Donard, Trace elemental speciation by HPLC using microbore columns hyphenated to atomic spectrometry:A review, Analusis,1997,25(2):25-31.
    [7]J. B. Young, L. Li, Impulse-Driven Heated-Droplet Deposition Interface for Capillary and Microbore LC-MALDI/MS and MS/MS, Anal. Chem.,2007,79: 5927-5934.
    [8]J. Far, H. Preud'homme, R. Lobinski, Detection and identification of hydrophilic selenium compounds in selenium-rich yeast by size exclusion-microbore normal-phase HPLC with the on-line ICP-MS and electrospray Q-TOF-MS detection, Anal. Chim. Acta,2010,657:175-190.
    [9]M. Biedermann, K. Grob, D. Frohlich, W. Meier, On-line coupled liquid chromatography-gas chromatography (LC-GC) and LC-LC-GC for detecting irradiation of fat-containing foods, Z. Lebensm. Unters. Forsch.,1992,195: 409-416.
    [10]林炳昌, 《色谱模型理论导引》,19-56.
    [11]R. A. Shalliker, B. S. Broyles, G. Guiochon, Axial and radial diffusion coefficients in a liquid chromatography column and bed heterogeneity, J. Chromatogr. A,2003,994:1-12.
    [12]B. S. Broyles, R. A. Shalliker, G. Guiochon, Visualization of solute migration in chromatographic columns:Quantitation of the concentration in a migrating zone, J. Chromatogr. A,2000,867:71-92.
    [13]R. A. Shalliker, B. S. Broyles, G. Guiochon, Visualization of viscous fingering in high-performance liquid chromatographic columns:Influence of the header design, J. Chromatogr. A,1999,865:73-82.
    [14]R. A. Shalliker, B. S. Broyles, G. Guiochon, Visualization of sample introduction in liquid chromatographic columns:Contribution of a flow distributor on the sample band shape, J. Chromatogr. A,1999,865:83-95.
    [15]B. S. Broyles, R. A. Shalliker, G. Guiochon, Visualization of sample introduction in liquid chromatography columns:The effect of the frit diameter, J. Chromatogr. A,1999,855:367-382.
    [1]C. Cabanne, M. Raedts, E. Zavadzky, X. Santarelli, Evaluation of radial chromatography versus axial chromatography, practical approach, J. Chromatogr. B,2007,845:191-199.
    [2]Y. Dai, J. Wang, S. Jia, S. Yue, M. Jia, P. Xu, Study on the purification of polysaccharides from Noscoc flagelliforme with radial flow chromatography, Biotechnol. Bioprocess Eng.,2009,14:377-382.
    [3]M.C. Lay, C.J. Fee, J.E. Swan, Continuous Radial Flow Chromatography of Proteins, Food Bioprod. Process.,2006,84:78-83.
    [4]T. Sun, G. Chen, Y. Liu, F. Bu, M. Wen, Chromatography of human prothrombin from Nitschmann fraction III on DEAE Sepharose Fast Flow using axial and radial flow column, Biomed. Chromatogr.,2000,14:478-482.
    [5]T. Sun, G. Chen, Y. Liu, F. Bu, M. Wen, Chromatography of human prothrombin from Nitschmann fraction III on Q Sepharose Fast Flow using axial and radial flow column, Bioprocess Eng.,2000,23:121-125.
    [6]T. Sun, G. Chen, Y. Liu, F. Bu, M. Wen, Purification of human prothrombin from Nitschmann fraction III using DEAE membrane radial flow chromatography, J. Chromatogr. B:Biomed. Sci. App.,2000,742:109-114.
    [7]Y. Kim, E. K. Lee, Comparison of axial and radial flow chromatography on protein separation speed and resolution, Korean J. Chem. Eng.,1996,13(5): 466-472.
    [8]张天佑, 《逆流色谱技术》,43-49.
    [9]C. Shen, T. Yu, Peak shape and dispersion behavior of solutes in counter-current chromatography with a single phase, J. Chromatogr. A,2009,1216:6789-6795.
    [10]K. Miyabe, Y. Matsumoto, Y. Niwa, N. Ando, G. Guiochon, An estimation of the column efficiency made by analyzing tailing peak profiles, J. Chromatogr. A, 2009,1216:8319-8330.
    [11]L. Pan, R. LoBrutto, Y. V. Kazakevich, R. Thompson, Influence of inorganic mobile phase additives on the retention, efficiency and peak symmetry of protonated basic compounds in reversed-phase liquid chromatography, J. Chromatogr. A,2004,1049:63-73.
    [12]J. J. Baeza-Baeza, S. Pous-Torres, J. R. Torres-Lapasio, M. C. Garcia-Alvarez-Coque, Approaches to characterise chromatographic column performance based on global parameters accounting for peak broadening and skewness,J. Chromatogr. A,2010,1217:2147-2157.
    [13]K. J. Fountain, U. D. Neue, E. S. Grumbach, D. M. Diehl, Effects of extra-column band spreading, liquid chromatography system operating pressure, and column temperature on the performance of sub-2μm porous particles, J. Chromatogr. A,2009,1216:5979-5988.
    [14]F. Gritti, A. Felinger, G. Guiochon, Influence of the errors made in the measurement of the extra-column volume on the accuracies of estimates of the column efficiency and the mass transfer kinetics parameters, J. Chromatogr. A, 2006,1136:57-72.
    [15]A. T. Beisler, K. E. Schaefer, S. G. Weber, Simple method for the quantitative examination of extra column band broadening in microchromatographic systems, J. Chromatogr. A,2003,986:247-251.
    [16]S. T. Popovici, A. van der Horst, P. J. Schoenmakers, Two-dimensional chromatography as a tool for studying band broadening in size-exclusion chromatography, J. Sep. Sci.,2005,28:1457-1466.
    [1]吴宁生,顾光华, 《高效液相色谱》,中国科学技术大学出版社,1-24.
    [2]M. C. Lay, C. J. Fee, J. E. Swan, Continuous radial flow chromatography of proteins, Food Bioprod. Process.,2006,84:78-83.
    [3]S. M. Singh, A. Sharma, A. K. Panda, High throughput purification of recombinant human growth hormone using radial flow chromatography, Protein Express. Purif.,2009,68:54-59.
    [4]Y. Zhang, J. Jiang, Q. DU, The application of radial flow chromatographic in the separation of biomacromo lecule, Food Sci. Technol.,2008,10:101-104.
    [5]张天佑,逆流色谱技术,49-59.
    [6]Ito,Y.; Bowman, R.L. J. Chromatogr.1978,147:221-231.
    [7]S. Wu, Y. Tai, Y. Pan, C. Sun, Effect of gravitational force on type-J counter-current chromatography by mathematical analysis, J. Chromatogr. A, 2006,1103:243-247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700